CN105405915A - 一种InGaN基蓝光探测器及其制备方法 - Google Patents

一种InGaN基蓝光探测器及其制备方法 Download PDF

Info

Publication number
CN105405915A
CN105405915A CN201510891176.5A CN201510891176A CN105405915A CN 105405915 A CN105405915 A CN 105405915A CN 201510891176 A CN201510891176 A CN 201510891176A CN 105405915 A CN105405915 A CN 105405915A
Authority
CN
China
Prior art keywords
layer
ingan
thickness
micron
blue light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510891176.5A
Other languages
English (en)
Other versions
CN105405915B (zh
Inventor
李国强
张子辰
林志霆
陈淑琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201510891176.5A priority Critical patent/CN105405915B/zh
Publication of CN105405915A publication Critical patent/CN105405915A/zh
Application granted granted Critical
Publication of CN105405915B publication Critical patent/CN105405915B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种InGaN基蓝光探测器,包括衬底层,所述衬底层之上依次设有AlN层、非掺杂GaN层、Si掺杂的n-InGaN层;所述Si掺杂的n-InGaN层的一侧表面上覆盖有i-InGaN层,另一侧表面覆盖有第一Au层;所述i-InGaN层的一部分表面覆盖有SiO2层,另一部分表面覆盖有第二Au层;所述SiO2层的上方设有第三Au层,所述第三Au层覆盖第二Au层的部分或全部表面;所述衬底层的下表面覆盖有Ag层。本发明还公开了上述InGaN基蓝光探测器的制备方法。本发明的InGaN基蓝光探测器,提高了探测器在蓝光波段峰值的外量子效率。

Description

一种InGaN基蓝光探测器及其制备方法
技术领域
本发明涉及探测器的技术领域,特别涉及一种InGaN基蓝光探测器及其制备方法。
背景技术
可见光通信是照明与无线光通信交叉的前沿技术,既能照明又能实现绿色通信,还能缓解无线通信频谱资源短缺的困境,势将引起照明产业的深刻变革。实现无线光电通信在大容量移动通信、国防安全、智慧城市等国家重大需求应用上的产业化,推进无线光通信标准化,在激烈的国际竞争中争得话语权,抢占在国际新一代无线通信技术发展与应用中的学术和标准制高点。目前,用于可见光通信的探测器在灵敏度、响应速率及带宽存在明显的缺陷,作为信号接收端,传统的光电探测器已经难以满足技术提升的需要。因此,研究具有高速接收能力的探测器对保护民族可见光通信具有重要的战略意义。
现有的光探测器以Si基雪崩二极管探测器为主,其发展较早、制备工艺成熟且可探测较宽波段内的电磁波,基本满足可见光通信领域技术需求。然而Si基雪崩二极管是由表面或者纵向的PIN结构制备,其内部电流是由非平衡载流子的积累产生的电荷存储效应造成的,从本质上就存在响应时间长的缺点;其次由于Si本身的禁带宽度较窄,很难对蓝光波段的可见光进行有效的吸收;另外Si作为半导体材料对电磁波的吸收宽度很广,探测器识别和编译的调制光会有很大的噪声,为了避免这种噪声往往需要加入一层滤波片来过滤掉长波段的电磁波。因此,迫切需要设计一种针对蓝光波段的可见光探测器。
发明内容
为了克服现有技术的上述缺点与不足,本发明的目的在于一种InGaN基蓝光探测器,提高了探测器在蓝光波段峰值的外量子效率。
本发明的另一目的在于提供上述InGaN基蓝光探测器的制备方法。
本发明的目的通过以下技术方案实现:
一种InGaN基蓝光探测器,包括衬底层,所述衬底层之上依次设有AlN层、非掺杂GaN层、Si掺杂的n-InGaN层;所述Si掺杂的n-InGaN层的一侧表面上覆盖有i-InGaN层,另一侧表面覆盖有第一Au层;所述i-InGaN层的一部分表面覆盖有SiO2层,另一部分表面覆盖有第二Au层;所述SiO2层的上方设有第三Au层,所述第三Au层覆盖第二Au层的部分或全部表面;所述衬底层的下表面覆盖有Ag层。
所述Ag层的厚度为1~3微米;所述衬底层的厚度为320~430微米;所述AlN层的厚度为100~200纳米;所述非掺杂GaN层的厚度为1~3微米;所述Si掺杂的n-InGaN层的厚度为1~3微米;所述i-InGaN层的厚度为1~3微米;所述第一Au层的厚度为1~3微米;所述第二Au层的厚度为10~50纳米;所述第三Au层的厚度为1~3微米;所述SiO2层的厚度与第二Au层的厚度相同。
所述衬底层为蓝宝石、Si、LiGaO3或La0.3Sr1.7AlTaO6衬底。
所述的InGaN基蓝光探测器的制备方法,包括以下步骤:
(1)在500~600℃的温度下,使用磁控溅射或者蒸镀的方法,在衬底层下表面镀一层银层,作为探测器镜子层;
(2)使用金属有机化合物化学气相沉积法在衬底层之上依次生长AlN层、非掺杂GaN层、Si掺杂的n-InGaN层、i-InGaN层;
其中,AlN层的生长温度为1000~1100℃;
非掺杂GaN层的生长温度为1050~1150℃,N源与Ga源比例为1000~2000;
Si掺杂的n-InGaN层的生长温度为950~1050℃,N源与Ga源比例为5000~10000;
i-InGaN层的生长温度为950~1050℃;
(3)使用掩膜版遮住i-InGaN层的左侧,在500~600℃的温度下,使用脉冲激光沉积方法在i-InGaN层上沉积第二Au层;随后,使用掩膜版遮住已沉积的第二Au层,在800~900℃的温度下,使用等离子体增强化学气相沉积方法在i-InGaN层上沉积与第二Au同等厚度的SiO2层,用做绝缘保护;
(4)使用掩膜版遮住第二Au层的右侧,在500~600℃的温度下,使用磁控溅射或蒸镀的方法,在SiO2层和第二Au层的表面生长第三Au层;
(5)使用掩膜版遮住第三Au层,在200℃的温度下,使用感应耦合等离子体刻蚀方法将第二Au层、i-InGaN层的右侧刻蚀掉,随后在500~600℃的温度下,使用磁控溅射或蒸镀的方法在探测器右侧生长第一Au层,作为正电极并形成欧姆接触。
所述Ag层的厚度为1~3微米;所述衬底层的厚度为320~430微米;所述AlN层的厚度为100~200纳米;所述非掺杂GaN层的厚度为1~3微米;所述Si掺杂的n-InGaN层的厚度为1~3微米;所述i-InGaN层的厚度为1~3微米;所述第一Au层的厚度为1~3微米;所述第二Au层的厚度为10~50纳米;所述第三Au层的厚度为1~3微米;所述SiO2层的厚度与第二Au层的厚度相同。
所述衬底层为蓝宝石、Si、LiGaO3或La0.3Sr1.7AlTaO6衬底。
本发明的原理如下:本发明使用InGaN材料制备“金属-i层-n层”结构的金属半导体光电二极管,在电极中一端制备肖特基接触,形成肖特基势垒二极管,另一端形成欧姆接触,提高了探测器的蓝光波段峰值外量子效率。
与现有技术相比,本发明具有以下优点和有益效果:
(1)本发明采用了金属-半导体结构,相对于传统的PIN结构,金属和半导体界面产生了肖特基接触,有效避免了电荷存储效应,其制备的探测器响应速度快于PIN结构。
(2)本发明采用了InGaN材料作为吸收材料,因为InGaN的禁带宽度可以根据In组分的不同从0.77eV到3.42eV之间连续变化,可以对波长为362nm到1610nm的光进行有效的吸收和调制。
(3)本发明采用含有特定In含量的InGaN材料,可以对蓝光波段进行直接有效的吸收和调制,因此也不需要对探测器额外添加滤波片等装置。
(4)本发明提高了探测器在蓝光波段峰值外量子效率。
附图说明
图1为本发明的实施例的InGaN基蓝光探测器的示意图,1是Ag层,2是蓝宝石衬底层,3是AlN层,4是非掺杂GaN层层,5是Si掺杂的n-InGaN层层,6是i-InGaN层,7是第一Au层,8是第二Au层,9是SiO2层,10是第三Au层。
图2为本发明的实施例1的InGaN基蓝光探测器的外量子效率图。
图3为本发明的实施例2的InGaN基蓝光探测器的外量子效率图。
图4为本发明的实施例2的i-InGaN层的XRD图。
具体实施方式
下面结合实施例,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例1
本实施例的InGaN基蓝光探测器的制备方法,包括以下步骤:
(1)在500℃的温度下,使用磁控溅射或者蒸镀的方法,在蓝宝石衬底背面镀一层厚度为1微米的银层,作为探测器镜子层,可将进入探测器但未被吸收的光反射回表面进行多次吸收,从而提高量子效率。
(2)使用金属有机化合物化学气相沉积(MOCVD)的方法在蓝宝石衬底正面依次在1000℃下生长厚度为100纳米的氮化铝(AlN)薄膜;在1050℃下厚度为1微米的非掺杂氮化镓(u-GaN)层,其N源比Ga源比例为1000;在950℃下厚度为1微米的硅(Si)掺杂电子型铟镓氮(n-InGaN)层,其N源比Ga源比例为5000;950℃下厚度为100纳米厚的本征铟镓氮(i-InGaN)层。
(3)使用掩膜版遮住i-InGaN层的左侧探测器左侧,然后在500℃的温度下,使用脉冲激光沉积(PLD)方法沉积一层厚度为10纳米的第二Au层,用以形成肖特基接触,从而在金属和半导体界面处形成肖特基势垒。薄的Au层可以保证蓝光有效穿过金属层到达半导体表面。
随后,使用掩膜版遮住已沉积的第二Au层,在800℃的温度下,使用等离子体增强化学气相沉积(PECVD)方法沉积同等厚度的SiO2层,用做绝缘保护。
(4)使用掩膜版遮住第二Au层的右侧,在500℃的温度下,使用磁控溅射或蒸镀的方法生长一层厚度为1微米的第三Au层,用作负电极。
(5)使用掩膜版遮住第三Au层,在200℃左右的温度下,使用感应耦合等离子体刻蚀(ICP)方法将探测器刻蚀至n-InGaN层。随后在500℃的温度下,使用磁控溅射或蒸镀的方法在探测器右侧生长一层厚度为1微米的第一Au层,作为正电极并形成欧姆接触。
如图1所示,本实施例制备的InGaN基蓝光探测器包括蓝宝石衬底层2,所述蓝宝石衬底层2之上依次设有AlN层3、非掺杂GaN层4、Si掺杂的n-InGaN层5;所述Si掺杂的n-InGaN层的左侧表面上覆盖有i-InGaN层6,右侧表面覆盖有第一Au层7;所述i-InGaN层的一部分表面覆盖有SiO2层8,另一部分表面覆盖有第二Au层9;所述SiO2层8的上方设有第三Au层10,所述第三Au层10覆盖第二Au层9的部分或全部表面;所述衬底层的下表面覆盖有Ag层1。
本实施例制备的InGaN基蓝光探测器的外量子效率数据见图2,由图可知,探测器在蓝光波段的外量子效率为45%。
实施例2
本实施例的InGaN基蓝光探测器的制备方法,包括以下步骤:
(1)在600℃的温度下,使用磁控溅射或者蒸镀的方法,在蓝宝石衬底背面镀一层厚度为3微米的银层,作为探测器镜子层,可将进入探测器但未被吸收的光反射回表面进行多次吸收,从而提高量子效率。
(2)使用金属有机化合物化学气相沉积(MOCVD)的方法在蓝宝石衬底正面依次在1100℃下生长厚度为200纳米的氮化铝(AlN)薄膜;在1150℃下厚度为3微米的非掺杂氮化镓(u-GaN)层,其N源比Ga源比例为2000;在1050℃下生长厚度为3微米的硅(Si)掺杂电子型铟镓氮(n-InGaN)层,其N源比Ga源比例为10000;在1050℃下生长厚度为1000纳米厚的本征铟镓氮(i-InGaN)层。
(3)使用掩膜版遮住i-InGaN层的左侧探测器左侧,然后在600℃的温度下,使用脉冲激光沉积(PLD)方法沉积一层厚度为50纳米的第二Au层,用以形成肖特基接触,从而在金属和半导体界面处形成肖特基势垒。薄的Au层可以保证蓝光有效穿过金属层到达半导体表面。
随后,使用掩膜版遮住已沉积的第二Au层,在900℃的温度下,使用等离子体增强化学气相沉积(PECVD)方法沉积同等厚度的SiO2层,用做绝缘保护。
(4)使用掩膜版遮住第二Au层的右侧,在600℃的温度下,使用磁控溅射或蒸镀的方法生长一层厚度为3微米的第三Au层,用作负电极。
(5)使用掩膜版遮住第三Au层,在200℃左右的温度下,使用感应耦合等离子体刻蚀(ICP)方法将探测器刻蚀至n-InGaN层。随后在600℃的温度下,使用磁控溅射或蒸镀的方法在探测器右侧生长一层厚度为3微米的第一Au层,作为正电极并形成欧姆接触。
本实施例制备的InGaN基蓝光探测器的外量子效率数据见图3,由图可知,探测器在蓝光波段的外量子效率为60%。
本实施例制备的i-InGaN层的XRD图数据见图4,由图可见,θ=33°的InGaN峰以及2θ=35°的GaN峰。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,如,所述衬底层还可为Si、LiGaO3、La0.3Sr1.7AlTaO6衬底或其他衬底,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (6)

1.一种InGaN基蓝光探测器,其特征在于,包括衬底层,所述衬底层之上依次设有AlN层、非掺杂GaN层、Si掺杂的n-InGaN层;所述Si掺杂的n-InGaN层的一侧表面上覆盖有i-InGaN层,另一侧表面覆盖有第一Au层;所述i-InGaN层的一部分表面覆盖有SiO2层,另一部分表面覆盖有第二Au层;所述SiO2层的上方设有第三Au层,所述第三Au层覆盖第二Au层的部分或全部表面;所述衬底层的下表面覆盖有Ag层。
2.根据权利要求1所述的InGaN基蓝光探测器,其特征在于,所述Ag层的厚度为1~3微米;所述衬底层的厚度为320~430微米;所述AlN层的厚度为100~200纳米;所述非掺杂GaN层的厚度为1~3微米;所述Si掺杂的n-InGaN层的厚度为1~3微米;所述i-InGaN层的厚度为1~3微米;所述第一Au层的厚度为1~3微米;所述第二Au层的厚度为10~50纳米;所述第三Au层的厚度为1~3微米;所述SiO2层的厚度与第二Au层的厚度相同。
3.根据权利要求1所述的InGaN基蓝光探测器,其特征在于,所述衬底层为蓝宝石、Si、LiGaO3或La0.3Sr1.7AlTaO6衬底。
4.权利要求1所述的InGaN基蓝光探测器的制备方法,其特征在于,包括以下步骤:
(1)在500~600℃的温度下,使用磁控溅射或者蒸镀的方法,在衬底层下表面镀一层银层,作为探测器镜子层;
(2)使用金属有机化合物化学气相沉积法在衬底层之上依次生长AlN层、非掺杂GaN层、Si掺杂的n-InGaN层、i-InGaN层;
其中,AlN层的生长温度为1000~1100℃;
非掺杂GaN层的生长温度为1050~1150℃,N源与Ga源比例为1000~2000;
Si掺杂的n-InGaN层的生长温度为950~1050℃,N源与Ga源比例为5000~10000;
i-InGaN层的生长温度为950~1050℃;
(3)使用掩膜版遮住i-InGaN层的左侧,在500~600℃的温度下,使用脉冲激光沉积方法在i-InGaN层上沉积第二Au层;随后,使用掩膜版遮住已沉积的第二Au层,在800~900℃的温度下,使用等离子体增强化学气相沉积方法在i-InGaN层上沉积与第二Au同等厚度的SiO2层,用做绝缘保护;
(4)使用掩膜版遮住第二Au层的右侧,在500~600℃的温度下,使用磁控溅射或蒸镀的方法,在SiO2层和第二Au层的表面生长第三Au层;
(5)使用掩膜版遮住第三Au层,在200℃的温度下,使用感应耦合等离子体刻蚀方法将第二Au层、i-InGaN层的右侧刻蚀掉,随后在500~600℃的温度下,使用磁控溅射或蒸镀的方法在探测器右侧生长第一Au层,作为正电极并形成欧姆接触。
5.根据权利要求4所述的InGaN基蓝光探测器的制备方法,其特征在于,所述Ag层的厚度为1~3微米;所述衬底层的厚度为320~430微米;所述AlN层的厚度为100~200纳米;所述非掺杂GaN层的厚度为1~3微米;所述Si掺杂的n-InGaN层的厚度为1~3微米;所述i-InGaN层的厚度为1~3微米;所述第一Au层的厚度为1~3微米;所述第二Au层的厚度为10~50纳米;所述第三Au层的厚度为1~3微米;所述SiO2层的厚度与第二Au层的厚度相同。
6.根据权利要求4所述的InGaN基蓝光探测器的制备方法,其特征在于,所述衬底层为蓝宝石、Si、LiGaO3或La0.3Sr1.7AlTaO6衬底。
CN201510891176.5A 2015-12-04 2015-12-04 一种InGaN基蓝光探测器及其制备方法 Active CN105405915B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510891176.5A CN105405915B (zh) 2015-12-04 2015-12-04 一种InGaN基蓝光探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510891176.5A CN105405915B (zh) 2015-12-04 2015-12-04 一种InGaN基蓝光探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN105405915A true CN105405915A (zh) 2016-03-16
CN105405915B CN105405915B (zh) 2017-03-22

Family

ID=55471293

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510891176.5A Active CN105405915B (zh) 2015-12-04 2015-12-04 一种InGaN基蓝光探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN105405915B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106528973A (zh) * 2016-10-31 2017-03-22 华南理工大学 一种可见光蓝光探测器的模型的设计方法
CN106653896A (zh) * 2017-01-04 2017-05-10 广东省半导体产业技术研究院 一种用于可见光通信的InGaN量子点光电探测器及其制备方法
CN108321222A (zh) * 2018-03-21 2018-07-24 华南理工大学 一种AlGaP基紫外探测器及其制备方法
CN110444626A (zh) * 2019-07-30 2019-11-12 华南理工大学 Si衬底InGaN可见光探测器及制备方法与应用
WO2021018307A1 (zh) * 2019-07-31 2021-02-04 华南理工大学 一种多量子阱蓝光探测器及制备方法与应用
CN113972290A (zh) * 2021-09-26 2022-01-25 华南理工大学 一种NiO/多孔GaN谐振腔InGaN蓝光探测器及其制备方法
CN114744061A (zh) * 2022-03-29 2022-07-12 华南理工大学 一种蓝光探测器及其制备方法和应用
WO2023045171A1 (zh) * 2021-09-26 2023-03-30 华南理工大学 一种二硒化钼/InGaN多光谱光电探测器及其制备方法与应用
WO2023108862A1 (zh) * 2021-12-14 2023-06-22 华南理工大学 一种用于可见光通信的芯片及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040111208A (ko) * 2004-07-23 2004-12-31 (주)제니컴 자외선 감지용 반도체 소자 및 이의 제조방법
CN1753191A (zh) * 2004-09-23 2006-03-29 璨圆光电股份有限公司 基于氮化镓半导体的紫外线光检测器
CN102290478A (zh) * 2011-09-05 2011-12-21 中国电子科技集团公司第十八研究所 一种p-i-n型单结InGaN太阳能电池
CN103165775A (zh) * 2013-04-07 2013-06-19 中国科学院半导体研究所 一种具有高反射薄膜的紫外发光二极管及其制作方法
CN205211779U (zh) * 2015-12-04 2016-05-04 华南理工大学 一种InGaN基蓝光探测器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040111208A (ko) * 2004-07-23 2004-12-31 (주)제니컴 자외선 감지용 반도체 소자 및 이의 제조방법
CN1753191A (zh) * 2004-09-23 2006-03-29 璨圆光电股份有限公司 基于氮化镓半导体的紫外线光检测器
CN102290478A (zh) * 2011-09-05 2011-12-21 中国电子科技集团公司第十八研究所 一种p-i-n型单结InGaN太阳能电池
CN103165775A (zh) * 2013-04-07 2013-06-19 中国科学院半导体研究所 一种具有高反射薄膜的紫外发光二极管及其制作方法
CN205211779U (zh) * 2015-12-04 2016-05-04 华南理工大学 一种InGaN基蓝光探测器

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106528973A (zh) * 2016-10-31 2017-03-22 华南理工大学 一种可见光蓝光探测器的模型的设计方法
CN106653896A (zh) * 2017-01-04 2017-05-10 广东省半导体产业技术研究院 一种用于可见光通信的InGaN量子点光电探测器及其制备方法
CN108321222A (zh) * 2018-03-21 2018-07-24 华南理工大学 一种AlGaP基紫外探测器及其制备方法
CN108321222B (zh) * 2018-03-21 2023-07-18 华南理工大学 一种AlGaP基紫外探测器及其制备方法
CN110444626A (zh) * 2019-07-30 2019-11-12 华南理工大学 Si衬底InGaN可见光探测器及制备方法与应用
WO2021018261A1 (zh) * 2019-07-30 2021-02-04 华南理工大学 Si衬底InGaN可见光探测器及制备方法与应用
WO2021018307A1 (zh) * 2019-07-31 2021-02-04 华南理工大学 一种多量子阱蓝光探测器及制备方法与应用
CN113972290A (zh) * 2021-09-26 2022-01-25 华南理工大学 一种NiO/多孔GaN谐振腔InGaN蓝光探测器及其制备方法
WO2023045171A1 (zh) * 2021-09-26 2023-03-30 华南理工大学 一种二硒化钼/InGaN多光谱光电探测器及其制备方法与应用
WO2023108862A1 (zh) * 2021-12-14 2023-06-22 华南理工大学 一种用于可见光通信的芯片及其制备方法与应用
CN114744061A (zh) * 2022-03-29 2022-07-12 华南理工大学 一种蓝光探测器及其制备方法和应用
CN114744061B (zh) * 2022-03-29 2024-03-26 华南理工大学 一种蓝光探测器及其制备方法和应用

Also Published As

Publication number Publication date
CN105405915B (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
CN105405915A (zh) 一种InGaN基蓝光探测器及其制备方法
US10964829B2 (en) InGaN-based resonant cavity enhanced detector chip based on porous DBR
US8574939B2 (en) Semiconductor optoelectronics structure with increased light extraction efficiency and fabrication method thereof
US8791480B2 (en) Light emitting device and manufacturing method thereof
WO2008082097A1 (en) Light emitting device and fabrication method thereof
US10014442B2 (en) Method for manufacturing vertical type light emitting diode, vertical type light emitting diode, method for manufacturing ultraviolet ray light emitting diode, and ultraviolet ray light emitting diode
US9543467B2 (en) Light emitting device
CN103904174B (zh) 发光二极管芯片的制作方法
CN110518031B (zh) 同质集成光源、探测器和有源波导的通信芯片及制备方法
KR20090115906A (ko) 그룹 3족 질화물계 반도체 발광다이오드 소자를 위한 표면요철 형성 방법
CN110061107A (zh) 一种微米级二极管芯片及制备方法
US8592840B2 (en) Optoelectronic semiconductor chip and use of an intermediate layer based on AlGaN
WO2020011117A1 (zh) 一种提高光提取效率的紫外发光二极管芯片及其制作方法
CN205211779U (zh) 一种InGaN基蓝光探测器
CN103500783B (zh) 一种发光二极管芯片制作方法
CN110718614A (zh) 一种提高光提取效率的紫外发光二极管芯片及其制作方法
CN104659167A (zh) 一种高可靠性GaN基LED芯片及其制备方法
CN202134542U (zh) 具有二次台面包裹电极的AlGaN紫外探测器
CN208938998U (zh) 一种提高光提取效率的深紫外发光二极管芯片
WO2023108862A1 (zh) 一种用于可见光通信的芯片及其制备方法与应用
CN113875032B (zh) 一种发光二极管及制作方法
CN112151520B (zh) 具有单片集成结构的光电收发芯片、其制作方法与应用
CN109830579B (zh) 悬空绿光led单片集成装置及其制备方法
CN110993750B (zh) 垂直型发光二极管及其制造方法
CN202797053U (zh) 一种氮化镓发光二极管结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant