JP2012243797A - 太陽電池の製造方法 - Google Patents
太陽電池の製造方法 Download PDFInfo
- Publication number
- JP2012243797A JP2012243797A JP2011109328A JP2011109328A JP2012243797A JP 2012243797 A JP2012243797 A JP 2012243797A JP 2011109328 A JP2011109328 A JP 2011109328A JP 2011109328 A JP2011109328 A JP 2011109328A JP 2012243797 A JP2012243797 A JP 2012243797A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- type
- solar cell
- semiconductor film
- amorphous semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 68
- 239000000758 substrate Substances 0.000 claims abstract description 129
- 239000004065 semiconductor Substances 0.000 claims abstract description 68
- 238000000034 method Methods 0.000 claims abstract description 50
- 238000005530 etching Methods 0.000 claims abstract description 15
- 230000001678 irradiating effect Effects 0.000 claims abstract 3
- 238000009792 diffusion process Methods 0.000 claims description 11
- 239000012535 impurity Substances 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 abstract description 14
- 230000008569 process Effects 0.000 abstract description 13
- 229910021417 amorphous silicon Inorganic materials 0.000 description 123
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 93
- 229910052710 silicon Inorganic materials 0.000 description 93
- 239000010703 silicon Substances 0.000 description 93
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 15
- 239000010410 layer Substances 0.000 description 14
- 238000001039 wet etching Methods 0.000 description 13
- 239000002019 doping agent Substances 0.000 description 11
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 8
- 229910052581 Si3N4 Inorganic materials 0.000 description 7
- 239000007772 electrode material Substances 0.000 description 6
- 229910021419 crystalline silicon Inorganic materials 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 238000007639 printing Methods 0.000 description 5
- 230000006798 recombination Effects 0.000 description 5
- 238000005215 recombination Methods 0.000 description 5
- 238000007650 screen-printing Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000002161 passivation Methods 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 239000012670 alkaline solution Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000011712 cell development Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/072—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
- H01L31/0745—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
- H01L31/0747—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
【課題】簡略なプロセスで光電変換効率に優れたヘテロ接合型バックコンタクト構造の太陽電池を製造可能なヘテロ接合型バックコンタクト太陽電池の製造方法を得ること。
【解決手段】結晶系半導体基板1の一面側に、第1導電型のアモルファス系半導体膜4aを形成し、アモルファス系半導体膜4aの一部をレーザ照射により除去して所定のパターンを形成し、所定のパターン上に第1電極7を形成し、基板1の一面側の全面に第2導電型のアモルファス系半導体膜4bを形成し、基板1の一面側において所定のパターンの形成されていない領域に形成されたアモルファス系半導体膜4b上に第2電極8を形成し、基板1の一面側において第1電極7と第2電極8との間の領域に残存する膜の一部を、第1電極7と第2電極8とをマスクに用いたエッチングまたはレーザ照射により除去して第1電極7と第2電極8とを電気的に分離する。
【選択図】図1
【解決手段】結晶系半導体基板1の一面側に、第1導電型のアモルファス系半導体膜4aを形成し、アモルファス系半導体膜4aの一部をレーザ照射により除去して所定のパターンを形成し、所定のパターン上に第1電極7を形成し、基板1の一面側の全面に第2導電型のアモルファス系半導体膜4bを形成し、基板1の一面側において所定のパターンの形成されていない領域に形成されたアモルファス系半導体膜4b上に第2電極8を形成し、基板1の一面側において第1電極7と第2電極8との間の領域に残存する膜の一部を、第1電極7と第2電極8とをマスクに用いたエッチングまたはレーザ照射により除去して第1電極7と第2電極8とを電気的に分離する。
【選択図】図1
Description
本発明は、太陽電池の製造方法に関する。
太陽電池の広範な普及においては、太陽電池の低コスト化が非常に大きな課題となっている。太陽電池の製造コストを下げるためには、使用原材料の低コスト化や、製造プロセスの簡略化による低コスト化とともに、高効率化による低コスト化も大きな方策の一つである。
太陽電池の高効率化のために様々な手法が研究開発されているが、大別すると太陽光をできるだけ多く太陽電池内に取り込む手法、太陽電池に入射した光で発生したキャリアの結晶中や結晶表面での消滅をできるだけ抑制する手法などがある。
太陽光をできるだけ多く太陽電池内に取り込むためには、太陽光の影となる表面電極をできる限り細くすることが重要であり、究極的には表面に電極を配置しない、いわゆるバックコンタクト構造が開発されている。
また、結晶表面でのキャリアの消滅(再結合)を抑制するためには結晶表面にパッシベーションを施す必要があり、一般的にはシリコン酸化膜、シリコン窒化膜、酸化アルミニウム膜などが単独、あるいは積層されて用いられる。また、アモルファスシリコン膜によるヘテロ接合構造も表面パッシベーションに優れた効果を発揮することが知られている。
表面に電極を配置しないバックコンタクト構造では、結晶シリコン太陽電池が作られたごく初期の1954年に既に裏面側にプラス、マイナス両電極を配置した構造が採用され4%程度の光電変換効率が得られている(たとえば、非特許文献1参照)。また、高効率という観点では、1986年にSintonらが報告した裏面ポイントコンタクト型セルでは、22%を超える高い光電変換効率が得られている(たとえば、非特許文献2参照)。
一方、アモルファスシリコンによるヘテロ接合構造太陽電池については、例えばn型結晶シリコン基板上にp型アモルファスシリコンを堆積して接合を形成する際に、両者の間にi型(真性)アモルファスシリコン層を挿入することにより表面再結合を大きく抑制することができ、太陽電池特性が向上する方法が開示されている(たとえば、特許文献1参照)。この方法を応用した太陽電池では、700mVを超える高い開放電圧(Voc)とともに光電変換効率も23%を実現できている。
このように高効率化を図る方法としてバックコンタクト構造およびアモルファスシリコンによるヘテロ接合構造の採用は、太陽電池開発の大きな流れの一つであり、さらにこれらを組み合わせたヘテロ接合型バックコンタクト構造セルも開発が進められている。
F. M. Smith, "History of Silicon Solar Cells" IEEE Transactions on Electron Devices, Vol ED-23, pp640-3, 1976
R. A. Sinton, Y. Kwark, J. Y. Gan, R. M. Swanson, "27.5-Percent Silicon Concentrator Solar Cells", IEEE Electron Device Letters, Vol.EDL-7, No.10, October 1986, pp567-569
M. Tucci, "Back Enhanced Heterostructure with INterDigitated contact-BEHIND-solar cell", International Conference on Electronic Materials (IUMRS-ICEM), Sydney, Australia, July 28-Aug 1, 2008
しかしながら、開発が進められているヘテロ接合型バックコンタクト構造セルは、両者の利点を持ち合わせたものとなることを期待されているものの、未だに15%程度の光電変換効率に留まっている(たとえば、非特許文献3参照)。
ここで、従来のヘテロ接合型バックコンタクト構造の太陽電池について簡単に説明する。従来のヘテロ接合型バックコンタクト構造の太陽電池は、例えばn型シリコン基板の受光面側に、i型アモルファスシリコン膜と反射防止膜とが設けられている。また、n型シリコン基板の受光面と反対の面(裏面)側には、i型アモルファスシリコン膜が形成されている。そして、このi型アモルファスシリコン膜上において、一部の領域にp型アモルファスシリコン膜とp型電極とが積層され、他の一部の領域にn型アモルファスシリコン膜とn型電極とが積層され、これらが電気的に分離されている。
つぎに、従来のヘテロ接合型バックコンタクト構造セルの製造プロセスを説明する。n型シリコン基板の表面を清浄化するための前処理を行った後、n型シリコン基板の両面にi型アモルファスシリコン膜をプラズマCVD法により堆積する。つぎに、反射防止膜を光入射側のi型アモルファスシリコン上に形成する。
つぎに、n型シリコン基板の裏面の全面にp型のアモルファスシリコン膜をプラズマCVD法により堆積する。つぎに、p型のアモルファスシリコン膜上にレジストを塗布し、例えば写真製版技術を用いてレジストをパターニングして、第1のレジストパターンを形成する。つぎに、第1のレジストパターンをマスクにして、n型シリコン基板の裏面のi型アモルファスシリコン膜とp型のアモルファスシリコン膜とをエッチングしてn型シリコン基板の裏面を露出させる。
つぎに、第1のレジストパターンを残した状態でn型シリコン基板の裏面側に、2回目となるi型アモルファスシリコン膜と、n型アモルファスシリコン膜とを順次堆積する。つぎに、再びレジストを塗布し、写真製版技術を用いてレジストをパターニングして、第2のレジストパターンを形成する。第2のレジストパターンは、先にn型シリコン基板の裏面を露出させた領域に堆積したn型アモルファスシリコン膜上のみに残存するパターンとされる。
つぎに、第2のレジストパターンをマスクとしてi型アモルファスシリコン膜とn型アモルファスシリコン膜とをエッチングする。このとき、第1のレジストパターンもマスクとして機能し、また、n型シリコン基板がエッチングストッパとして機能する。これにより、第1のレジストパターンの下部にはi型アモルファスシリコンとp型アモルファスシリコンとが、第2のレジストパターンの下部にはi型アモルファスシリコン膜とn型アモルファスシリコン膜とが残存する。また、第1のレジストパターンと第2のレジストパターンとのどちらにも覆われていない領域は、n型シリコン基板までエッチングが進み、n型シリコン基板が露出する。
その後、第1のレジストパターンと第2のレジストパターンとを除去し、p型アモルファスシリコン層上にp型電極を形成し、n型アモルファスシリコン層上にn型電極を形成することで、ヘテロ接合型バックコンタクト構造セルが作製できる。
しかしながら、上述したように従来のヘテロ接合型バックコンタクト構造セルの製造プロセスでは、写真製版技術を2回使用する必要があるためプロセスが複雑になり、また製造コストが高くなる、という問題があった。また、太陽電池特性が写真製版技術における位置合せ精度によって左右され、良好な太陽電池特性が得られにくい、という問題があった。
本発明は、上記に鑑みてなされたものであって、簡略なプロセスで光電変換効率に優れたヘテロ接合型バックコンタクト構造の太陽電池を製造可能な太陽電池の製造方法を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明にかかる太陽電池の製造方法は、太陽電池の製造方法であって、結晶系半導体基板の一面側に、第1導電型のアモルファス系半導体膜を形成する第1工程と、前記第1導電型のアモルファス系半導体膜の一部をレーザ照射により除去して所定のパターンを形成する第2工程と、前記所定のパターン上に第1電極を形成する第3工程と、前記第1電極を形成した前記結晶系半導体基板の一面側の全面に第2導電型のアモルファス系半導体膜を形成する第4工程と、前記結晶系半導体基板の一面側において前記所定のパターンの形成されていない領域に形成された前記第2導電型のアモルファス系半導体膜上に第2電極を形成する第5工程と、前記結晶系半導体基板の一面側において前記第1電極と前記第2電極との間の領域に残存する膜の一部を、前記第1電極と前記第2電極とをマスクに用いたエッチングまたはレーザ照射により除去して前記第1電極と前記第2電極とを電気的に分離する第6工程と、を含むことを特徴とする。
本発明によれば、簡略なプロセスで光電変換効率に優れたヘテロ接合型バックコンタクト構造の太陽電池を製造可能である、という効果を奏する。
以下に、本発明にかかる太陽電池の製造方法の実施の形態を図面に基づいて詳細に説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。
実施の形態1.
図1は、本発明の実施の形態1にかかる太陽電池の製造方法により形成された太陽電池の構造を模式的に示す断面図である。実施の形態1にかかる太陽電池100は、結晶系半導体基板であるn型シリコン基板1を有する。n型シリコン基板1の受光面側には、真性(i型)アモルファスシリコン膜2と反射防止膜3とが設けられている。n型シリコン基板1の受光面と反対の面(裏面)側には、真性(i型)アモルファス系半導体膜である真性(i型)アモルファスシリコン膜4aと、真性(i型)アモルファス系半導体膜である真性(i型)アモルファスシリコン膜4bと、p型アモルファスシリコン膜5と、n型アモルファスシリコン膜6と、p型電極7と、n型電極8とが設けられている。
図1は、本発明の実施の形態1にかかる太陽電池の製造方法により形成された太陽電池の構造を模式的に示す断面図である。実施の形態1にかかる太陽電池100は、結晶系半導体基板であるn型シリコン基板1を有する。n型シリコン基板1の受光面側には、真性(i型)アモルファスシリコン膜2と反射防止膜3とが設けられている。n型シリコン基板1の受光面と反対の面(裏面)側には、真性(i型)アモルファス系半導体膜である真性(i型)アモルファスシリコン膜4aと、真性(i型)アモルファス系半導体膜である真性(i型)アモルファスシリコン膜4bと、p型アモルファスシリコン膜5と、n型アモルファスシリコン膜6と、p型電極7と、n型電極8とが設けられている。
この太陽電池100においては反射防止膜3側が受光面とされ、太陽光Lが入射される。太陽電池100は、p型電極7およびn型電極8が、太陽電池100の裏面側にのみ配されたヘテロ構造バックコンタクト型太陽電池である。これにより、太陽電池100は、光電変換効率の向上が図られている。
n型シリコン基板1は、例えばn型のドーパント(例えばP(リン))がドープされてなることでn型の導電型を呈する結晶系シリコン基板である。結晶系シリコン基板には、単結晶シリコン基板および多結晶シリコン基板を含む。
i型アモルファスシリコン膜2は、n型シリコン基板1の受光面を被覆して積層形成されており、n型シリコン基板1の受光面側の基板表面におけるキャリア再結合を抑制する表面パッシベーション層として働く。このようなi型アモルファスシリコン膜2を形成することで、n型シリコン基板1へのパッベーション効果が得られ、開放電圧や短絡電流密度が向上するという効果が得られる。
反射防止膜3は、i型アモルファスシリコン膜2を被覆して形成されており、受光面側から太陽電池100に入射する光の反射損失の低減を目的として設けられる層である。また、反射防止膜3は、n型シリコン基板1の保護層としても機能も有する。
i型アモルファスシリコン膜4aおよびi型アモルファスシリコン膜4bは、n型シリコン基板1の裏面の一部領域を被覆して積層形成されており、n型シリコン基板1の裏面の基板表面におけるキャリア再結合を抑制する裏面パッシベーション層として働く。
p型アモルファスシリコン膜5は、i型アモルファスシリコン膜4a上に形成されており、i型アモルファスシリコン膜4aを介してn型シリコン基板1とpn接合を形成する。
n型アモルファスシリコン膜6は、p型アモルファスシリコン膜5が形成されていないi型アモルファスシリコン膜4b上に形成されており、n型シリコン基板1よりもn型のドーパント(例えばP)を高濃度に含有する。
p型電極7は、発電された電力を外部に取り出すための取り出し電極であり、p型アモルファスシリコン膜5上に形成されている。n型電極8は、発電された電力を外部に取り出すための取り出し電極であり、n型アモルファスシリコン膜6上に形成されている。
つぎに、このような太陽電池100の製造方法の一例について図2−1〜図2−7を参照して説明する。図2−1〜図2−7は、実施の形態1にかかる太陽電池の製造方法を説明するための断面図である。
まず、半導体基板として、n型ドーパント原子としてPを所定の濃度で含有するn型シリコン基板1を用意する。n型シリコン基板1は、溶融したシリコンを冷却固化してできたインゴットをワイヤーソーでスライスして製造するため、表面にスライス時のダメージが残っている。そこで、まずはこのダメージ層の除去も兼ねて、n型シリコン基板1を酸または加熱したアルカリ溶液中、例えば水酸化ナトリウム水溶液に浸漬して表面をエッチングすることにより、シリコン基板の切り出し時に発生してn型シリコン基板1の表面近くに存在するダメージ領域を取り除く。このあと、光の反射率をさらに低下させるため、表面に凹凸形状を作製するエッチング工程を入れてもよく、その場合にはさらに性能の高い太陽電池を得ることができる。
つぎに、n型シリコン基板1の両面にプラズマCVD法によりn型シリコン基板1の一面側にi型アモルファスシリコン膜2を、n型シリコン基板1の裏面側にi型アモルファスシリコン膜4aを形成する。つぎに、n型シリコン基板1の裏面の全面にプラズマCVDによりp型アモルファスシリコンを堆積して、p型アモルファスシリコン膜5を形成する。さらに、n型シリコン基板1の受光面側にプラズマCVD法により例えば窒化シリコン(SiN)を堆積して、i型アモルファスシリコン膜2上に反射防止膜3を形成する(図2−1)。なお、反射防止膜の材料はこれに限定されず、公知のものを使用可能である。
つぎに、n型シリコン基板1の裏面側において、n型電極8を形成するための領域に堆積したi型アモルファスシリコン膜4aおよびp型アモルファスシリコン膜5を例えばレーザ照射によるパターニングにより除去し、開口部11を形成する(図2−2)。ここでのパターニングは、n型電極8を形成するための領域を開口し、p型電極7を形成するための領域が残存する所定のパターンとされる。
つぎに、n型シリコン基板1の裏面側において、p型アモルファスシリコン膜5上にp型電極7を形成する(図2−3)。p型電極7の形成は、例えばスクリーン印刷法により電極材料ペーストを印刷、乾燥し、その後焼成することにより行う。
つぎに、n型シリコン基板1の裏面側に、再度プラズマCVD法によりi型アモルファスシリコンを堆積して、i型アモルファスシリコン膜4bを形成する。さらに、n型シリコン基板1の裏面側に、プラズマCVD法によりn型アモルファスシリコンを堆積して、i型アモルファスシリコン膜4b上にn型アモルファスシリコン膜6を形成する(図2−4)。
つぎに、n型シリコン基板1の裏面側において、開口部11内のn型アモルファスシリコン膜6上にn型電極8を形成する(図2−5)。すなわち、i型アモルファスシリコン膜4aおよびp型アモルファスシリコン膜5のパターンが形成されていない領域のn型アモルファスシリコン膜6上にn型電極8を形成する。n型電極8の形成は、例えばスクリーン印刷法により電極材料ペーストを印刷、乾燥し、その後焼成することにより行う。
つぎに、n型シリコン基板1の裏面側において、p型電極7とn型電極8との間の領域に残存する膜の一部を除去して、p型領域とn型領域の間を分離する。例えばn型シリコン基板1の裏面側において、p型電極7および型電極8をエッチングマスクとしてウエットエッチングを行うことにより、p型電極7およびn型電極8により覆われた領域を除いてn型アモルファスシリコン膜6およびi型アモルファスシリコン膜4bを除去して、p型電極7とn型電極8とを電気的に分離する(図2−6)。
以上のような工程を実施することにより、図1に示す本実施の形態にかかる太陽電池100を作製することができる。なお、上記の各部においてp型とn型を入れ替えてもよい。
また、上記においてはp型領域とn型領域の間を分離する際にウエットエッチングを用いたが、p型電極7と型電極8との間の領域にレーザ加工を施してもよい。すなわち、レーザ加工によりn型アモルファスシリコン膜6およびi型アモルファスシリコン膜4bの一部を除去してn型シリコン基板1の裏面側に達する溝部を形成し、p型電極7とn型電極8とを電気的に分離してもよい(図2−7)。
上述した実施の形態1においては、i型アモルファスシリコン膜4aおよびp型アモルファスシリコン膜5のパターニングをレーザ照射により行う。また、p型電極7とn型電極8との電気的分離をp型電極7とn型電極8とをマスクに用いたウエットエッチングやレーザ加工により行う。すなわち、レーザ加工やウエットエッチングを用いた簡便なプロセスを用いてヘテロ構造バックコンタクト型太陽電池を作製する。製造プロセスに写真製版技術を使用する場合は、プロセスが複雑になり、製造コストが高くなり、また位置合せ精度によっては良好な太陽電池特性が得られにくい。しかしながら、実施の形態1においては、製造プロセスに写真製版技術を使用しないため、上記のような問題が発生しない。
したがって、実施の形態1によれば、光電変換効率に優れたヘテロ接合型バックコンタクト構造の太陽電池を容易に且つ安価に提供できる。
実施の形態2.
実施の形態2では、上述した太陽電池100の製造方法の他の例について図3−1〜図3−7を参照して説明する。図3−1〜図3−7は、実施の形態2にかかる太陽電池の製造方法を説明するための断面図である。
実施の形態2では、上述した太陽電池100の製造方法の他の例について図3−1〜図3−7を参照して説明する。図3−1〜図3−7は、実施の形態2にかかる太陽電池の製造方法を説明するための断面図である。
まず、半導体基板として、n型ドーパント原子としてPを所定の濃度で含有するn型シリコン基板1を用意する。n型シリコン基板1は、溶融したシリコンを冷却固化してできたインゴットをワイヤーソーでスライスして製造するため、表面にスライス時のダメージが残っている。そこで、まずはこのダメージ層の除去も兼ねて、n型シリコン基板1を酸または加熱したアルカリ溶液中、例えば水酸化ナトリウム水溶液に浸漬して表面をエッチングすることにより、シリコン基板の切り出し時に発生してn型シリコン基板1の表面近くに存在するダメージ領域を取り除く。
つぎに、n型シリコン基板1の両面にプラズマCVD法によりn型シリコン基板1の一面側にi型アモルファスシリコン膜2を、n型シリコン基板1の裏面側にi型アモルファスシリコン膜4aを形成する。つぎに、n型シリコン基板1の裏面の全面にプラズマCVDによりp型アモルファスシリコンを堆積して、p型アモルファスシリコン膜5を形成する。さらに、n型シリコン基板1の受光面側にプラズマCVD法により例えば窒化シリコン(SiN)を堆積して、i型アモルファスシリコン膜2上に反射防止膜3を形成する(図3−1)。
つぎに、n型シリコン基板1の裏面側において、p型アモルファスシリコン膜5上の所定の領域にp型電極7を形成する(図3−2)。p型電極7の形成は、例えばスクリーン印刷法により電極材料ペーストを印刷、乾燥し、その後焼成することにより行う。
つぎに、n型シリコン基板1の裏面側において、n型電極8を形成するための領域に堆積したi型アモルファスシリコン膜4aおよびp型アモルファスシリコン膜5を、例えばp型電極7をエッチングマスクとして反応性プラズマエッチングにより除去し、開口部21を形成する(図3−3)。すなわち、p型電極7に覆われていないi型アモルファスシリコン膜4aおよびp型アモルファスシリコン膜5をp型電極7をマスクに用いたエッチングにより除去する。
つぎに、n型シリコン基板1の裏面側に、再度プラズマCVD法によりi型アモルファスシリコンを堆積して、i型アモルファスシリコン膜4bを形成する。さらに、n型シリコン基板1の裏面側に、プラズマCVD法によりn型アモルファスシリコンを堆積して、i型アモルファスシリコン膜4b上にn型アモルファスシリコン膜6を形成する(図3−4)。
つぎに、n型シリコン基板1の裏面側において、開口部21内のn型アモルファスシリコン膜6上にn型電極8を形成する(図3−5)。すなわち、i型アモルファスシリコン膜4aおよびp型アモルファスシリコン膜5が形成されていない領域のn型アモルファスシリコン膜6上にn型電極8を形成する。n型電極8の形成は、例えばスクリーン印刷法により電極材料ペーストを印刷、乾燥し、その後焼成することにより行う。
つぎに、n型シリコン基板1の裏面側において、p型電極7とn型電極8との間の領域に残存する膜の一部を除去して、p型領域とn型領域の間を分離する。例えばn型シリコン基板1の裏面側において、p型電極7および型電極8をエッチングマスクとしてウエットエッチングを行うことにより、p型電極7およびn型電極8により覆われた領域を除いてn型アモルファスシリコン膜6およびi型アモルファスシリコン膜4bを除去して、p型電極7とn型電極8とを電気的に分離する(図3−6)。
以上のような工程を実施することにより、図1に示す太陽電池100を作製することができる。なお、上記の各部においてp型とn型を入れ替えてもよい。
また、上記においてはp型領域とn型領域の間を分離する際にウエットエッチングを用いたが、p型電極7と型電極8との間の領域にレーザ加工を施してもよい。すなわち、レーザ加工により開口部21内のn型アモルファスシリコン膜6およびi型アモルファスシリコン膜4bの一部を除去してn型シリコン基板1の裏面側に達する溝部を形成し、p型電極7とn型電極8とを電気的に分離してもよい(図3−7)。
上述した実施の形態2においては、i型アモルファスシリコン膜4aおよびp型アモルファスシリコン膜5のパターニングをp型電極7をマスクに用いたウエットエッチングにより行う。また、p型電極7とn型電極8との電気的分離をp型電極7とn型電極8とをマスクに用いたウエットエッチングやレーザ加工により行う。すなわち、レーザ加工やウエットエッチングを用いた簡便なプロセスを用いてヘテロ構造バックコンタクト型太陽電池を作製する。製造プロセスに写真製版技術を使用する場合は、プロセスが複雑になり、製造コストが高くなり、また位置合せ精度によっては良好な太陽電池特性が得られにくい。しかしながら、実施の形態2においては、製造プロセスに写真製版技術を使用しないため、上記のような問題が発生しない。
したがって、実施の形態2によれば、光電変換効率に優れたヘテロ接合型バックコンタクト構造の太陽電池を容易に且つ安価に提供できる。
実施の形態3.
図4は、本発明の実施の形態3にかかる太陽電池の製造方法により形成された太陽電池の構造を模式的に示す断面図である。実施の形態3にかかる太陽電池200は、n型シリコン基板1を有する。n型シリコン基板1の受光面側には、i型アモルファスシリコン膜2と反射防止膜3とが設けられている。n型シリコン基板1の受光面と反対の面(裏面)側には、i型アモルファスシリコン膜4aと、p型アモルファスシリコン膜5と、n型不純物拡散層31と、p型電極7と、n型電極8aとが設けられている。
図4は、本発明の実施の形態3にかかる太陽電池の製造方法により形成された太陽電池の構造を模式的に示す断面図である。実施の形態3にかかる太陽電池200は、n型シリコン基板1を有する。n型シリコン基板1の受光面側には、i型アモルファスシリコン膜2と反射防止膜3とが設けられている。n型シリコン基板1の受光面と反対の面(裏面)側には、i型アモルファスシリコン膜4aと、p型アモルファスシリコン膜5と、n型不純物拡散層31と、p型電極7と、n型電極8aとが設けられている。
n型不純物拡散層31は、n型電極8aに覆われた領域においてi型アモルファスシリコン膜4a、p型アモルファスシリコン膜5およびn型シリコン基板1の一部にまたがって形成されており、n型シリコン基板1よりもn型のドーパント(例えばP)を高濃度に含有する。n型不純物拡散層31は、太陽電池100におけるn型アモルファスシリコン膜6に対応する。
この太陽電池200においては反射防止膜3側が受光面とされ、太陽光Lが入射される。太陽電池200は、p型電極7およびn型電極8aが、太陽電池200の裏面側にのみ配されたヘテロ構造バックコンタクト型太陽電池である。これにより、太陽電池200は、光電変換効率の向上が図られている。
つぎに、このような太陽電池200の製造方法の一例について図5−1〜図5−5を参照して説明する。図5−1〜図5−5は、実施の形態3にかかる太陽電池の製造方法を説明するための断面図である。
まず、半導体基板として、n型ドーパント原子としてPを所定の濃度で含有するn型シリコン基板1を用意する。n型シリコン基板1は、溶融したシリコンを冷却固化してできたインゴットをワイヤーソーでスライスして製造するため、表面にスライス時のダメージが残っている。そこで、まずはこのダメージ層の除去も兼ねて、n型シリコン基板1を酸または加熱したアルカリ溶液中、例えば水酸化ナトリウム水溶液に浸漬して表面をエッチングすることにより、シリコン基板の切り出し時に発生してn型シリコン基板1の表面近くに存在するダメージ領域を取り除く。
つぎに、n型シリコン基板1の両面にプラズマCVD法によりn型シリコン基板1の一面側にi型アモルファスシリコン膜2を、n型シリコン基板1の裏面側にi型アモルファスシリコン膜4aを形成する。つぎに、n型シリコン基板1の裏面の全面にプラズマCVDによりp型アモルファスシリコンを堆積して、p型アモルファスシリコン膜5を形成する。さらに、n型シリコン基板1の受光面側にプラズマCVD法により例えば窒化シリコン(SiN)を堆積して、i型アモルファスシリコン膜2上に反射防止膜3を形成する(図5−1)。
つぎに、n型シリコン基板1の裏面側において、p型アモルファスシリコン膜5上にp型電極7と、拡散用のn型ドーパントを含んだn型電極8aとを所定の間隔を開けて形成する(図5−2)。p型電極7およびn型電極8aの形成は、例えばスクリーン印刷法により電極材料ペーストを印刷、乾燥し、その後焼成することにより行う。
ここでの焼成は、電極材料ペーストに対するレーザ照射により行う。これにより、p型電極7およびn型電極8aが得られる。また、n型電極8aに含まれるn型ドーパントがi型アモルファスシリコン膜4aおよびp型アモルファスシリコン膜5をファイヤスルーしてn型シリコン基板1の裏面側までに拡散し、n型電極8aとn型シリコン基板1とに電気的に接続するn型不純物拡散層31が形成される(図5−3)。
つぎに、n型シリコン基板1の裏面側において、p型電極7とn型電極8aとの間の領域に残存する膜の一部を除去して、p型領域とn型領域の間を分離する。例えばn型シリコン基板1の裏面側において、p型電極7およびn型電極8aをエッチングマスクとしてウエットエッチングを行うことにより、p型電極7およびn型電極8aにより覆われた領域を除いてp型アモルファスシリコン膜5およびi型アモルファスシリコン膜4aを除去して、p型電極7とn型電極8aとを電気的に分離する(図5−4)。
以上のような工程を実施することにより、図4に示す太陽電池200を作製することができる。なお、上記の各部においてp型とn型を入れ替えてもよい。
また、上記においてはp型領域とn型領域の間を分離する際にウエットエッチングを用いたが、p型電極7とn型電極8aとの間の領域にレーザ加工を施してもよい。すなわち、レーザ加工によりp型電極7とn型電極8aとの間の領域のp型アモルファスシリコン膜5およびi型アモルファスシリコン膜4aの一部を除去してn型シリコン基板1の裏面側に達する溝部を形成し、p型電極7とn型電極8aとを電気的に分離してもよい(図5−5)。
上述した実施の形態3においては、p型電極7とn型電極8aとの電気的分離をp型電極7とn型電極8aとをマスクに用いたウエットエッチングやレーザ加工により行う。すなわち、レーザ加工やウエットエッチングを用いた簡便なプロセスを用いてヘテロ構造バックコンタクト型太陽電池を作製する。製造プロセスに写真製版技術を使用する場合は、プロセスが複雑になり、製造コストが高くなり、また位置合せ精度によっては良好な太陽電池特性が得られにくい。しかしながら、実施の形態1においては、製造プロセスに写真製版技術を使用しないため、上記のような問題が発生しない。
また、実施の形態3においては、拡散用のn型ドーパントを含んだn型電極8aをレーザ照射で加熱することにより、n型電極8a内のn型ドーパントがp型アモルファスシリコン膜5およびi型アモルファスシリコン膜4aを突き抜けてn型シリコン基板1の裏面側にまで拡散(ファイヤスルー拡散)してn型不純物拡散層31が形成される。これにより、簡略なプロセスでヘテロ構造バックコンタクト型太陽電池を作製できる。
したがって、実施の形態3によれば、光電変換効率に優れたヘテロ接合型バックコンタクト構造の太陽電池を容易に且つ安価に提供できる。
なお、上記の実施の形態ではi型、p型、n型のそれぞれの導電型を呈するアモルファスシリコン膜を用いる場合を例に説明したが、i型、p型、n型のそれぞれの導電型を呈するアモルファス酸化シリコン、アモルファス窒化シリコン、アモルファス炭化シリコンを用いても、上記と同様の効果を奏する。
また、上述した実施の形態では光入射側のi型アモルファスシリコン膜2の上に反射防止膜3を形成したが、i型アモルファスシリコン膜2と反射防止膜3との間に結晶シリコン基板と同一導電型のアモルファスシリコン膜を挿入してもよい。これにより、表面における発生キャリアの再結合をさらに抑制することができる。
以上のように、本発明にかかる太陽電池の製造方法は、光電変換効率に優れたヘテロ接合型バックコンタクト構造の太陽電池を簡略なプロセスで実現する場合に有用である。
1 n型シリコン基板
2 i型アモルファスシリコン膜
3 反射防止膜
4a i型アモルファスシリコン膜
4b i型アモルファスシリコン膜
5 p型アモルファスシリコン膜
6 n型アモルファスシリコン膜
7 p型電極
8 n型電極
8a 拡散用のn型ドーパントを含んだn型電極
11 開口部
21 開口部
31 n型不純物拡散層
100 太陽電池
200 太陽電池
L 太陽光
2 i型アモルファスシリコン膜
3 反射防止膜
4a i型アモルファスシリコン膜
4b i型アモルファスシリコン膜
5 p型アモルファスシリコン膜
6 n型アモルファスシリコン膜
7 p型電極
8 n型電極
8a 拡散用のn型ドーパントを含んだn型電極
11 開口部
21 開口部
31 n型不純物拡散層
100 太陽電池
200 太陽電池
L 太陽光
Claims (14)
- 結晶系半導体基板の一面側に、第1導電型のアモルファス系半導体膜を形成する第1工程と、
前記第1導電型のアモルファス系半導体膜の一部をレーザ照射により除去して所定のパターンを形成する第2工程と、
前記所定のパターン上に第1電極を形成する第3工程と、
前記第1電極を形成した前記結晶系半導体基板の一面側の全面に第2導電型のアモルファス系半導体膜を形成する第4工程と、
前記結晶系半導体基板の一面側において前記所定のパターンの形成されていない領域に形成された前記第2導電型のアモルファス系半導体膜上に第2電極を形成する第5工程と、
前記結晶系半導体基板の一面側において前記第1電極と前記第2電極との間の領域に残存する膜の一部を、前記第1電極と前記第2電極とをマスクに用いたエッチングまたはレーザ照射により除去して前記第1電極と前記第2電極とを電気的に分離する第6工程と、
を含むことを特徴とする太陽電池の製造方法。 - 前記結晶系半導体基板の導電型が第1導電型であること、
を特徴とする請求項1に記載の太陽電池の製造方法。 - 前記結晶系半導体基板の導電型が第2導電型であること、
を特徴とする請求項1に記載の太陽電池の製造方法。 - 前記第1工程では、結晶系半導体基板の一面側に第1の真性アモルファス系半導体膜と前記第1導電型のアモルファス系半導体膜とを順次形成し、
第2工程では、前記第1導電型のアモルファス系半導体膜と前記第1の真性アモルファス系半導体膜との一部をレーザ照射により除去して前記所定のパターンを形成すること、
を特徴とする請求項1〜3のいずれか1つに記載の太陽電池の製造方法。 - 前記第4工程では、前記第1電極が形成された前記結晶系半導体基板の一面側に真性の第2アモルファス系半導体膜と前記第2導電型のアモルファス系半導体膜とを順次形成すること、
を特徴とする請求項1〜4のいずれか1つに記載の太陽電池の製造方法。 - 結晶系半導体基板の一面側に、第1導電型のアモルファス系半導体膜を形成する第1工程と、
前記第1導電型のアモルファス系半導体膜上に第1電極を形成する第2工程と、
前記第1電極に覆われていない前記第1導電型のアモルファス系半導体膜を前記第1電極をマスクに用いたエッチングにより除去する第3工程と、
前記結晶系半導体基板の一面側の全面に第2導電型のアモルファス系半導体膜を形成する第4工程と、
前記結晶系半導体基板の一面側において前記第1電極の形成されていない領域に形成された前記第2導電型のアモルファス系半導体膜上に第2電極を形成する第5工程と、
前記結晶系半導体基板の一面側において前記第1電極と前記第2電極との間の領域に残存する膜の一部を、前記第1電極と前記第2電極とをマスクに用いたエッチングまたはレーザ照射により除去して前記第1電極と前記第2電極とを電気的に分離する第6工程と、
を含むことを特徴とする太陽電池の製造方法。 - 前記結晶系半導体基板の導電型が第1導電型であること、
を特徴とする請求項6に記載の太陽電池の製造方法。 - 前記結晶系半導体基板の導電型が第2導電型であること、
を特徴とする請求項6に記載の太陽電池の製造方法。 - 前記第1工程では、結晶系半導体基板の一面側に第1の真性アモルファス系半導体膜と前記第1導電型のアモルファス系半導体膜とを順次形成し、
第3工程では、前記第1電極に覆われていない前記第1導電型のアモルファス系半導体膜と前記第1の真性アモルファス系半導体膜とを前記第1電極をマスクに用いたエッチングにより除去すること、
を特徴とする請求項6〜8のいずれか1つに記載の太陽電池の製造方法。 - 前記第4工程では、前記結晶系半導体基板の一面側に真性の第2アモルファス系半導体膜と前記第2導電型のアモルファス系半導体膜とを順次形成すること、
を特徴とする請求項6〜9のいずれか1つに記載の太陽電池の製造方法。 - 結晶系半導体基板の一面側に、第1導電型のアモルファス系半導体膜を形成する第1工程と、
前記第1導電型のアモルファス系半導体膜上に第1電極および第2導電型の不純物を含む第2電極を所定の間隔で形成する第2工程と、
前記第2電極にレーザ照射することにより前記不純物を前記第1導電型のアモルファス系半導体膜を介して結晶系半導体基板の一面側まで拡散させて前記第2電極と前記結晶系半導体基板の一面側とに電気的に接続する不純物拡散層を形成する第3工程と、
前記結晶系半導体基板の一面側において前記第1電極と前記第2電極との間の領域に残存する膜の一部を、前記第1電極と前記第2電極とをマスクに用いたエッチングまたはレーザ照射により除去して前記第1電極と前記第2電極とを電気的に分離する第4工程と、
を含むことを特徴とする太陽電池の製造方法。 - 前記結晶系半導体基板の導電型が第1導電型であること、
を特徴とする請求項11に記載の太陽電池の製造方法。 - 前記結晶系半導体基板の導電型が第2導電型であること、
を特徴とする請求項11に記載の太陽電池の製造方法。 - 前記第1工程では、結晶系半導体基板の一面側に第1の真性アモルファス系半導体膜と前記第1導電型のアモルファス系半導体膜とを順次形成すること、
を特徴とする請求項11〜13のいずれか1つに記載の太陽電池の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011109328A JP2012243797A (ja) | 2011-05-16 | 2011-05-16 | 太陽電池の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011109328A JP2012243797A (ja) | 2011-05-16 | 2011-05-16 | 太陽電池の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012243797A true JP2012243797A (ja) | 2012-12-10 |
Family
ID=47465219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011109328A Pending JP2012243797A (ja) | 2011-05-16 | 2011-05-16 | 太陽電池の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012243797A (ja) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014132604A (ja) * | 2013-01-04 | 2014-07-17 | Sharp Corp | 光電変換素子および光電変換素子の製造方法 |
WO2014112500A1 (ja) * | 2013-01-16 | 2014-07-24 | シャープ株式会社 | 光電変換素子および光電変換素子の製造方法 |
JP2014135343A (ja) * | 2013-01-09 | 2014-07-24 | Sharp Corp | 光電変換素子および光電変換素子の製造方法 |
WO2015060012A1 (ja) * | 2013-10-25 | 2015-04-30 | シャープ株式会社 | 光電変換素子 |
WO2015060013A1 (ja) * | 2013-10-25 | 2015-04-30 | シャープ株式会社 | 光電変換素子 |
JP2015177192A (ja) * | 2014-03-17 | 2015-10-05 | エルジー エレクトロニクス インコーポレイティド | 太陽電池 |
JP2016502284A (ja) * | 2012-12-21 | 2016-01-21 | サンパワー コーポレイション | 太陽電池 |
JP2016122866A (ja) * | 2016-04-01 | 2016-07-07 | シャープ株式会社 | 光電変換装置およびその製造方法 |
JP2016154169A (ja) * | 2015-02-20 | 2016-08-25 | シャープ株式会社 | 光電変換素子および光電変換素子の製造方法 |
JP2016164930A (ja) * | 2015-03-06 | 2016-09-08 | シャープ株式会社 | 光電変換素子およびその製造方法 |
JP2018046177A (ja) * | 2016-09-15 | 2018-03-22 | 株式会社アルバック | 太陽電池の製造方法 |
JP2019110185A (ja) * | 2017-12-18 | 2019-07-04 | 株式会社アルバック | 太陽電池の製造方法 |
CN112490156A (zh) * | 2020-11-27 | 2021-03-12 | 宣城睿晖宣晟企业管理中心合伙企业(有限合伙) | 一种异质结太阳能电池片的加工装置及加工方法 |
JP2022547903A (ja) * | 2019-09-05 | 2022-11-16 | マイアー ブルガー (ジャーマニー) ゲゼルシャフト ミット ベシュレンクテル ハフツング | ヘテロ接合による裏側エミッタ型の太陽電池構造体、およびそのような太陽電池構造体を製造するための方法ならびに装置 |
JP7453283B2 (ja) | 2022-06-21 | 2024-03-19 | ジョジアン ジンコ ソーラー カンパニー リミテッド | 半導体基板、太陽電池及び太陽光発電モジュール |
WO2024114013A1 (zh) * | 2022-11-30 | 2024-06-06 | 隆基绿能科技股份有限公司 | 基于高空穴迁移率材料的ibc/hbc电池及其制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008529265A (ja) * | 2005-01-20 | 2008-07-31 | コミツサリア タ レネルジー アトミーク | へテロ接合およびインターフィンガ構造を有する半導体デバイス |
-
2011
- 2011-05-16 JP JP2011109328A patent/JP2012243797A/ja active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008529265A (ja) * | 2005-01-20 | 2008-07-31 | コミツサリア タ レネルジー アトミーク | へテロ接合およびインターフィンガ構造を有する半導体デバイス |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016502284A (ja) * | 2012-12-21 | 2016-01-21 | サンパワー コーポレイション | 太陽電池 |
JP2014132604A (ja) * | 2013-01-04 | 2014-07-17 | Sharp Corp | 光電変換素子および光電変換素子の製造方法 |
JP2014135343A (ja) * | 2013-01-09 | 2014-07-24 | Sharp Corp | 光電変換素子および光電変換素子の製造方法 |
WO2014112500A1 (ja) * | 2013-01-16 | 2014-07-24 | シャープ株式会社 | 光電変換素子および光電変換素子の製造方法 |
JPWO2015060012A1 (ja) * | 2013-10-25 | 2017-03-09 | シャープ株式会社 | 光電変換素子 |
WO2015060012A1 (ja) * | 2013-10-25 | 2015-04-30 | シャープ株式会社 | 光電変換素子 |
WO2015060013A1 (ja) * | 2013-10-25 | 2015-04-30 | シャープ株式会社 | 光電変換素子 |
JPWO2015060013A1 (ja) * | 2013-10-25 | 2017-03-09 | シャープ株式会社 | 光電変換素子 |
JP2015177192A (ja) * | 2014-03-17 | 2015-10-05 | エルジー エレクトロニクス インコーポレイティド | 太陽電池 |
JP2016154169A (ja) * | 2015-02-20 | 2016-08-25 | シャープ株式会社 | 光電変換素子および光電変換素子の製造方法 |
JP2016164930A (ja) * | 2015-03-06 | 2016-09-08 | シャープ株式会社 | 光電変換素子およびその製造方法 |
JP2016122866A (ja) * | 2016-04-01 | 2016-07-07 | シャープ株式会社 | 光電変換装置およびその製造方法 |
JP2018046177A (ja) * | 2016-09-15 | 2018-03-22 | 株式会社アルバック | 太陽電池の製造方法 |
JP2019110185A (ja) * | 2017-12-18 | 2019-07-04 | 株式会社アルバック | 太陽電池の製造方法 |
JP2022547903A (ja) * | 2019-09-05 | 2022-11-16 | マイアー ブルガー (ジャーマニー) ゲゼルシャフト ミット ベシュレンクテル ハフツング | ヘテロ接合による裏側エミッタ型の太陽電池構造体、およびそのような太陽電池構造体を製造するための方法ならびに装置 |
CN112490156A (zh) * | 2020-11-27 | 2021-03-12 | 宣城睿晖宣晟企业管理中心合伙企业(有限合伙) | 一种异质结太阳能电池片的加工装置及加工方法 |
JP7453283B2 (ja) | 2022-06-21 | 2024-03-19 | ジョジアン ジンコ ソーラー カンパニー リミテッド | 半導体基板、太陽電池及び太陽光発電モジュール |
WO2024114013A1 (zh) * | 2022-11-30 | 2024-06-06 | 隆基绿能科技股份有限公司 | 基于高空穴迁移率材料的ibc/hbc电池及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2012243797A (ja) | 太陽電池の製造方法 | |
CN109728103B (zh) | 太阳能电池 | |
US7943416B2 (en) | Local heterostructure contacts | |
KR101661768B1 (ko) | 태양전지 및 이의 제조 방법 | |
KR101046219B1 (ko) | 선택적 에미터를 갖는 태양전지 | |
JP5197760B2 (ja) | 太陽電池セルの製造方法 | |
US8936949B2 (en) | Solar cell and manufacturing method thereof | |
US20160197207A1 (en) | Solar cell, solar cell module, and manufacturing method of solar cell | |
JP2013239476A (ja) | 光起電力装置およびその製造方法、光起電力モジュール | |
KR101985835B1 (ko) | 광기전력소자 및 제조 방법 | |
JP2013513964A (ja) | 裏面接点・ヘテロ接合太陽電池 | |
US9997647B2 (en) | Solar cells and manufacturing method thereof | |
CN114038922A (zh) | 一种提升绝缘隔离效果的背接触异质结太阳能电池及其制作方法 | |
CN216597603U (zh) | 一种提升绝缘隔离效果的背接触异质结太阳能电池 | |
JP5645734B2 (ja) | 太陽電池素子 | |
KR101318326B1 (ko) | 초고효율을 나타내는 이종접합 실리콘 태양전지 및 이의 제조방법 | |
CN113437161A (zh) | 太阳能电池片及其制备方法和光伏组件 | |
JP5029921B2 (ja) | 太陽電池セルの製造方法 | |
KR101708242B1 (ko) | 태양전지 및 이의 제조 방법 | |
JP2014154619A (ja) | 光電変換素子の製造方法 | |
CN214753796U (zh) | 电池片结构及太阳能电池片和光伏组件 | |
CN117727822B (zh) | 太阳能电池、太阳能电池的制造方法及光伏组件 | |
JP2011018748A (ja) | 太陽電池セルの製造方法 | |
KR101752404B1 (ko) | 태양 전지 및 이의 제조 방법 | |
KR101449336B1 (ko) | 그리드 전극 구조 및 이를 포함하는 화합물 반도체 태양전지의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130520 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140430 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140902 |