CN109686809A - 一种iii族氮化物半导体可见光雪崩光电探测器及制备方法 - Google Patents

一种iii族氮化物半导体可见光雪崩光电探测器及制备方法 Download PDF

Info

Publication number
CN109686809A
CN109686809A CN201811590587.0A CN201811590587A CN109686809A CN 109686809 A CN109686809 A CN 109686809A CN 201811590587 A CN201811590587 A CN 201811590587A CN 109686809 A CN109686809 A CN 109686809A
Authority
CN
China
Prior art keywords
layer
doping
gan
type
ohmic contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811590587.0A
Other languages
English (en)
Other versions
CN109686809B (zh
Inventor
江灏
郭瑶
吕泽升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
National Sun Yat Sen University
Original Assignee
National Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Sun Yat Sen University filed Critical National Sun Yat Sen University
Priority to CN201811590587.0A priority Critical patent/CN109686809B/zh
Publication of CN109686809A publication Critical patent/CN109686809A/zh
Application granted granted Critical
Publication of CN109686809B publication Critical patent/CN109686809B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种III族氮化物半导体可见光雪崩光电探测器及制备方法,探测器包括衬底及在衬底上生长的外延层结构;外延层结构按照从下至上的生长顺序依次为非故意掺杂AlN缓冲层、非故意掺杂AlxGa1‑xN缓冲层,n型重掺杂AlyG1‑yN欧姆接触层,Al组分渐变AlzGa1‑zN极化掺杂p型层、非故意掺杂GaN倍增层、n型掺杂GaN电荷层、InmGa1‑mN/GaN超晶格光吸收层和n型重掺杂GaN欧姆接触层。探测器采用p型层下置结构,利用AlGaN层中自发极化与组分渐变带来的压电极化效应产生三维空穴气形成p型层,无需掺杂受主杂质,避免了受主杂质扩散与重掺杂对结晶质量的影响;光吸收层以外均采用结晶质量相对良好的AlGaN、GaN,并利用组分渐变层,在极化掺杂的同时调控应力、提高结晶质量;吸收层采用InGaN/GaN超晶格抑制InGaN层的相分离,从而保证雪崩光电效应的产生。

Description

一种III族氮化物半导体可见光雪崩光电探测器及制备方法
技术领域
本发明涉及III族氮化物半导体光电探测器技术领域,尤其涉及一种III族氮化物半导体可见光雪崩光电探测器及制备方法。
背景技术
随着信息技术的日益更新,基于化合物半导体材料的固态光电探测技术在现代光电信息探测领域发挥越来越重要的作用。近年来,随着信息化社会的迅猛发展,光电探测技术在国防、民用和科学研究等领域的应用日益增加,例如紫外火焰探测、环境监测、导弹预警、量子通信、太空光通信、可见光红外摄像等等。相比于传统的以光电倍增管(PMT)为代表的真空光电探测器件,固态探测器件具有工作电压低、耐高温、抗辐射、耐腐蚀、体积小、量子效率高等优点,因而在研究和应用中发展迅猛。在固态半导体材料中,III族氮化物半导体(包括二元化合物GaN、InN和AlN,三元化合物InGaN、AlGaN、AlInN以及四元化合物AlInGaN等化合物材料)具有直接带隙、禁带宽度调节范围宽、击穿电场高、热导率大、耐高温、抗辐射能力强、化学稳定性高,电子饱和迁移速度快等优点,通过调节多元化合物的组分可以实现覆盖中红外,可见光以及紫外光信号的探测,因此成为当前固态光电探测领域中的研究热点。
固态光电探测器件可以分为光电导探测器、肖特基金属-半导体-金属(MSM)光电探测器、肖特基光电二极管、PIN型光电二极管和雪崩光电二极管几种主要类型。其中,肖特基MSM光电探测器尽管结构和制造工艺简单,但器件在零偏压下没有响应,高偏压下容易产生电流的集边效应而导致提前击穿,降低器件使用寿命;肖特基势垒光电二极管的有源区由金属与半导体的接触形成,工艺依赖度高,可靠性低且暗电流较高;PIN型光电二极管尽管具有低暗电流、高量子效率、高响应速度的优点,但是不提供内部增益,因而无法实现高灵敏度探测。基于PIN结构的雪崩光电探测器是当前优选的光电探测器件类型,可同时满足高灵敏和高速探测。但是,一般的PIN结构雪崩光电探测器,其I层同时作为吸收层和倍增层,层中的电子与空穴同时参与雪崩倍增,器件性能受雪崩过剩噪声影响较大。针对这一问题,研究者发展出吸收、倍增层分离(SAM)结构雪崩光电二极管,器件具有量子效率高、响应速度块增益高、过剩噪声小等特点,因此成为当前雪崩光电探测器中采用较多的一种结构类型。
吸收、倍增层分离结构雪崩光电二极管通过电荷层将入射光信号的吸收层和光生载流子发生碰撞电离的倍增层分隔开来,从而实现单载流子触发的碰撞电离,获得更高的增益和更低的雪崩过剩噪声。对于III族氮化物半导体,目前报道的PIN结构、SAM结构雪崩光电二级管探测器主要是基于GaN和三元化合物AlGaN材料的紫外雪崩光电探测器,而对于基于InGaN的可见光雪崩光电探测器,还没有研制成功的相关报道。其主要原因是InGaN外延层随厚度增加会产生相分离,即在生长方向产生In组分牵引、水平方向产生In组分振荡,由此形成局域态效应,不仅导致载流子的迁移率低、光生电子-空穴的收集效率低(量子效率低),响应截止边不陡峭,而且会导致因载流子表面变程跃迁而产生的表面漏电;在严重情况下,更是会产生大尺寸的富In团簇,其内部和边缘相比于In组分均匀区域有更高密度的位错,形成漏电通道,而漏电是致使PIN、SAM结构雪崩二极管提前击穿、阻碍雪崩光电效应产生的根本原因;此外,由于InGaN层中存在着因本征点缺陷、局域态等因素导致的高背景电子浓度,使得其p型掺杂具有严重的杂质补偿效应,掺杂效率较低。
发明内容
本发明旨在克服上述现有技术中的任一缺陷,提供一种III族氮化物半导体可见光雪崩光电探测器。
采用结晶质量好于InGaN的二元化合物GaN外延层作为倍增层,避免采用InGaN倍增层所导致的漏电,尤其是在高电场下的漏电击穿现象;采用InGaN/GaN超晶格作为光吸收层,利用GaN对InGaN层的压应力和降低InGaN层的厚度,抑制相分离现象,同时由于GaN层的厚度不超过德布罗意波长,载流子可以穿越,不影响光生载流子的收集;利用Al组分由高到低渐变的AlGaN层中的压电效应所产生的三维空穴气,形成无需受主杂质掺杂的p型层,由此规避了受主杂质Mg的扩散与记忆效应的影响(受主杂质Mg逸出p型层而进入到前后外延层的现象)、InGaN的高电子背景浓度的强补偿效应的影响;在极化掺杂p型AlGaN层的下层,导入了n型重掺杂AlGaN欧姆接触层,与p型层形成隧穿结,不仅规避了p型层欧姆接触难于制作的问题,而且因为与最上层的n型电极相同,采用一次蒸镀工艺即可实现上、下两个金属电极的制备。
当光从正面(外延生长结构的最上面)一侧入射时,重掺杂n型GaN欧姆接触层既是n型电极层又充当光入射窗口层的作用,即允许波长大于GaN层禁带宽度对应波长(363nm)的入射光信号通过;当能量低于GaN窗口层禁带宽度而高于InGaN超晶格光吸收层禁带宽度光信号入射时,会在InGaN超晶格吸收层中被吸收,激发出电子-空穴对,由于器件工作在反向偏压下(最上层的n型电极加正电压),光生电子被收集到重掺杂n型GaN欧姆接触层一侧,光生空穴则渡越过n型掺杂GaN电荷层,被运输到具有高电场强度的非故意掺杂GaN倍增层,从而触发雪崩击穿,完成单载流子(空穴)触发。
为实现上述目的,本发明的技术方案为:提供一种吸收、倍增分离结构、极化掺杂的III族氮化物半导体可见光雪崩光电探测器,包括衬底及在衬底上生长的外延层结构;其中,所述外延层结构按照从下至上的生长顺序依次为非故意掺杂AlN缓冲层、非故意掺杂AlxGa1-xN缓冲层、n型重掺杂AlyGa1-yN欧姆接触层、Al组分渐变AlzGa1-zN极化掺杂p型层、非故意掺杂GaN倍增层、n型掺杂GaN电荷层、InmGa1-mN/GaN超晶格光吸收层和重掺杂n型GaN欧姆接触层。
对于III族氮化物半导体,其n型层的传统实现方法是在层中掺杂施主杂质Si,而p型层的传统实现方法是在层中掺杂受主杂质Mg。所谓施主掺杂,是指半导体中以贡献出电子方式形成电子电导的一种掺杂方式;所谓受主掺杂,是指半导体中以接受价带电子,而产生同数量空穴的一种掺杂方式;而非故意掺杂是指在生长材料时,未经过人为的故意掺杂而导入的外来杂质,非故意掺杂层中的载流子浓度也可称为背景载流子浓度。
有别于传统的杂质掺杂,极化掺杂是指利用极化效应来实现(提供)所需载流子浓度,此时的载流子浓度一般都比材料本征载流子浓度要高很多。对于III族氮化物半导体,由于N原子的电负性(3.04)比Ⅲ族原子(Al:1.61、Ga:1.81、In:1.78)的大很多,成键时N原子能够强烈吸收III族原子的电子云,使Ⅲ族氮化物共价键同时具有很强的离子性。强的离子性加上低的结构对称性,导致纤锌矿结构的Ⅲ族氮化物即使在没有外界应力影响下也有极化作用,称之为自发极化效应。这一特性也是其它Ⅲ-V族化合物所不具备的特点。当晶格受到应力作用产生形变时,正负离子芯发生偏移,也将产生极化,称之为压电极化效应。
对于纤锌矿结构的III族氮化物,由于晶格常数a大小不同(InN>InGaN>GaN>AlGaN>AlN),当在AlN晶膜上制备AlGaN薄膜且其厚度小于临界厚度时(即没有弛豫),将形成应变异质结,由于AlN的晶格常数a比AlGaN的小,因此先生长的AlN材料就会受到来自AlGaN层的张应力,产生压电极化效应,形成二维空穴气体,如AlGaN层在纵向上有一个Al组分的梯度渐变,则可形成三维空穴气。
本发明所述的SAM结构可见光雪崩光电探测器,其p型层采用极化掺杂来提供所需的载流子(空穴)浓度,而非采用传统方法在p型层中掺杂受主杂质Mg。
优选地,所述衬底为蓝宝石或SiC衬底;所述非故意掺杂AlN缓冲层为低温生长,且低温AlN缓冲层的厚度为10nm~30nm;或者所述非故意掺杂AlN缓冲层为高温生长,且高温AlN缓冲层的厚度为0.2μm~3μm。
优选地,所述非故意掺杂AlxGa1-xN缓冲层的厚度为300nm~1μm,Al组分x为0.3~0.7。
优选地,所述n型重掺杂AlyGa1-yN欧姆接触层的厚度为100nm~500nm,Al组分y为0.1~0.3,层中电子浓度为2×1018cm-3~5×1018cm-3
优选地,所述Al组分渐变AlzGa1-zN极化掺杂p型层为非故意掺杂层,采用Al组分线性渐变生长,从高Al组分线性变化至低Al组分,其厚度为50nm-200nm,Al组分z的变化区间为y~0,对应产生的理论极化掺杂空穴浓度约为2.5×1017cm-3~3.0×1018cm-3
优选地,所述非故意掺杂GaN倍增层,厚度为100nm~200nm,层中电子浓度为1×1016cm-3~2×1017cm-3。所述非故意掺杂GaN倍增层的作用使利用其内部的高电场强度,使进入倍增层的光生空穴发生碰撞电离,触发雪崩效应,产生雪崩增益,
优选地,所述n型掺杂GaN电荷层起到将吸收层与倍增层分隔的作用,光生空穴要渡越过电荷层而达到倍增层,其厚度为30nm~60nm,层中电子浓度为5×1017cm-3~3×1018cm-3
优选地,所述InmGa1-mN/GaN超晶格光吸收层为非故意掺杂层;每个超晶格周期中InmGa1-mN层厚度为2nm~4nm,GaN层厚度为2nm~6nm,总的厚度为100nm~300nm;InmGa1-mN层中In组分m为0.1~0.4。
优选地,所述重掺杂n型GaN欧姆接触层既是n型电极层又充当光入射窗口层的作用,所述重施主掺杂n型GaN层的电子浓度为2×1018cm-3~5×1018cm-3,厚度为100nm~200nm。
本发明的另一目的在于提供上述III族氮化物半导体可见光雪崩光电探测器的制备方法,包括以下步骤:
S1.在重掺杂n型GaN欧姆接触层上旋涂一层光刻胶,采用配有雪崩光电探测器图形的光刻版对所述光刻胶进行光刻显影后,暴露出需要刻蚀的重掺杂n型GaN欧姆接触层的表面,而其余未显影的光刻胶层作为一次掩膜;
S2.使用干法刻蚀技术来刻蚀暴露的外延层,刻蚀深n型重掺杂AlyGa1-yN欧姆接触层,形成台阶结构;
S3.对干法刻蚀后的雪崩光电二极管探测器外延片进行纯氮气氛围保护下的快速热退火处理及湿法处理,以恢复干法刻蚀在外延层表面形成的损伤;
S4.通过涂胶、光刻、显影的方式在重掺杂n型GaN欧姆接触层上制作n型欧姆电极图形,采用真空蒸镀技术将Ti/Al/Ni/Au、Ti/Al/Pd/Au、Ti/Al/Pt/Au、Ti/Al/Mo/Au、Cr/Pd/Au中的任一种金属层组合沉积在重掺杂n型GaN欧姆接触层的上表面台型结构的台面边缘处,通过剥离工艺形成图形化的欧姆接触金属电极;
S5.通过涂胶、光刻、显影的方式在n型重掺杂AlyGa1-yN欧姆接触层104,上制作n型欧姆电极图形,采用真空蒸镀技术将Ti/Al/Ni/Au、Ti/Al/Pd/Au、Ti/Al/Pt/Au、Ti/Al/Mo/Au、Cr/Pd/Au中的任一种金属层组合沉积在n型重掺杂AlyGa1-yN欧姆接触层的刻蚀露出面、台型结构边缘处,通过剥离工艺形成图形化的欧姆接触金属电极,并用快速热退火进行合金,最终形成上、下两层的n型欧姆接触电极;
S6.利用有机溶液、去离子水清洗雪崩光电探测器晶片的表面,再采用等离子增强化学气相沉积法或低压化学气相沉积法在雪崩光电探测器的表面镀制氧化硅或氮化物钝化薄膜,以保护除n型欧姆接触电极以外的雪崩光电探测器表面;
S7.通过涂胶、光刻、显影的方式在钝化膜层上涂布光刻胶保护层,经光刻、显影露出n型欧姆接触电极的部分,采用缓冲氢氟酸溶液刻蚀露出n型金属电极;通过电子束或热蒸发沉积Ni/Au或Gr/Au电极引线焊接层。
与现有技术相比,本发明技术方案的有益效果是:采用p型层下置结构,利用AlGaN层中自发极化与组分渐变带来的压电极化效应产生三维空穴气形成p型层,无需掺杂受主杂质,避免了受主杂质扩散与重掺杂对结晶质量的影响;光吸收层以外均采用结晶质量优于InGaN的AlGaN、GaN外延层,避免了InGaN结晶所存在的相分离、局域态、In团簇和衍生位错等问题,并利用Al组分渐变AlGaN层,在极化掺杂的同时调控应力、提高了结晶质量;吸收层采用InGaN/GaN超晶格,利于GaN使InGaN层处于压应力状态,有效抑制InGaN层的相分离;从而在上述三方面的结构创新的基础上,保障了雪崩光电效应的产生。
附图说明
图1为本发明一种III族氮化物半导体可见光雪崩光电探测器的结构示意图。
图2为本实施例一种III族氮化物半导体可见光雪崩光电探测器的结构示意图。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;为了更好的说明所述实施例,附图某些部件会有省略、放大或缩小,这并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明的省略是可以理解的。为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明不仅仅局限于下面的实施例。
本发明提供一种III族氮化物半导体可见光雪崩光电探测器,如图1所示,包括衬底101及在衬底101上生长的外延层结构;其中,所述外延层结构按照从下至上的生长顺序依次为非故意掺杂AlN缓冲层102、非故意掺杂AlxGa1-xN缓冲层103、n型重掺杂AlyGa1-yN欧姆接触层104、Al组分渐变AlzGa1-zN极化掺杂p型层105、非故意掺杂GaN倍增层106、n型掺杂GaN电荷层107、InmGa1-mN/GaN超晶格光吸收层108、重掺杂n型GaN欧姆接触层109和欧姆接触电极110。
实施例
本实施例提供一种III族氮化物半导体可见光雪崩光电探测器,如图2所示,所述光电二极管探测器包括c面蓝宝石衬底101及外延层;所述外延层的结构包括厚度为3μm的非故意掺杂AlN缓冲层102;厚度300nm的非故意掺杂Al0.3Ga0.7N缓冲层103;厚度300nm的n型重掺杂Al0.2Ga0.8N欧姆接触层104,层中电子浓度为5×1018cm-3;厚度为100nm的Al组分渐变AlzGa1-zN极化掺杂p型层105,Al组分采用线性梯度生长,从高Al组分线性梯度生长至低Al组分,Al组分z为0~0.3,空穴浓度约为1.5×1018cm-3;厚度为150nm的非故意掺杂GaN倍增层106,电子浓度为8×1016cm-3;厚度为30nm的n型掺杂GaN电荷层107,电子浓度为5×1017cm-3~3×1018cm-3;厚度为210nm的In0.29Ga0.71N/GaN超晶格光吸收层108,In0.29Ga0.71N/GaN超晶格结构共有21个周期,每个超晶格周期中InmGa1-mN层厚度为4nm,GaN层厚度为6nm;厚度为120nm的重掺杂n型GaN欧姆接触层109,电子浓度为3×1018cm-3;利用电子束蒸发技术在重掺杂n型GaN欧姆接触层109和n型重掺杂AlGaN欧姆接触层104上沉积Ti/Al/Ni/Au金属层进行合金处理最终形成上、下两层的n型欧姆接触电极110。
所述可见光雪崩光电探测器采用p型层下置结构,采用正入射的形式。使用金属有机物化学气相沉积(MOCVD)或分子束外延(MBE)的外延生长方法生长吸收、倍增分离结构的极化掺杂可见光雪崩光电探测器。
上述可见光雪崩光电探测器的制备方法如下:
S1.在重掺杂n型GaN欧姆接触层109上旋涂一层光刻胶,采用配有雪崩光电探测器图形的光刻版对所述光刻胶进行光刻显影后,暴露出需要刻蚀的重掺杂n型GaN欧姆接触层109的表面,而其余未显影的光刻胶层作为一次掩膜;
S2.使用干法刻蚀技术来刻蚀暴露的外延层,刻蚀深度到n型重掺杂Al0.2Ga0.8N欧姆接触层104,形成台阶结构;
S3.对干法刻蚀后的雪崩光电二极管探测器外延片进行纯氮气氛围保护下的快速热退火处理及湿法处理,以恢复干法刻蚀在外延层表面形成的损伤;
S4.通过涂胶、光刻、显影的方式在重掺杂n型GaN欧姆接触层109上制作n型欧姆电极图形,采用真空蒸镀技术将Ti/Al/Ni/Au、Ti/Al/Pd/Au、Ti/Al/Pt/Au、Ti/Al/Mo/Au、Cr/Pd/Au中的任一种金属层组合沉积在重掺杂n型GaN欧姆接触层109的上表面台型结构的台面边缘处,通过剥离工艺形成图形化的欧姆接触金属电极110;
S5.通过涂胶、光刻、显影的方式在n型重掺杂Al0.2Ga0.8N欧姆接触层104,上制作n型欧姆电极图形,采用真空蒸镀技术将Ti/Al/Ni/Au、Ti/Al/Pd/Au、Ti/Al/Pt/Au、Ti/Al/Mo/Au、Cr/Pd/Au中的任一种金属层组合沉积在n型重掺杂Al0.2Ga0.8N欧姆接触层104的刻蚀露出面、台型结构边缘处,通过剥离工艺形成图形化的欧姆接触电极110,并用快速热退火进行合金,最终形成上、下两层的n型欧姆接触电极110;
S6.利用有机溶液、去离子水清洗雪崩光电探测器晶片的表面,再采用等离子增强化学气相沉积法或低压化学气相沉积法在雪崩光电探测器的表面镀制氧化硅或氮化物钝化薄膜,以保护除n型欧姆接触电极110以外的雪崩光电探测器表面;
S7.通过涂胶、光刻、显影的方式在钝化薄膜层上涂布光刻胶保护层,经光刻、显影露出n型欧姆接触电极110的部分,采用缓冲氢氟酸溶液刻蚀露出n型金属电极;通过电子束或热蒸发沉积Ni/Au或Gr/Au电极引线焊接层。
本发明的上述实施例仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

1.一种III族氮化物半导体可见光雪崩光电探测器,其特征在于,包括衬底(101)及在衬底(101)上生长的外延层结构;其中,所述外延层结构按照从下至上的生长顺序依次为非故意掺杂AlN缓冲层(102)、非故意掺杂AlxGa1-xN缓冲层(103)、n型重掺杂AlyGa1-yN欧姆接触层(104)、Al组分渐变AlzGa1-zN极化掺杂p型层(105)、非故意掺杂GaN倍增层(106)、n型掺杂GaN电荷层(107)、InmGa1-mN/GaN超晶格光吸收层(108)和重掺杂n型GaN欧姆接触层(109)。
2.根据权利要求1所述的III族氮化物半导体可见光雪崩光电探测器,其特征在于,所述衬底(101)为蓝宝石或SiC衬底;所述非故意掺杂AlN缓冲层(102)为低温生长,且低温AlN缓冲层(102)的厚度为10nm~30nm;或者所述非故意掺杂AlN缓冲层(102)为高温生长,且高温AlN缓冲层(102)的厚度为0.2μm~3μm。
3.根据权利要求1所述的III族氮化物半导体可见光雪崩光电探测器,其特征在于,所述非故意掺杂AlxGa1-xN缓冲层(103)的厚度为300nm~1μm,Al组分x为0.3~0.7。
4.根据权利要求1所述的III族氮化物半导体可见光雪崩光电探测器,其特征在于,所述n型重掺杂AlyGa1-yN欧姆接触层(104)的厚度为100nm~500nm,Al组分y为0.1~0.3,层中电子浓度为2×1018cm-3~5×1018cm-3
5.根据权利要求4所述的III族氮化物半导体可见光雪崩光电探测器,其特征在于,所述Al组分渐变AlzGa1-zN极化掺杂p型层(105)为非故意掺杂层,采用Al组分线性渐变生长,从高Al组分线性变化至低Al组分,其厚度为50nm-200nm,Al组分z的变化区间为y~0,对应极化掺杂空穴浓度为2.5×1017cm-3~3.0×1018cm-3
6.根据权利要求1所述的III族氮化物半导体可见光雪崩光电探测器,其特征在于,所述非故意掺杂GaN倍增层(106),厚度为100nm~200nm,层中电子浓度为1×1016cm-3~2×1017cm-3
7.根据权利要求1所述的III族氮化物半导体可见光雪崩光电探测器,其特征在于,所述n型掺杂GaN电荷层(107),厚度为30nm~60nm,层中电子浓度为5×1017cm-3~3×1018cm-3
8.根据权利要求1所述的III族氮化物半导体可见光雪崩光电探测器,其特征在于,所述InmGa1-mN/GaN超晶格光吸收层(108)为非故意掺杂层;每个超晶格周期中InmGa1-mN层厚度为2nm~4nm,GaN层厚度为2nm~6nm,总的厚度为100nm~300nm;InmGa1-mN层中In组分m为0.1~0.4。
9.根据权利要求1所述的III族氮化物半导体可见光雪崩光电探测器,其特征在于,所述重掺杂n型GaN欧姆接触层(109)为n型电极层和光入射窗口层,电子浓度为1×1018cm-3-5×1018cm-3,厚度为100nm~200nm。
10.一种权利要求1-8任一项所述的III族氮化物半导体可见光雪崩光电探测器的制备方法,其特征在于,包括以下步骤:
S1.在重掺杂n型GaN欧姆接触层(109)上旋涂一层光刻胶,采用配有雪崩光电探测器图形的光刻版对所述光刻胶进行光刻显影后,暴露出需要刻蚀的重掺杂n型GaN欧姆接触层(109)的表面,而其余未显影的光刻胶层作为一次掩膜;
S2.使用干法刻蚀技术来刻蚀暴露的外延层,刻蚀深n型重掺杂AlyGa1-yN欧姆接触层(104),形成台阶结构;
S3.对干法刻蚀后的雪崩光电二极管探测器外延片进行纯氮气氛围保护下的快速热退火处理及湿法处理,以恢复干法刻蚀在外延层表面形成的损伤;
S4.通过涂胶、光刻、显影的方式在重掺杂n型GaN欧姆接触层(109)上制作n型欧姆电极图形,采用真空蒸镀技术将Ti/Al/Ni/Au、Ti/Al/Pd/Au、Ti/Al/Pt/Au、Ti/Al/Mo/Au、Cr/Pd/Au中的任一种金属层组合沉积在重掺杂n型GaN欧姆接触层(109)的上表面台型结构的台面边缘处,通过剥离工艺形成图形化的欧姆接触电极(110);
S5.通过涂胶、光刻、显影的方式在n型重掺杂AlyGa1-yN欧姆接触层(104)上制作n型欧姆电极图形,采用真空蒸镀技术将Ti/Al/Ni/Au、Ti/Al/Pd/Au、Ti/Al/Pt/Au、Ti/Al/Mo/Au、Cr/Pd/Au中的任一种金属层组合沉积在n型重掺杂AlyGa1-yN欧姆接触层(104)的刻蚀露出面、台型结构边缘处,通过剥离工艺形成图形化的欧姆接触电极(110),并用快速热退火进行合金,最终形成上、下两层的n型欧姆接触电极(110);
S6.利用有机溶液、去离子水清洗雪崩光电探测器晶片的表面,再采用等离子增强化学气相沉积法或低压化学气相沉积法在雪崩光电探测器的表面镀制氧化硅或氮化物钝化薄膜,以保护除n型欧姆接触电极(110)以外的雪崩光电探测器表面;
S7.通过涂胶、光刻、显影的方式在钝化薄膜层上涂布光刻胶保护层,经光刻、显影露出n型欧姆接触电极(110)的部分,采用缓冲氢氟酸溶液刻蚀露出n型金属电极;通过电子束或热蒸发沉积Ni/Au或Gr/Au电极引线焊接层。
CN201811590587.0A 2018-12-25 2018-12-25 一种iii族氮化物半导体可见光雪崩光电探测器及制备方法 Active CN109686809B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811590587.0A CN109686809B (zh) 2018-12-25 2018-12-25 一种iii族氮化物半导体可见光雪崩光电探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811590587.0A CN109686809B (zh) 2018-12-25 2018-12-25 一种iii族氮化物半导体可见光雪崩光电探测器及制备方法

Publications (2)

Publication Number Publication Date
CN109686809A true CN109686809A (zh) 2019-04-26
CN109686809B CN109686809B (zh) 2020-09-04

Family

ID=66189330

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811590587.0A Active CN109686809B (zh) 2018-12-25 2018-12-25 一种iii族氮化物半导体可见光雪崩光电探测器及制备方法

Country Status (1)

Country Link
CN (1) CN109686809B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444626A (zh) * 2019-07-30 2019-11-12 华南理工大学 Si衬底InGaN可见光探测器及制备方法与应用
CN111403505A (zh) * 2020-03-09 2020-07-10 中山大学 一种双极型可见光探测器及其制备方法
CN113471326A (zh) * 2021-06-15 2021-10-01 中山大学 一种ⅲ族氮化物异质结光电探测器
CN113838940A (zh) * 2021-08-19 2021-12-24 北京无线电测量研究所 一种集成型光电探测器及其制作方法
CN114242862A (zh) * 2021-12-22 2022-03-25 淮安澳洋顺昌光电技术有限公司 Led芯片及其制备方法
CN116936701A (zh) * 2023-09-19 2023-10-24 江西兆驰半导体有限公司 一种发光二极管外延片及制备方法、led芯片

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080153A1 (ja) * 2005-01-28 2006-08-03 Nec Corporation 半導体受光素子及びその製造方法
CN101866977A (zh) * 2010-06-25 2010-10-20 重庆大学 基于组分渐变缓冲层的透射式GaN紫外光电阴极
CN102820368A (zh) * 2012-08-30 2012-12-12 中山大学 三族氮化物基光电晶体管探测器件及其制作方法
US20150311375A1 (en) * 2013-05-24 2015-10-29 U.S. Army Research Laboratory Attn: Rdrl-Loc-I Variable range photodetector and method thereof
US20170256404A1 (en) * 2016-03-02 2017-09-07 Xiamen Changelight Co., Ltd. Buffer Layers Having Composite Structures
CN206541827U (zh) * 2017-01-16 2017-10-03 中国工程物理研究院电子工程研究所 单片集成紫外‑红外双色雪崩光电二极管
CN108400196A (zh) * 2018-03-01 2018-08-14 无锡华亿投资有限公司 一种具有超晶格结构氮化镓基紫外光电探测器及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080153A1 (ja) * 2005-01-28 2006-08-03 Nec Corporation 半導体受光素子及びその製造方法
CN101866977A (zh) * 2010-06-25 2010-10-20 重庆大学 基于组分渐变缓冲层的透射式GaN紫外光电阴极
CN102820368A (zh) * 2012-08-30 2012-12-12 中山大学 三族氮化物基光电晶体管探测器件及其制作方法
US20150311375A1 (en) * 2013-05-24 2015-10-29 U.S. Army Research Laboratory Attn: Rdrl-Loc-I Variable range photodetector and method thereof
US20170256404A1 (en) * 2016-03-02 2017-09-07 Xiamen Changelight Co., Ltd. Buffer Layers Having Composite Structures
CN206541827U (zh) * 2017-01-16 2017-10-03 中国工程物理研究院电子工程研究所 单片集成紫外‑红外双色雪崩光电二极管
CN108400196A (zh) * 2018-03-01 2018-08-14 无锡华亿投资有限公司 一种具有超晶格结构氮化镓基紫外光电探测器及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M.RAZEGHI,FELLOW,IEEE: "III-Nitride Optoelectronic Devices: From Ultraviolet Toward Terahertz", 《IEEE PHOTONICS JOURNAL》 *
陈海峰: "基于极化电场调控AlGaN基紫外探测器的研究", 《中国博士学位论文全文数据库(电子期刊)信息科技辑》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444626A (zh) * 2019-07-30 2019-11-12 华南理工大学 Si衬底InGaN可见光探测器及制备方法与应用
CN111403505A (zh) * 2020-03-09 2020-07-10 中山大学 一种双极型可见光探测器及其制备方法
CN111403505B (zh) * 2020-03-09 2021-09-07 中山大学 一种双极型可见光探测器及其制备方法
CN113471326A (zh) * 2021-06-15 2021-10-01 中山大学 一种ⅲ族氮化物异质结光电探测器
CN113838940A (zh) * 2021-08-19 2021-12-24 北京无线电测量研究所 一种集成型光电探测器及其制作方法
CN113838940B (zh) * 2021-08-19 2024-03-08 北京无线电测量研究所 一种集成型光电探测器及其制作方法
CN114242862A (zh) * 2021-12-22 2022-03-25 淮安澳洋顺昌光电技术有限公司 Led芯片及其制备方法
CN114242862B (zh) * 2021-12-22 2024-02-27 淮安澳洋顺昌光电技术有限公司 Led芯片及其制备方法
CN116936701A (zh) * 2023-09-19 2023-10-24 江西兆驰半导体有限公司 一种发光二极管外延片及制备方法、led芯片
CN116936701B (zh) * 2023-09-19 2023-12-01 江西兆驰半导体有限公司 一种发光二极管外延片及制备方法、led芯片

Also Published As

Publication number Publication date
CN109686809B (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
CN109686809A (zh) 一种iii族氮化物半导体可见光雪崩光电探测器及制备方法
CN107863413B (zh) 一种AlGaN基日盲紫外雪崩异质结光电晶体管探测器及其制备方法
CN106409967B (zh) p‑i‑n—‑n型GaN单光子雪崩探测器
CN106711253B (zh) 一种iii族氮化物半导体雪崩光电二极管探测器
CN108305911B (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
US7180066B2 (en) Infrared detector composed of group III-V nitrides
CN104282793A (zh) 一种三台面p-π-n结构III族氮化物半导体雪崩光电探测器及其制备方法
US8299497B1 (en) Near-infrared photodetector with reduced dark current
KR101639779B1 (ko) 반도체 광 검출 소자
US20080087914A1 (en) Extreme Ultraviolet (EUV) Detectors Based Upon Aluminum Nitride (ALN) Wide Bandgap Semiconductors
CN109494275B (zh) 一种AlGaN基日盲紫外光电晶体管探测器及其制作方法
CN109285914B (zh) 一种AlGaN基紫外异质结光电晶体管探测器及其制备方法
CN109119508B (zh) 一种背入射日盲紫外探测器及其制备方法
CN110047955B (zh) 一种AlGaN紫外雪崩光电二极管探测器及其制备方法
CN110660882B (zh) 一种栅控PIN结构GaN紫外探测器及其制备方法
CN105655437A (zh) 一种紫外雪崩光电探测器
CN111739960B (zh) 一种增益型异质结紫外光电探测器
CN109980040A (zh) 一种氧化镓mis结构紫外探测器
CN108091720A (zh) 单行载流子光电探测器及其制备方法
Liu et al. Progress on photovoltaic AlGaN photodiodes for solar-blind ultraviolet photodetection
CN106409965B (zh) 一种高速饱和单行载流子紫外光电二极管及制备方法
CN113471326A (zh) 一种ⅲ族氮化物异质结光电探测器
CN114678439B (zh) 一种对称叉指结构的2deg紫外探测器及制备方法
CN100454585C (zh) Pin结构氮化镓基紫外探测器及其制作方法
CN112635615A (zh) 具有多吸收量子阱的光伏型氮化物子带跃迁红外探测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant