CN110660882B - 一种栅控PIN结构GaN紫外探测器及其制备方法 - Google Patents

一种栅控PIN结构GaN紫外探测器及其制备方法 Download PDF

Info

Publication number
CN110660882B
CN110660882B CN201910899567.XA CN201910899567A CN110660882B CN 110660882 B CN110660882 B CN 110660882B CN 201910899567 A CN201910899567 A CN 201910899567A CN 110660882 B CN110660882 B CN 110660882B
Authority
CN
China
Prior art keywords
layer
gan
ultraviolet detector
type doped
intrinsic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910899567.XA
Other languages
English (en)
Other versions
CN110660882A (zh
Inventor
仇志军
叶怀宇
张国旗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University of Science and Technology
Original Assignee
Shenzhen Third Generation Semiconductor Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Third Generation Semiconductor Research Institute filed Critical Shenzhen Third Generation Semiconductor Research Institute
Priority to CN201910899567.XA priority Critical patent/CN110660882B/zh
Publication of CN110660882A publication Critical patent/CN110660882A/zh
Application granted granted Critical
Publication of CN110660882B publication Critical patent/CN110660882B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种栅控PIN结构GaN紫外探测器及其制备方法,包括:1)衬底上依次生长GaN缓冲层和n型掺杂GaN层;2)n型掺杂GaN层上生长本征掺杂GaN层;3)本征掺杂GaN层上生长p型掺杂AlGaN层;4)选择性刻蚀外延层材料形成刻蚀台面和双台阶;5)在台面和双台阶上淀积钝化层;6)刻蚀钝化层形成电极孔,并沉积金属电极。本发明是基于PIN结构,因此能够实现快速、准确、高灵敏度的紫外光探测;其次,通过侧栅结构施加的电压能够抑制或消除AlGaN/GaN异质界面处的二维电子气的影响,形成理想型的PIN结构探测器,可以提高探测器的响应速度、探测率、灵敏度等性能。

Description

一种栅控PIN结构GaN紫外探测器及其制备方法
技术领域
本发明涉及紫外探测领域,具体为一种栅控PIN结构GaN紫外探测器及其制备方法。
背景技术
GaN是典型的第三代宽禁带半导体材料,其禁带宽度高达3.4eV,是目前发展紫外探测器的核心材料,非常适用于高度集成的电子器件及光电子器件。但是由于AlGaN/GaN异质结自身具有极强的自发极化效应和压电极化效应,导致在异质界面形成高达1012cm-2的二维电子气(two dimensional electron gas,2DEG)。因此,对于PIN结构的p+-AlGaN/i-GaN/n+-GaN紫外探测器来说,本征GaN材料性质会受到AlGaN/GaN异质界面2DEG的影响和抑制,比如PIN结构耗尽区内电场大小、耗尽区宽度以及光生载流子的收集效率等性能参数。最终结果会导致探测器的量子效率下降、响应率低、响应频率变慢以及灵敏度低等缺点和不足。
发明内容
基于上述提到的GaN紫外探测器所遇到的问题以及发展需求,本发明创新性的提出了一种栅控PIN结构GaN紫外探测器及其制备方法,不仅能够通过侧栅调节抑制AlGaN/GaN异质界面处的2DEG浓度,而且能够简单便捷地实现理想型PIN结构探测器,以满足快速、高灵敏的紫外探测。
具体方法包括
1)衬底上依次生长GaN缓冲层和n型掺杂GaN层;
2)所述n型掺杂GaN层上生长本征掺杂GaN层;
3)所述本征掺杂GaN层上生长p型掺杂AlGaN层;
4)刻蚀所述本征掺杂GaN层和p型掺杂AlGaN层形成第一台阶和第二台阶;
5)在所述第一台阶和所述第二台阶表面沉积钝化层;
6)刻蚀所述p型掺杂AlGaN层上和所述n型掺杂GaN层上的钝化层分别形成源极孔和漏极孔;
7)在所述源极孔和漏极孔分别沉积源电极和漏电极;
8)在所述本征掺杂GaN层的侧面钝化层上沉积栅电极。
为了降低和抑制异质界面处的高密度2DEG的影响,本发明在原有的PIN结构基础上增加一个侧栅结构,通过侧栅电压来抵消界面极化电荷效应影响,实现真正本征型GaN吸收层,以提高PIN结构GaN紫外探测器的探测性能。
优选地,所述1)中的GaN缓冲层厚度为0.2μm~4μm;所述n型掺杂GaN层厚度为0.25μm~1μm,掺杂浓度为1×1018cm-3~5×1018cm-3,掺杂元素为硅;
优选地,所述2)中的本征掺杂GaN层厚度为0.1μm~3μm;
优选地,所述3)中的p型掺杂AlGaN层厚度为0.1μm~2μm,掺杂浓度为1×1018cm-3~5×1018cm-3,掺杂元素为镁;
优选地,所述4)中第一台阶高度小于第二台阶高度。
优选地,所述4)中第一台阶位于GaN与AlGaN的异质界面;所述台阶宽度为1μm~100μm;
优选地,所述5)中的钝化层厚度为20nm~200nm;所述钝化层材料为氧化铝。
优选地,所述8)中,本征掺杂GaN层两个侧面分别沉积第一栅电极和第二栅电极。
优选地,所述8)中,栅电极材料选自Au、Ag、Al;所述栅电极厚度为0.2μm~10μm。
上述方法制得的GaN紫外探测器。
本发明的优点在于:
A.本发明的紫外探测器在结构上是一种PIN光伏探测器,因此具有快速、准确、高灵敏的光电响应特性。
B.本发明的紫外探测器增加了侧栅结构,利用其提供的栅压能够抑制或消除AlGaN/GaN异质界面处的2DEG的影响,形成高纯的本征型GaN吸收层,提高光生载流子的收集效率,提高响应速度、探测率、灵敏度等性能。
C.本发明器件增加了侧栅结构,除了作为高灵敏的紫外探测器,同时提高了发光效率,可作为发光器件。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为本发明实施例的二维剖面结构示意图。
图2-4为本发明实施例1-3的制备工艺流程图。
衬底1,GaN缓冲层2,n型掺杂GaN层3,本征掺杂的GaN层4,p型掺杂AlGaN层5,氧化铝钝化层6,源电极7,侧栅电极8,漏电极9。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例提供一种栅控PIN结构GaN紫外探测器,器件的剖面如图1所示,由衬底1、GaN缓冲层2、n型掺杂GaN层3、本征掺杂的GaN层4、p型掺杂AlGaN层5、氧化铝钝化层6、源极金属电极7、侧栅金属电极8和漏极金属电极9组成。
基于上述紫外探测器结构,本实施例还提供一种制备其方法,制备工艺流程如图2所示,包括:
1)取样衬底,并用浓磷酸溶液对其表面进行预处理。
2)在衬底之上依次外延生长2μm GaN缓冲层2、0.25μm掺杂浓度为1×1018cm-3,掺杂元素为硅的n型GaN层3、1μm本征掺杂GaN层4、0.5μm掺杂浓度为1×1018cm-3,掺杂元素为镁的p型AlGaN层5。
3)使用感应耦合等离子体(ICP)刻蚀设备,结合刻蚀掩膜,选择性刻蚀外延材料,刻蚀本征掺杂GaN层和p型掺杂AlGaN层,形成刻蚀台面和第一台阶、第二台阶,其中第一台阶比第二台阶高,第一台阶的刻蚀深度至n型掺杂GaN层3,第二台阶的刻蚀深度至AlGaN/GaN的异质界面即本征掺杂GaN层4,第二台阶宽度10μm。
4)利用原子层沉积(ALD)设备,在暴露出的n型掺杂GaN层、本征掺杂GaN层和p型掺杂AlGaN层形成的台阶和台面及本征掺杂GaN层侧面沉积20nm厚的氧化铝钝化层(Al2O3)6。
5)通过光刻和选择性刻蚀工艺,在氧化铝介质层6刻蚀出源极电极孔和漏极电极孔,其中源极电极孔位于AlGaN外延材料上方,漏极电极孔位于刻蚀槽内n型GaN上方。
6)利用光刻、金属蒸镀技术,淀积源电极7、和漏电极9,在本征掺杂GaN层左右侧面的氧化铝钝化层上沉积两个栅电极。通过适当的退火工艺和源漏极金属材料的选择确保金属电极与外延材料之间形成良好的欧姆接触。
如图1所示,其中本征掺杂GaN层的禁带宽度为3.4eV,作为探测器的吸收层材料,能够吸收波长短于280nm的紫外光。当GaN吸收紫外光子后,会在体内形成大量的光生载流子,并在内建电场的作用下光生载流子会快速分离,并在P、N两端积累产生光生电压信号。但是由于AlGaN/GaN异质结具有很强的自发极化效应和压电极化效应,因此在异质界面会形成很高密度的2DEG,而且这些高密度2DEG会影响PIN结构内的pn结电场、耗尽区宽度和载流子收集效率。当在本征GaN层上增加一个栅压后,偏置栅压会调节或抑制极化效应产生的2DEG,形成一个高纯本征型GaN吸收层,因此在p+-AlGaN/i-GaN异质界面会形成一个理想型的PIN结结构,以此来提高光生载流子分离和收集效率。此外,宽禁带的GaN吸收材料本身具有很低的复合暗电流,因此本发明能够实现快速、高灵敏的紫外光探测。
实施例2
本实施例提供一种栅控PIN结构GaN紫外探测器制备方法,,包括:
1)取样衬底,并用浓磷酸溶液对其表面进行预处理。
2)在衬底之上依次外延生长3μm GaN缓冲层2、0.5μm掺杂浓度为2×1018cm-3,掺杂元素为硅的n型GaN层3、2μm本征掺杂GaN层4、1μm掺杂浓度为2×1018cm-3,掺杂元素为镁的p型GaN层5;
3)使用感应耦合等离子体(ICP)刻蚀设备,结合刻蚀掩膜,选择性刻蚀外延材料,刻蚀本征掺杂GaN层和p型掺杂AlGaN层,形成刻蚀台面和双台阶,其中深台阶的刻蚀深度至n型掺杂GaN层3,次深台阶的刻蚀深度至AlGaN/GaN的异质界面,次台阶宽度30μm。
4)利用原子层沉积(ALD)设备,在洁净的刻蚀台阶和台面上淀积80nm厚的氧化铝(Al2O3)层6。
5)通过光刻和选择性刻蚀工艺,在氧化铝介质层6刻蚀出源极电极孔和漏极电极孔,其中源极电极孔位于AlGaN外延材料上方,漏极电极孔位于刻蚀槽内n型GaN上方。
6)利用光刻、金属蒸镀技术,淀积源电极7、和漏电极9,在本征掺杂GaN层左右侧面的氧化铝钝化层上沉积两个栅电极。通过适当的退火工艺和源漏极金属材料的选择确保金属电极与外延材料之间形成良好的欧姆接触。
实施例3
本实施例提供一种栅控PIN结构GaN紫外探测器制备方法,具体制备工艺流程如图4所示,包括:
1)取样衬底,并用浓磷酸溶液对其表面进行预处理。
2)在衬底之上依次外延生长4μm GaN缓冲层2、1μm掺杂浓度为4×1018cm-3,掺杂元素为硅的n型GaN层3、3μm本征掺杂GaN层4、2μm掺杂浓度为5×1018cm-3,掺杂元素为镁的p型GaN层5;
3)使用感应耦合等离子体(ICP)刻蚀设备,结合刻蚀掩膜,选择性刻蚀外延材料,刻蚀本征掺杂GaN层和p型掺杂AlGaN层,形成刻蚀台面和双台阶,其中深台阶的刻蚀深度至n型掺杂GaN层3,次深台阶的刻蚀深度至AlGaN/GaN的异质界面,次台阶宽度80μm。
4)利用原子层沉积(ALD)设备,在洁净的刻蚀台阶和台面上淀积200nm厚的氧化铝(Al2O3)层6。
5)通过光刻和选择性刻蚀工艺,在氧化铝介质层6刻蚀出源极电极孔和漏极电极孔,其中源极电极孔位于AlGaN外延材料上方,漏极电极孔位于刻蚀槽内n型GaN上方。
6)利用光刻、金属蒸镀技术,淀积源电极7、和漏电极9,在本征掺杂GaN层左右侧面的氧化铝钝化层上沉积两个栅电极。通过适当的退火工艺和源漏极金属材料的选择确保金属电极与外延材料之间形成良好的欧姆接触,。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (9)

1.一种栅控PIN结构GaN紫外探测器制备方法,其特征在于:包括
1)衬底上依次生长GaN缓冲层和n型掺杂GaN层;
2)所述n型掺杂GaN层上生长本征掺杂GaN层;
3)所述本征掺杂GaN层上生长p型掺杂AlGaN层;
4)刻蚀所述本征掺杂GaN层和p型掺杂AlGaN层形成第一台阶和第二台阶;
5)在所述第一台阶和所述第二台阶表面沉积钝化层;
6)刻蚀所述p型掺杂AlGaN层上和所述n型掺杂GaN层上的钝化层形成源极孔和漏极孔;
7)在所述源极孔和漏极孔分别沉积源电极和漏电极;
8)在所述本征掺杂GaN层的两个侧面分别沉积第一栅电极和第二栅电极。
2.根据权利要求1所述的GaN紫外探测器制备方法,其特征在于:所述1)中的GaN缓冲层厚度为0.2μm~4μm;所述n型掺杂GaN层厚度为0.25μm~1μm,掺杂浓度为1×1018cm-3~5×1018cm-3,掺杂元素为硅。
3.根据权利要求1所述的GaN紫外探测器制备方法,其特征在于:所述2)中的本征掺杂GaN层厚度为0.1μm~3μm。
4.根据权利要求1所述的GaN紫外探测器制备方法,其特征在于:所述3)中的p型掺杂AlGaN层厚度为0.1μm~2μm,掺杂浓度为1×1018cm-3~5×1018cm-3,掺杂元素为镁。
5.根据权利要求1所述的GaN紫外探测器制备方法,其特征在于:所述4)中第一台阶高度小于第二台阶高度。
6.根据权利要求1所述的GaN紫外探测器制备方法,其特征在于:所述4)中第一台阶位于本征掺杂GaN层与p型掺杂AlGaN层的异质界面;所述第一台阶宽度1μm~100μm。
7.根据权利要求1所述的GaN紫外探测器制备方法,其特征在于:所述5)中的钝化层厚度为20nm~200nm;所述钝化层材料为氧化铝。
8.根据权利要求1所述的GaN紫外探测器制备方法,其特征在于:所述8)中,栅电极材料选自Au或Ag或Al;所述栅电极厚度为0.2μm~10μm。
9.根据权利要求1-8任一所述方法制得的GaN紫外探测器。
CN201910899567.XA 2019-09-23 2019-09-23 一种栅控PIN结构GaN紫外探测器及其制备方法 Active CN110660882B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910899567.XA CN110660882B (zh) 2019-09-23 2019-09-23 一种栅控PIN结构GaN紫外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910899567.XA CN110660882B (zh) 2019-09-23 2019-09-23 一种栅控PIN结构GaN紫外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN110660882A CN110660882A (zh) 2020-01-07
CN110660882B true CN110660882B (zh) 2021-05-04

Family

ID=69038946

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910899567.XA Active CN110660882B (zh) 2019-09-23 2019-09-23 一种栅控PIN结构GaN紫外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN110660882B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111211112B (zh) * 2020-01-09 2021-10-22 深圳第三代半导体研究院 一种集成式GaN器件实时测温系统及其制备方法
CN111239223B (zh) * 2020-01-15 2022-09-09 深圳第三代半导体研究院 一种GaN基光化学离子传感器及其制备方法
CN111509084A (zh) * 2020-03-25 2020-08-07 深圳第三代半导体研究院 一种基于AlGaN/GaN异质结的二维紫外光电位置传感器及其制备方法
CN112490302B (zh) * 2020-12-03 2023-03-24 中国科学院半导体研究所 一种多电极的高速光电探测器及其制备方法
CN115188856A (zh) * 2022-07-21 2022-10-14 华南理工大学 一种2D GaS/AlGaN II型异质结自驱动紫外光探测器及其制备方法与应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6888170B2 (en) * 2002-03-15 2005-05-03 Cornell Research Foundation, Inc. Highly doped III-nitride semiconductors
CN102593233A (zh) * 2012-03-19 2012-07-18 中国科学院上海技术物理研究所 基于图形化蓝宝石衬底的GaN基PIN探测器及制备方法
CN104362198B (zh) * 2014-11-03 2016-07-06 长沙理工大学 透明电极栅控横向pin蓝紫光探测器及其制备方法
CN109004017B (zh) * 2018-07-18 2020-09-29 大连理工大学 具有极化结纵向泄漏电流阻挡层结构的hemt器件及其制备方法
CN109037327A (zh) * 2018-07-18 2018-12-18 大连理工大学 一种具有局部电流阻挡层的纵向栅极结构功率器件及其制备方法

Also Published As

Publication number Publication date
CN110660882A (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
CN110660882B (zh) 一种栅控PIN结构GaN紫外探测器及其制备方法
CN106711253B (zh) 一种iii族氮化物半导体雪崩光电二极管探测器
CN102214705B (zh) AlGaN极化紫外光电探测器及其制作方法
CN101872798B (zh) 一种紫外红外双色探测器及制作方法
CN109119508B (zh) 一种背入射日盲紫外探测器及其制备方法
CN112038448B (zh) 一种AlGaN单极载流子日盲紫外探测器及其制备方法
CN109935655B (zh) 一种AlGaN/SiC双色紫外探测器
CN109285914B (zh) 一种AlGaN基紫外异质结光电晶体管探测器及其制备方法
CN109686809A (zh) 一种iii族氮化物半导体可见光雪崩光电探测器及制备方法
CN213601879U (zh) 一种ii类超晶格长波红外探测器
CN102820367A (zh) 基于异质结构吸收、倍增层分离GaN基雪崩光电探测器
CN114267747B (zh) 具有金属栅结构的Ga2O3/AlGaN/GaN日盲紫外探测器及其制备方法
CN110690323B (zh) 紫外光电探测器的制备方法及紫外光电探测器
CN115775730B (zh) 一种准垂直结构GaN肖特基二极管及其制备方法
KR102153945B1 (ko) 이차원 반도체 소재를 이용한 전자소자
CN114678439B (zh) 一种对称叉指结构的2deg紫外探测器及制备方法
JP2003023175A (ja) Msm型半導体受光素子
CN110911518B (zh) 一种iii族氮化物半导体雪崩光电探测器及其制备方法
CN113113506B (zh) 一种iii族氮化物增益型光电探测器及其制备方法
CN111341841B (zh) 基于Ga2O3/TiO2复合悬浮栅的异质结场效应管及其制备方法和紫外探测器件
CN112018210B (zh) 极化增强窄带AlGaNp-i-n型紫外探测器及其制备方法
CN109148623B (zh) 一种具有低噪声的AlGaN基雪崩光电二极管及制备方法
CN110808298B (zh) 一种分级势垒低暗电流台面型光电二极管及其制作方法
WO2023040395A1 (zh) 一种平面型InP基SPAD及其应用
JPH0794773A (ja) SiC紫外線検出器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230329

Address after: No. 1088, Xueyuan Avenue, Taoyuan Street, Nanshan District, Shenzhen City, Guangdong Province

Patentee after: SOUTH University OF SCIENCE AND TECHNOLOGY OF CHINA

Address before: Taizhou building, No. 1088, Xueyuan Avenue, Xili University Town, Nanshan District, Shenzhen City, Guangdong Province

Patentee before: SHENZHEN THIRD GENERATION SEMICONDUCTOR Research Institute

TR01 Transfer of patent right