CN110444626A - Si衬底InGaN可见光探测器及制备方法与应用 - Google Patents

Si衬底InGaN可见光探测器及制备方法与应用 Download PDF

Info

Publication number
CN110444626A
CN110444626A CN201910696574.XA CN201910696574A CN110444626A CN 110444626 A CN110444626 A CN 110444626A CN 201910696574 A CN201910696574 A CN 201910696574A CN 110444626 A CN110444626 A CN 110444626A
Authority
CN
China
Prior art keywords
ingan
layer
substrate
visible
light detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910696574.XA
Other languages
English (en)
Inventor
王文樑
李国强
孔德麒
杨昱辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201910696574.XA priority Critical patent/CN110444626A/zh
Publication of CN110444626A publication Critical patent/CN110444626A/zh
Priority to PCT/CN2020/106015 priority patent/WO2021018261A1/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • H01L31/1085Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type the devices being of the Metal-Semiconductor-Metal [MSM] Schottky barrier type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种Si衬底InGaN可见光探测器及制备方法与应用,所述探测器包括从下到上依次排布的Si衬底、缓冲层、InGaN功能层和Ni/Au金属层电极,所述缓冲层为从下到上依次排布的AlN层、AlGaN层和GaN层;在Si衬底上外延生长缓冲层,在缓冲层上生长InGaN功能层;在InGaN功能层上表面进行光刻,确定电极形状,将Ni/Au金属层电极蒸镀在InGaN功能层上表面。优化探测器件的芯片参数,提升了可见光波段的量子效率;在探测芯片表面进行可见光增敏微纳结构设计,有效降低表面对可见光的反射损耗,增强可见光谐振吸收,实现高灵敏度高带宽探测。

Description

Si衬底InGaN可见光探测器及制备方法与应用
技术领域
本发明涉及可见光探测器领域,特别涉及一种Si 衬底InGaN可见光探测器及制备方法与应用。
背景技术
III族氮化物半导体材料(主要包括 GaN,InN,AlN 以及它们形成的三元或多元合金材料)拥有优良的光学、电学、热学、化学、机械性能,因此,Ⅲ族氮化物光电器件和功率器件得到了国内外科研人员的广泛关注和重点研究。随着新型固态照明的快速发展,可见光通信技术应运而生。可见光通信能够在提供照明的同时,实现高速的数据传输,并且可见光通信具有频谱宽、无电磁干扰等优点,可以实现近距离时高速安全稳定的通信体验。
目前,探测可见光波段光信号最为常用的探测器是光电倍增管和 Si 基探测器。虽然光电倍增管具有暗电流低、响应速度快、稳定性高、电流增益高等优点,但是价格昂贵、容易破损、能耗较大、体积庞大等缺点大大限制了其实际应用。同样,Si 基光电二极管也有自身的局限性,它只有在加装了价格昂贵的滤光系统后才能实现对可见光波段的探测,这大大增加了使用成本。此外 Si 材料的抗辐射能力弱,这又大大限制了 Si基探测器在极端条件下的应用。
作为第三代半导体材料研究热点之一的 InGaN 材料拥有良好的物理化学性质。它的电子迁移率高、热稳定性好、化学稳定性好。可以通过调整合金中 In的组分,实现禁带宽度从 3.4 eV 到 0.7 eV 的连续调节,从而使得 InGaN 探测器能够实现覆盖整个可见光波段的连续探测,相比光电倍增管,InGaN 探测器具有体积小、易携带、易集成、击穿电场高(> 1 MV/cm)、工作电压低、节能环保、无需滤光系统等优势。相比于Si,InGaN 探测器的外量子效率高,并且 InGaN 探测器的反应速度快,InGaN 探测器可以避免在探测系统中增加昂贵的滤波器,将成本大幅度降低。
虽然 InGaN 基探测器研究取得了显著成果,但是到目前为止还没有实现商品转化。制约 InGaN 探测器发展和应用的根本问题是材料质量问题,关键问题是器件优化问题。本发明具有生长InGaN薄膜质量好,量子效率高,响应速度快、带宽高等优点。
发明内容
为了克服现有技术的上述缺点与不足,本发明的目的在于提供一种Si 衬底InGaN可见光探测器及制备方法与应用,Si 衬底InGaN可见光探测器具有生长InGaN薄膜质量好,器件的外量子效率高,响应速度快和带宽高等优点。
本发明的目的至少是通过以下技术方案之一实现的。
本发明提供了一种Si 衬底InGaN可见光探测器,包括从下到上依次排布的Si衬底、缓冲层、InGaN功能层和Ni/Au金属层电极,所述缓冲层为从下到上依次排布的AlN层、AlGaN层和GaN层,InGaN功能层中In组分的摩尔分数为10~60%。
优选地,缓冲层中AlN层、AlGaN层和GaN层的厚度分别为200~300 nm、500~600 nm、2~3 μm。
优选地,InGaN功能层的厚度为10~15 nm。
优选地,Ni/Au金属层电极为叉指电极;Ni/Au金属层电极中Ni金属层的厚度为80~100nm,Au金属层的厚度为80~100nm。
本发明还提供了制备所述Si 衬底InGaN可见光探测器的方法,包括如下步骤:
(1)针对 Si 衬底与 InGaN 材料之间晶格失配(>17%)和热失配(>54%)较大从而导致高密度缺陷和裂纹的问题,通过设计AlN/AlGaN/GaN 缓冲层,控制外延层的应力和缺陷密度,在Si衬底上采用MOCVD方法外延生长缓冲层,在缓冲层上采用PLD方法生长 InGaN功能层;
(2)在InGaN功能层上表面进行光刻,在InGaN功能层上表面匀胶、烘干、曝光、显影和氧离子处理,确定电极形状,并通过蒸镀工艺将Ni/Au金属层电极蒸镀在InGaN功能层上表面。改变光刻曝光时间、烘胶时间、显影时间、氧离子处理时间、电极材料种类、电极厚度,蒸镀速率等工艺,探究其对 InGaN 探测器性能的影响,提升 Si衬底上 InGaN 可见光探测器的灵敏度和带宽,实现高性能可见光探测器。
优选地,采用MOCVD方法在Si衬底上从下到上依次外延生长AlN层、AlGaN层和GaN层的温度分别为1000~1100℃、1000~1100℃和900~1050℃。
优选地,采用PLD方法生长 InGaN功能层时温度为200~400℃, 激光能量为2~5 J/cm2
优选地,电极的蒸镀速率为0.18~0.225 nm/min。
优选地,先蒸镀Ni金属层再蒸镀Au金属层。
优选地,烘干时间为40-50 s,曝光时间为5-10 s,显影时间为40-50 s,氧离子处理时间为2~3 min。
本发明还提供了所述的Si 衬底InGaN可见光探测器在可见光探测中的应用。
和现有技术相比,本发明具有以下有益效果和优点:
(1)本发明提供的Si 衬底InGaN可见光探测器的制备方法,先在采用 MOCVD 高温外延方法在Si衬底上生长AlN/AlGaN/GaN 缓冲层,过滤位错,释放应力,使缺陷密度由109减小到106,再结合 PLD 低温外延方法,在缓冲层上生长高质量 InGaN 材料,再通过光刻蒸镀工艺,在 InGaN上制作Ni/Au肖特基接触电极,10-6A减小到10-7A,增强载流子注入效率,减小漏电,实现了Si衬底上 InGaN 可见光探测器;所述制备方法具有工艺简单、省时高效以及能耗低的特点,有利于规模化生产。
(2)本发明提供的Si 衬底InGaN可见光探测器制备方法实现通过 InGaN 材料的In 组分调控,在可见光波段的高速响应;通过 InGaN 材料组分的和缺陷密度控制,实现高质量组分可控 InGaN 材料生长;在此基础上优化设计可见光探测器与阵列结构,有效提高响应速度。
(3)本发明提供的Si 衬底InGaN可见光探测器制备方法实现通过优化探测器件的芯片参数,在探测芯片表面进行可见光增敏微纳结构设计,有效降低表面对可见光的反射损耗,增强可见光谐振吸收,实现高灵敏度高带宽探测。
附图说明
图1为本发明的Si 衬底InGaN可见光探测器的结构剖面示意图;
图2为本发明的Si 衬底InGaN可见光探测器的电极结构的俯视面示意图;
图3为实施1所制备的Si 衬底InGaN可见光探测器的X射线衍射图谱;
图4为实施例1制备的Si 衬底InGaN可见光探测器的PL曲线图;
图5为实施例2制备的Si 衬底InGaN可见光探测器的PL曲线图;
图6为实施例3制备的Si 衬底InGaN可见光探测器的PL曲线图;
图7为实施例1制备的Si 衬底InGaN可见光探测器的光电流曲线图;
图8为实施例2制备的Si 衬底InGaN可见光探测器的光电流曲线图;
图9为实施例3制备的Si 衬底InGaN可见光探测器的光电流曲线图;
图10为实施例1制备的Si 衬底InGaN可见光探测器的暗电流曲线图;
附图1中:1-Si衬底、2-缓冲层、3-InGaN 功能层、4-Ni/Au金属层电极。
具体实施方式
下面结合实施例,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例1
本实施例提供了一种Si 衬底InGaN可见光探测器,如图1所示,包括从下到上依次排布的Si衬底1、缓冲层2和InGaN功能层3,InGaN功能层3的上表面连接Ni/Au金属层电极4,所述缓冲层2为从下到上依次排布的AlN层、AlGaN层和GaN层。缓冲层2中AlN层、AlGaN层和GaN层的厚度分别为200 nm、500 nm、2 μm。InGaN功能层3的厚度为10 nm;InGaN功能层3中In组分的摩尔分数为10%。Ni/Au金属层电极4中Ni金属层的厚度为80nm,Au金属层的厚度为80nm。
本实施例还提供了所述Si 衬底InGaN可见光探测器的制备方法,包括如下步骤:
(1)在Si衬底1上采用MOCVD方法外延生长缓冲层2,在缓冲层2上采用PLD方法生长InGaN功能层3;
(2)在InGaN功能层3上表面进行光刻,在InGaN功能层3上表面匀胶、烘干40 s、曝光5s、显影40 s和氧离子处理2 min,确定电极形状,如图2所示,所述电极为叉指电极,通过蒸镀工艺将Ni/Au金属层电极4蒸镀在InGaN功能层3上表面。
采用MOCVD方法在衬底上从下到上依次外延生长AlN层、AlGaN层和GaN层的温度分别为1000℃、1000℃和900℃。采用PLD方法生长 InGaN功能层时温度为400℃,激光能量为2J/cm2。电极的蒸镀速率为0.18 nm/min。
将制备得到的Si 衬底InGaN可见光探测器进行测试。
图3为本实施例所得Si 衬底InGaN可见光探测器的X射线衍射图谱,可见,通过MOCVD 高温外延方法再结合 PLD 低温外延方法,在Si衬底上生长出质量较好的AlN/AlGaN/GaN 缓冲层和质量较好的InGaN功能层。
图4为本实施例所得Si 衬底InGaN可见光探测器所测得的PL曲线。由曲线可看出,实施例所得Si 衬底InGaN可见光探测器在396 nm波段有明显的波峰,说明该探测器在紫光波段范围都有较好的响应。
图7为本实施例所得Si 衬底InGaN可见光探测器所测得的光电流曲线。由曲线可看出,实施例所得Si 衬底InGaN可见光探测器在398 nm波段有明显的波峰,光电流为0.07076 A。测试表明该光电探测器在紫光波段范围有高的光电流,说明该光电探测器有较高的灵敏度。
图10为本实施例所得Si 衬底InGaN可见光探测器的暗电流曲线,由图可见,制作电极为肖特基接触,暗电流达到10-7A,说明载流子注入效率高,该探测器外延在可见光波段拥有高速的响应。
实施例2
本实施例提供了一种Si 衬底InGaN可见光探测器,如图1所示,包括从下到上依次排布的Si衬底1、缓冲层2和InGaN功能层3,InGaN功能层3的上表面连接Ni/Au金属层电极4,所述缓冲层2为从下到上依次排布的AlN层、AlGaN层和GaN层。缓冲层2中AlN层、AlGaN层和GaN层的厚度分别为250 nm、550 nm、2.5 μm。InGaN功能层3的厚度为12.5 nm;InGaN功能层3中In组分的摩尔分数为24%。Ni/Au金属层电极4中Ni金属层的厚度为90nm,Au金属层的厚度为90nm。
本实施例还提供了所述Si 衬底InGaN可见光探测器的制备方法,包括如下步骤:
(1)在Si衬底1上采用MOCVD方法外延生长缓冲层2,在缓冲层2上采用PLD方法生长InGaN功能层3;
(2)在InGaN功能层3上表面进行光刻,在InGaN功能层3上表面匀胶、烘干45 s、曝光7s、显影47 s和氧离子处理2.5 min,确定电极形状,如图2所示,并通过蒸镀工艺将Ni/Au金属层电极4蒸镀在InGaN功能层3上表面。
采用MOCVD方法在衬底上从下到上依次外延生长AlN层、AlGaN层和GaN层的温度分别为1050℃、1050℃和950℃。采用PLD方法生长 InGaN功能层时温度为250℃。激光能量为3J/cm2, 电极的蒸镀速率为0.20 nm/min。
将制备得到的Si 衬底InGaN可见光探测器进行测试。
本实施例制备的Si 衬底InGaN可见光探测器的性能测试效果与实施例相似,具体性能可参照实施例1的相应描述和附图。
图5为本实施例所得Si 衬底InGaN可见光探测器所测得的PL曲线。由曲线可看出,该实施例所得Si 衬底InGaN可见光探测器在456 nm波段有明显的波峰,说明该探测器在蓝光波段范围有较高的响应。
图8为本实施例所得Si 衬底InGaN可见光探测器所测得的光电流曲线。由曲线可看出,实施例所得Si 衬底InGaN可见光探测器在457 nm波段有明显的波峰,光电流为0.07061 A。测试表明该光电探测器在蓝光波段范围有较高的光电流,说明该光电探测器有较高的灵敏度。
实施例3
本实施例提供了一种Si 衬底InGaN可见光探测器,如图1所示,包括从下到上依次排布的Si衬底1、缓冲层2和InGaN功能层3,InGaN功能层3的上表面连接Ni/Au金属层电极4,所述缓冲层2为从下到上依次排布的AlN层、AlGaN层和GaN层。缓冲层2中AlN层、AlGaN层和GaN层的厚度分别为300 nm、600 nm、3 μm。InGaN功能层3的厚度为15 nm;InGaN功能层3中In组分的摩尔分数为56%。Ni/Au金属层电极4中Ni金属层的厚度为100nm,Au金属层的厚度为100nm。
本实施例还提供了所述Si 衬底InGaN可见光探测器的制备方法,包括如下步骤:
(1)在Si衬底1上采用MOCVD方法外延生长缓冲层2,在缓冲层2上采用PLD方法生长InGaN功能层3;
(2)在InGaN功能层3上表面进行光刻,在InGaN功能层3上表面匀胶、烘干50 s、曝光10s、显影50 s和氧离子处理3 min,确定电极形状,如图2所示,并通过蒸镀工艺将Ni/Au金属层电极4蒸镀在InGaN功能层3上表面。
采用MOCVD方法在衬底上从下到上依次外延生长AlN层、AlGaN层和GaN层的温度分别为1100℃、1100℃和1000℃。采用PLD方法生长 InGaN功能层时温度为200℃,激光能量为5 J/cm2。电极的蒸镀速率为0.225 nm/min。
将制备得到的Si衬底InGaN可见光探测器进行测试。
本实施例制备的Si衬底InGaN可见光探测器的性能测试效果与实施例相似,具体性能可参照实施例1的相应描述和附图。
图6为本实施例所得Si 衬底InGaN可见光探测器所测得的PL曲线。由曲线可看出,实施例所得Si 衬底InGaN可见光探测器在654 nm波段有明显的波峰,说明该探测器在红光波段范围都有较高的响应。这说明该探测器在可见光波段拥有高带宽。
图9为本实施例所得Si 衬底InGaN可见光探测器所测得的光电流曲线。由曲线可看出,实施例所得Si 衬底InGaN可见光探测器在658 nm波段有明显的波峰,光电流为0.07053 A。测试表明该光电探测器在红光波段范围具有高的光电流,说明该光电探测器有较高的灵敏度。
通过上述三个实施例可以看出,该探测器在可见光波段范围都有较高的响应。这说明该探测器在可见光波段拥有较高的带宽和灵敏度。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.Si 衬底InGaN可见光探测器,其特征在于,包括从下到上依次排布的Si衬底、缓冲层、InGaN功能层和Ni/Au金属层电极,所述缓冲层为从下到上依次排布的AlN层、AlGaN层和GaN层,InGaN功能层中In组分的摩尔分数为10~60%。
2.根据权利要求1所述的Si 衬底InGaN可见光探测器,其特征在于,缓冲层中AlN层、AlGaN层和GaN层的厚度分别为200~300 nm、500~600 nm、2~3 μm。
3.根据权利要求1所述的Si 衬底InGaN可见光探测器,其特征在于,InGaN功能层的厚度为10~15 nm。
4.根据权利要求1所述的Si 衬底InGaN可见光探测器,其特征在于,Ni/Au金属层电极为叉指电极;Ni/Au金属层电极中Ni金属层的厚度为80~100nm,Au金属层的厚度为80~100nm。
5.制备权利要求1至4任一项所述Si 衬底InGaN可见光探测器的方法,其特征在于,包括如下步骤:
(1)在Si衬底上采用MOCVD方法外延生长缓冲层,在缓冲层上采用PLD方法生长 InGaN功能层;
(2)在InGaN功能层上表面进行光刻,在InGaN功能层上表面匀胶、烘干、曝光、显影和氧离子处理,确定电极形状,并通过蒸镀工艺将Ni/Au金属层电极蒸镀在InGaN功能层上表面。
6.权利要求5所述的制备Si 衬底InGaN可见光探测器的方法,其特征在于,采用MOCVD方法在Si衬底上从下到上依次外延生长AlN层、AlGaN层和GaN层的温度分别为1000~1100℃、1000~1100℃和900~1050℃。
7.权利要求5所述的制备Si 衬底InGaN可见光探测器的方法,其特征在于,采用PLD方法生长 InGaN功能层时温度为200~400℃,激光能量为2~5 J/cm2
8.权利要求5所述的制备Si 衬底InGaN可见光探测器的方法,其特征在于,电极的蒸镀速率为0.18~0.225 nm/min。
9.权利要求5所述的制备Si 衬底InGaN可见光探测器的方法,其特征在于,烘干时间为40-50 s,曝光时间为5-10 s,显影时间为40-50 s,氧离子处理时间为2~3 min。
10.权利要求1所述的Si 衬底InGaN可见光探测器在可见光探测中的应用。
CN201910696574.XA 2019-07-30 2019-07-30 Si衬底InGaN可见光探测器及制备方法与应用 Pending CN110444626A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910696574.XA CN110444626A (zh) 2019-07-30 2019-07-30 Si衬底InGaN可见光探测器及制备方法与应用
PCT/CN2020/106015 WO2021018261A1 (zh) 2019-07-30 2020-07-30 Si衬底InGaN可见光探测器及制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910696574.XA CN110444626A (zh) 2019-07-30 2019-07-30 Si衬底InGaN可见光探测器及制备方法与应用

Publications (1)

Publication Number Publication Date
CN110444626A true CN110444626A (zh) 2019-11-12

Family

ID=68432379

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910696574.XA Pending CN110444626A (zh) 2019-07-30 2019-07-30 Si衬底InGaN可见光探测器及制备方法与应用

Country Status (2)

Country Link
CN (1) CN110444626A (zh)
WO (1) WO2021018261A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021018261A1 (zh) * 2019-07-30 2021-02-04 华南理工大学 Si衬底InGaN可见光探测器及制备方法与应用
CN113972293A (zh) * 2021-09-26 2022-01-25 华南理工大学 一种二硒化钼/InGaN多光谱光电探测器及其制备方法与应用
CN113972294A (zh) * 2021-09-26 2022-01-25 华南理工大学 一种碳化钛/InGaN异质结蓝光探测器及其制备方法
CN114551616A (zh) * 2022-01-13 2022-05-27 华南理工大学 一种InGaN可见光探测器及其制备方法和应用
CN114883433A (zh) * 2022-04-07 2022-08-09 华南理工大学 一种InGaN可见光探测器及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1598502A (zh) * 2003-09-18 2005-03-23 中国科学院上海技术物理研究所 氮化镓基可见/紫外双色光电探测器
CN105405915A (zh) * 2015-12-04 2016-03-16 华南理工大学 一种InGaN基蓝光探测器及其制备方法
CN105742377A (zh) * 2016-02-22 2016-07-06 中山大学 一种具有带通滤波功能的可见光通信用光电探测器
CN107482070A (zh) * 2017-07-17 2017-12-15 中山大学 一种凹槽型电极结构的InGaN基MSM可见光光电探测器
CN109686809A (zh) * 2018-12-25 2019-04-26 中山大学 一种iii族氮化物半导体可见光雪崩光电探测器及制备方法
CN212011003U (zh) * 2019-07-30 2020-11-24 华南理工大学 一种Si衬底InGaN可见光探测器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102254965A (zh) * 2011-07-21 2011-11-23 天津理工大学 一种n-p-衬底型铟镓氮多层薄膜结构光伏器件及制备
US8937298B2 (en) * 2011-10-24 2015-01-20 Rosestreet Labs, Llc Structure and method for forming integral nitride light sensors on silicon substrates
CN108231924A (zh) * 2018-02-28 2018-06-29 华南理工大学 生长在r面蓝宝石衬底上的非极性AlGaN基MSM型紫外探测器及其制备方法
CN109473518A (zh) * 2018-10-31 2019-03-15 华灿光电(苏州)有限公司 一种氮化镓基发光二极管外延片及其制作方法
CN110444626A (zh) * 2019-07-30 2019-11-12 华南理工大学 Si衬底InGaN可见光探测器及制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1598502A (zh) * 2003-09-18 2005-03-23 中国科学院上海技术物理研究所 氮化镓基可见/紫外双色光电探测器
CN105405915A (zh) * 2015-12-04 2016-03-16 华南理工大学 一种InGaN基蓝光探测器及其制备方法
CN105742377A (zh) * 2016-02-22 2016-07-06 中山大学 一种具有带通滤波功能的可见光通信用光电探测器
CN107482070A (zh) * 2017-07-17 2017-12-15 中山大学 一种凹槽型电极结构的InGaN基MSM可见光光电探测器
CN109686809A (zh) * 2018-12-25 2019-04-26 中山大学 一种iii族氮化物半导体可见光雪崩光电探测器及制备方法
CN212011003U (zh) * 2019-07-30 2020-11-24 华南理工大学 一种Si衬底InGaN可见光探测器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021018261A1 (zh) * 2019-07-30 2021-02-04 华南理工大学 Si衬底InGaN可见光探测器及制备方法与应用
CN113972293A (zh) * 2021-09-26 2022-01-25 华南理工大学 一种二硒化钼/InGaN多光谱光电探测器及其制备方法与应用
CN113972294A (zh) * 2021-09-26 2022-01-25 华南理工大学 一种碳化钛/InGaN异质结蓝光探测器及其制备方法
WO2023045171A1 (zh) * 2021-09-26 2023-03-30 华南理工大学 一种二硒化钼/InGaN多光谱光电探测器及其制备方法与应用
WO2023045172A1 (zh) * 2021-09-26 2023-03-30 华南理工大学 一种碳化钛/InGaN异质结蓝光探测器及其制备方法
CN114551616A (zh) * 2022-01-13 2022-05-27 华南理工大学 一种InGaN可见光探测器及其制备方法和应用
CN114883433A (zh) * 2022-04-07 2022-08-09 华南理工大学 一种InGaN可见光探测器及其制备方法和应用

Also Published As

Publication number Publication date
WO2021018261A1 (zh) 2021-02-04

Similar Documents

Publication Publication Date Title
CN110444626A (zh) Si衬底InGaN可见光探测器及制备方法与应用
CA1136745A (en) Optical energy conversion
CN109004057B (zh) 基于非晶氮化物薄膜的宽谱光电探测器件及其制备方法
CN110459628A (zh) 一种多量子阱蓝光探测器及制备方法与应用
CN109980040A (zh) 一种氧化镓mis结构紫外探测器
CN108305911A (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
CN109698250B (zh) 栅极调控AlGaN基金属-半导体-金属紫外探测器及制备方法
CN102176489A (zh) 晶格匹配体系上裁剪带隙波长提高光电探测器性能的方法
Liu et al. High-detectivity and sensitive UVA photodetector of polycrystalline CH3NH3PbCl3 improved by α-Ga2O3 nanorod array
CN114220920A (zh) 一种量子点红外探测器及其制备方法
CN105355701B (zh) 一种新型的光电导探测器
CN102931272A (zh) 一种具有增益的紫外探测器结构及其制备方法
CN113972294A (zh) 一种碳化钛/InGaN异质结蓝光探测器及其制备方法
CN212011003U (zh) 一种Si衬底InGaN可见光探测器
Cai et al. Performance modulation for back-illuminated AlGaN ultraviolet avalanche photodiodes based on multiplication scaling
CN112420876B (zh) 一种从日盲紫外到近红外的宽波段探测器的制备方法
CN116799092A (zh) 一种基于氧化镓基的日盲紫外探测器及其制备方法
CN111900253A (zh) 一种基于钙钛矿的新型异质结光电器件及其制备方法
CN106653893A (zh) 基于多孔氮化镓的紫外光电探测器及制备方法
Vigué et al. High detectivity ZnSe-based Schottky barrier photodetectors for blue and near-ultraviolet spectral range
CN210607284U (zh) 一种多量子阱蓝光探测器
Mosca et al. Effects of the buffer layers on the performance of (Al, Ga) N ultraviolet photodetectors
CN209675319U (zh) 一种氧化镓mis结构紫外探测器
CN113972293B (zh) 一种二硒化钼/InGaN多光谱光电探测器及其制备方法与应用
Zhang et al. High-Performance β-Ga 2 O 3 MISIM Solar-Blind Photodetectors with An Interfacial AlN Layer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination