WO2021018307A1 - 一种多量子阱蓝光探测器及制备方法与应用 - Google Patents

一种多量子阱蓝光探测器及制备方法与应用 Download PDF

Info

Publication number
WO2021018307A1
WO2021018307A1 PCT/CN2020/106452 CN2020106452W WO2021018307A1 WO 2021018307 A1 WO2021018307 A1 WO 2021018307A1 CN 2020106452 W CN2020106452 W CN 2020106452W WO 2021018307 A1 WO2021018307 A1 WO 2021018307A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
quantum well
gan
blue light
ingan
Prior art date
Application number
PCT/CN2020/106452
Other languages
English (en)
French (fr)
Inventor
王文樑
李国强
孔德麒
杨昱辉
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2021018307A1 publication Critical patent/WO2021018307A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of visible light detectors, in particular to a multi-quantum well (MQW) blue light detector and a preparation method and application thereof.
  • MQW multi-quantum well
  • Group III nitride semiconductor materials have excellent optical, electrical, thermal, chemical, and mechanical properties. Therefore, Group III nitride optoelectronic devices and power devices have received extensive attention and key research from domestic and foreign researchers.
  • InGaN materials have good physical and chemical properties. It has high electron mobility, good thermal stability and good chemical stability.
  • the forbidden band width can be adjusted continuously from 3.4 eV to 0.7 eV, so that the InGaN detector can achieve continuous detection covering the entire visible light band.
  • the InGaN detector has the volume It is small, easy to carry, easy to integrate, high breakdown electric field (> 1 MV/cm), low working voltage, energy saving and environmental protection, and no filter system is needed.
  • the purpose of the present invention is to provide a multiple quantum well (MQW) blue light detector and a preparation method and application thereof, and the blue light detector is prepared by using GaN/InGaN multiple quantum well materials.
  • MQW multiple quantum well
  • the response time is determined by 500 ms is shortened to 300 ms; third, the GaN layer and the InGaN layer are grown alternately on the buffer layer for 6 to 8 cycles, and the thickness of the GaN layer is controlled at 12 to 15 nm, and the thickness of the InGaN layer is controlled at 3 ⁇ 5nm, so that there are more In-rich clusters on the surface of InGaN, so that blue light detectors made of GaN/InGaN multiple quantum well materials have higher quantum efficiency; fourth, through the AlN/AlGaN/GaN buffer layer, filter dislocations, Relieve the stress, reduce the defect density from 10 9 to 10 6 , and make the quality of the grown InGaN material better; Fifth, make Schottky contact electrodes through the Ti/Ni/Au metal layer, and the dark current is reduced from 10 -6 A As small as 10 -7 A, it enhances the carrier injection efficiency and reduces leakage.
  • the present invention provides a multiple quantum well blue light detector, which includes a substrate, a buffer layer, a GaN/InGaN multiple quantum well layer and a metal layer electrode arranged in sequence from bottom to top, and the buffer layer is arranged in sequence from bottom to top
  • the AlN layer, AlGaN layer and GaN layer, the GaN/InGaN multiple quantum well layer is a GaN layer and an InGaN layer grown alternately on the buffer layer.
  • the alternating growth period is 6 ⁇ 8, and the thickness of the GaN layer is 12 ⁇ 15 nm.
  • the thickness of the InGaN layer is 3 ⁇ 5nm.
  • the substrate is a Si substrate.
  • the thickness of the AlN layer, the AlGaN layer and the GaN layer are respectively 300 ⁇ 400 nm, 600 ⁇ 700 nm, 3 ⁇ 4 ⁇ m.
  • the shape of the electrode is an interdigital electrode;
  • the metal layer electrode is a Ti/Ni/Au metal layer, and the Ti/Ni/Au metal layer is a Ti metal layer, a Ni metal layer, and an Au metal layer arranged from bottom to top,
  • the thickness of the Ti metal layer is 20 to 30 nm, the thickness of the Ni metal layer is 100 to 110 nm, and the thickness of the Au metal layer is 100 to 110 nm.
  • the present invention also provides a method for preparing the multiple quantum well blue light detector, which includes the following steps:
  • the temperature at which the AlN layer, the AlGaN layer and the GaN layer are sequentially epitaxially grown on the substrate from bottom to top using the MOCVD method are 1100 ⁇ 1200°C, 1100 ⁇ 1200°C and 1000 ⁇ 1150°C, respectively.
  • the temperature at which the GaN/InGaN multiple quantum well layer is grown on the buffer layer by the MOCVD method is 600-750°C.
  • the drying time is 40-50 s
  • the exposure time is 5-10 s
  • the development time is 40-50 s
  • the oxygen ion treatment time is 2-3 min.
  • the evaporation rate of the metal layer electrode is 0.23 ⁇ 0.28 nm/min.
  • the invention also provides the application of the multi-quantum well blue light detector in blue light detection.
  • the present invention has the following beneficial effects and advantages:
  • a multi-quantum well blue light detector provided by the present invention first adopts MOCVD high-temperature epitaxy method grows AlN/AlGaN/GaN buffer layer on Si substrate, combined with MOCVD low-temperature epitaxy method, grows GaN/InGaN multiple quantum well layer on the buffer layer, and then through the photolithography evaporation process, the GaN/InGaN
  • the Ti/Ni/Au metal layer electrode is fabricated on the multiple quantum well layer to realize the GaN/InGaN multiple quantum well blue light detector.
  • the preparation method has the characteristics of simple process, time-saving, high-efficiency, and low energy consumption, which is conducive to large-scale production.
  • the multi-quantum-well blue light detector provided by the present invention realizes high-speed response in the blue band through the GaN/InGaN multi-quantum well layer; on this basis, the blue light detector and array structure are optimized to improve the response speed .
  • a multiple quantum well blue light detector provided by the present invention by optimizing the chip parameters of the detection device, the resulting multiple quantum well blue light detector has a higher quantum efficiency in the blue band;
  • the blue light-enhancing micro-nano structure design can effectively reduce the reflection loss of blue light on the surface, enhance the blue resonance absorption, and achieve high sensitivity and high bandwidth detection.
  • FIG. 1 is a schematic structural cross-sectional view of a multi-quantum well blue light detector provided by the present invention
  • FIG. 2 is a schematic top view of the electrode structure of the multiple quantum well blue light detector provided by the present invention.
  • Fig. 3 is an X-ray diffraction pattern of the multiple quantum well blue light detector prepared in embodiment 1;
  • Example 5 is a PL curve diagram of the multiple quantum well blue light detector prepared in Example 1;
  • Example 6 is a graph of the photocurrent curve of the multiple quantum well blue light detector prepared in Example 1;
  • Example 7 is a dark current curve diagram of the multiple quantum well blue light detector prepared in Example 1;
  • This embodiment provides a multiple quantum well blue light detector, as shown in FIG. 1, which includes a substrate 1, a buffer layer 2, and a GaN/InGaN multiple quantum well layer 3 arranged sequentially from bottom to top.
  • the upper surface of the quantum well layer 3 is connected to the metal layer electrode 4.
  • the buffer layer 2 is an AlN layer, an AlGaN layer and a GaN layer arranged from bottom to top.
  • the GaN/InGaN multiple quantum well layer 3 alternates on the buffer layer 2.
  • the alternate growth period of the grown GaN layer and InGaN layer is 6, the thickness of the GaN layer is 12 nm, and the thickness of the InGaN layer is 3 nm.
  • the substrate 1 is a Si substrate; the thickness of the AlN layer, the AlGaN layer and the GaN layer are 300 respectively nm, 600 nm, 3 ⁇ m.
  • the shape of the electrode is an interdigital electrode
  • the metal layer electrode 4 is a Ti/Ni/Au metal layer
  • the Ti/Ni/Au metal layer is a Ti metal layer, a Ni metal layer and a metal layer arranged from bottom to top.
  • the thickness of the Au metal layer, the Ti metal layer is 20 nm
  • the thickness of the Ni metal layer is 100 nm
  • the thickness of the Au metal layer is 100 nm.
  • This embodiment also provides a method for preparing the multiple quantum well blue light detector, which includes the following steps:
  • the temperature at which the AlN layer, the AlGaN layer, and the GaN layer are sequentially epitaxially grown on the substrate 1 by the MOCVD method from bottom to top are 1100°C, 1100°C, and 1000°C, respectively.
  • the temperature at which the GaN/InGaN multiple quantum well layer 3 is grown on the buffer layer 2 by the MOCVD method is 600°C.
  • the drying time is 40 s
  • the exposure time is 5 s
  • the development time is 40 s
  • the oxygen ion treatment time is 2 min.
  • the vapor deposition rate of the metal layer electrode 4 is 0.23 nm/min.
  • the multiple quantum well blue light detector prepared in this embodiment was tested.
  • Fig. 3 is the X-ray diffraction pattern of the multiple quantum well blue light detector obtained in this embodiment, and it can be seen that the peak positions of each thin film layer are very obvious. By comparing with the standard peaks, the test peak and the standard peak are basically coincident. It can be seen that through the MOCVD technology, a better quality AlN/AlGaN/GaN buffer layer is grown on the Si substrate, and a better quality GaN/InGaN multiple quantum well layer is grown on the buffer layer, and the InGaN surface has more rich In clusters.
  • Figure 4 is the TEM top view image of the multi-quantum-well blue light detector obtained in this embodiment. It can be clearly seen that the uniform and periodic GaN/InGaN multi-quantum well layer is grown on the buffer layer by the MOCVD technology, and the InGaN surface has More In-rich clusters.
  • FIG. 5 is the PL curve of the multiple quantum well blue light detector obtained in this embodiment. It can be seen from the curve that at 450 There is a very significant peak at nm. It shows that the detector has a higher quantum efficiency in the blue band, so it has a high-speed response in the blue band.
  • FIG. 6 is a photocurrent curve of the multi-quantum well blue light detector obtained in this embodiment. It can be seen from the curve that the photocurrent is 0.0712 A at 450 nm. It shows that the detector has higher quantum efficiency and higher sensitivity in the blue band.
  • Figure 7 is the dark current curve of the multi-quantum well blue light detector obtained in this embodiment. It can be seen from the figure that the fabricated electrode is a Schottky contact, and the dark current reaches 10 -7 A, indicating that the carrier injection efficiency is high and the detector is epitaxial High-speed response in the blue band.
  • This embodiment provides a multiple quantum well blue light detector, as shown in FIG. 1, which includes a substrate 1, a buffer layer 2, and a GaN/InGaN multiple quantum well layer 3 arranged sequentially from bottom to top.
  • the upper surface of the quantum well layer 3 is connected to the metal layer electrode 4.
  • the buffer layer 2 is an AlN layer, an AlGaN layer and a GaN layer arranged from bottom to top.
  • the GaN/InGaN multiple quantum well layer 3 alternates on the buffer layer 2.
  • the alternate growth period of the grown GaN layer and InGaN layer is 7, the thickness of the GaN layer is 13 nm, and the thickness of the InGaN layer is 4 nm.
  • the substrate 1 is a Si substrate; the thickness of the AlN layer, the AlGaN layer and the GaN layer are respectively 350 nm, 650 nm, 3.5 ⁇ m.
  • the metal layer electrode 4 is a Ti/Ni/Au metal layer
  • the Ti/Ni/Au metal layer is a Ti metal layer, a Ni metal layer, and an Au metal layer arranged from bottom to top.
  • the thickness is 25 nm
  • the thickness of the Ni metal layer is 105 nm
  • the thickness of the Au metal layer is 105 nm.
  • This embodiment also provides a method for preparing the multiple quantum well blue light detector, which includes the following steps:
  • the temperatures at which the AlN layer, the AlGaN layer, and the GaN layer are sequentially epitaxially grown on the substrate 1 by the MOCVD method from bottom to top are 1150°C, 1150°C, and 1050°C, respectively.
  • the temperature at which the GaN/InGaN multiple quantum well layer 3 is grown on the buffer layer 2 by the MOCVD method is 700°C.
  • the drying time is 45 s
  • the exposure time is 7 s
  • the development time is 47 s
  • the oxygen ion treatment time is 2.5 min.
  • the vapor deposition rate of the metal layer electrode 4 is 0.25 nm/min.
  • the multiple quantum well blue light detector prepared in this embodiment was tested.
  • This embodiment provides a multiple quantum well blue light detector, as shown in FIG. 1, which includes a substrate 1, a buffer layer 2, and a GaN/InGaN multiple quantum well layer 3 arranged sequentially from bottom to top.
  • the upper surface of the quantum well layer 3 is connected to the metal layer electrode 4.
  • the buffer layer 2 is an AlN layer, an AlGaN layer and a GaN layer arranged from bottom to top.
  • the GaN/InGaN multiple quantum well layer 3 alternates on the buffer layer 2.
  • the growth period of the grown GaN layer and InGaN layer is 8, the thickness of the GaN layer is 15 nm, and the thickness of the InGaN layer is 5 nm.
  • the substrate 1 is a Si substrate; the thickness of the AlN layer, the AlGaN layer and the GaN layer are 400 respectively nm, 700 nm, 4 ⁇ m.
  • the metal layer electrode 4 is a Ti/Ni/Au metal layer
  • the Ti/Ni/Au metal layer is a Ti metal layer arranged from bottom to top, the Ni metal layer and the Au metal layer, the Ti metal layer
  • the thickness is 30 nm
  • the thickness of the Ni metal layer is 110 nm
  • the thickness of the Au metal layer is 110 nm.
  • This embodiment also provides a method for preparing the multiple quantum well blue light detector, which includes the following steps:
  • the temperature at which the AlN layer, the AlGaN layer and the GaN layer are sequentially epitaxially grown on the substrate 1 by the MOCVD method from bottom to top are 1200° C., 1200° C. and 1150° C., respectively.
  • the temperature at which the GaN/InGaN multiple quantum well layer 3 is grown on the buffer layer 2 by the MOCVD method is 750°C.
  • the drying time is 50 s
  • the exposure time is 10 s
  • the development time is 50 s
  • the oxygen ion treatment time is 3 min.
  • the vapor deposition rate of the metal layer electrode 4 is 0.28 nm/min.
  • the multiple quantum well blue light detector prepared in this embodiment was tested.

Abstract

一种多量子阱蓝光探测器及制备方法与应用,所述探测器包括从下到上依次排布的衬底(1)、缓冲层(2)和GaN/InGaN多量子阱层(3),GaN/InGaN多量子阱层(3)的上表面连接金属层电极(4),缓冲层(2)为从下到上依次排布的AlN层、AlGaN层和GaN层,GaN/InGaN多量子阱层(3)为在缓冲层(2)上依次交替生长的GaN层和InGaN层,交替生长的周期为6~8,GaN层的厚度为12~15nm,InGaN层的厚度为3~5nm。通过优化探测器件的芯片参数,提升了蓝光波段的量子效率;在探测芯片表面进行蓝光增敏微纳结构设计,有效降低表面对蓝光的反射损耗,增强蓝光谐振吸收,实现高灵敏度高带宽探测。

Description

一种多量子阱蓝光探测器及制备方法与应用 技术领域
本发明涉及可见光探测器领域,特别涉及一种多量子阱(MQW)蓝光探测器及制备方法与应用。
背景技术
III族氮化物半导体材料拥有优良的光学、电学、热学、化学、机械性能,因此,Ⅲ族氮化物光电器件和功率器件得到了国内外科研人员的广泛关注和重点研究。
作为第三代半导体材料研究热点之一的 InGaN 材料拥有良好的物理化学性质。它的电子迁移率高、热稳定性好、化学稳定性好。可以通过调整合金中 In的组分,实现禁带宽度从 3.4 eV 到 0.7 eV 的连续调节,从而使得 InGaN 探测器能够实现覆盖整个可见光波段的连续探测,相比光电倍增管,InGaN 探测器具有体积小、易携带、易集成、击穿电场高(> 1 MV/cm)、工作电压低、节能环保、无需滤光系统等优势。
虽然 InGaN 基探测器材料生长研究取得了一定研究进展,但是到目前为止还没有实现商品转化。制约 InGaN 探测器发展和应用的根本问题是材料质量问题。一方面,由于InGaN和Si衬底之间存在着较大的晶格失配(>16.9%),因此在InGaN外延层中也容易产生较高密度的位错。另一方面,由于InGaN材料容易发生分相,特别In组分越高越容易发生分相。同时,在GaN材料上生长InGaN,由于InGaN与GaN之间存在晶格失配,随着厚度增加会发生弛豫,产生缺陷,这些都可以作为俘获载流子。从而降低载流子输运特性,导致InGaN 探测器的量子效率下降,影响响应速和灵敏度等。
技术解决方案
为了解决以上问题,本发明的目的在于提供一种多量子阱(MQW)蓝光探测器及制备方法与应用,采用GaN/InGaN 多量子阱材料制备蓝光探测器。其具有以下突出优势:一,GaN/InGaN MQW具有超晶格结构,InGaN厚度较低,材料未弛豫,可减少缺陷产生,材料质量更好;二,直接生长InGaN较为困难,易发生相分离。采用GaN/InGaN MQW由于InGaN薄膜厚度较低,减少相分离,提高InGaN材料的晶体质量,从而获得高性能蓝光探测器,具有量子效率高,响应速度快和灵敏度高等优点,经测试,响应时间由500 ms缩短为300 ms;三,通过在缓冲层上依次交替生长的GaN层和InGaN层,交替生长6~8个周期,将GaN层的厚度控制在12~15 nm,InGaN层的厚度控制在3~5nm,使InGaN表面有更多的富In团簇,使GaN/InGaN 多量子阱材料制备蓝光探测器有更高的量子效率;四,通过AlN/AlGaN/GaN缓冲层,过滤位错,释放应力,使缺陷密度由10 9减小到10 6,使生长的InGaN材料质量更好;五,通过Ti/Ni/Au金属层,制作肖特基接触电极,暗电流由10 -6A减小到10 -7A,增强载流子注入效率,减小漏电。
本发明的目的至少是通过以下技术方案之一实现的。
本发明提供了一种多量子阱蓝光探测器,包括从下到上依次排布的衬底、缓冲层、GaN/InGaN 多量子阱层和金属层电极,缓冲层为从下到上依次排布的AlN层、AlGaN层和GaN层,GaN/InGaN 多量子阱层为在缓冲层上依次交替生长的GaN层和InGaN层,交替生长的周期为6~8,GaN层的厚度为12~15 nm,InGaN层的厚度为3~5nm。
优选地,衬底为Si衬底。
优选地,AlN层、AlGaN层和GaN层的厚度分别为300~400 nm、600~700 nm、3~4 μm。
优选地,电极的形状为叉指电极;金属层电极为Ti/Ni/Au金属层,Ti/Ni/Au金属层为从下到上排布的Ti金属层、Ni金属层和Au金属层,Ti金属层的厚度为20~30nm、Ni金属层的厚度为100~110nm,Au金属层的厚度为100~110nm。
本发明还提供了制备所述多量子阱蓝光探测器的方法,包括以下步骤:
(1)采用 MOCVD方法 在衬底上生长缓冲层,再在缓冲层上生长InGaN /GaN多量子阱层;
(2)在GaN/InGaN多量子阱层上进行光刻,在GaN/InGaN多量子阱层上表面匀胶、烘干、曝光、显影和氧离子处理,确定电极形状,并通过蒸镀工艺将金属层电极蒸镀在GaN/InGaN多量子阱层上表面。
优选地,采用MOCVD方法在衬底上从下到上依次外延生长AlN层、AlGaN层和GaN层的温度分别为1100~1200℃、1100~1200℃和1000~1150℃。
优选地,采用MOCVD方法在缓冲层上生长GaN/InGaN 多量子阱层的温度为600~750℃。
优选地,烘干时间为40~50 s,曝光时间为5~10 s,显影时间为40~50 s,氧离子处理时间为2~3 min。
优选地,金属层电极的蒸镀速率为0.23~0.28 nm/min。
本发明还提供了所述的多量子阱蓝光探测器在蓝光探测中的应用。
有益效果
和现有技术相比,本发明具有以下有益效果和优点:
(1)本发明提供的一种多量子阱蓝光探测器,先采用 MOCVD 高温外延方法在Si衬底上生长AlN/AlGaN/GaN 缓冲层,再结合 MOCVD低温外延方法,在缓冲层上生长GaN/InGaN多量子阱层,再通过光刻蒸镀工艺,在 GaN/InGaN多量子阱层上制作Ti/Ni/Au金属层电极,实现了GaN/InGaN多量子阱蓝光探测器。制备方法具有工艺简单、省时高效以及能耗低的特点,有利于规模化生产。
(2)本发明提供的一种多量子阱蓝光探测器,通过GaN/InGaN多量子阱层,实现在蓝光波段的高速响应;在此基础上优化设计蓝光探测器与阵列结构,有效提高响应速度。 [0022] (3)本发明提供的一种多量子阱蓝光探测器,通过优化探测器件的芯片参数,使所得多量子阱蓝光探测器在蓝光波段拥有较高的量子效率;在探测芯片表面进行蓝光增敏微纳结构设计,有效降低表面对蓝光的反射损耗,增强蓝光谐振吸收,实现高灵敏度高带宽探测。
附图说明
图1为本发明提供的多量子阱蓝光探测器的结构剖面示意图;
图2为本发明提供的多量子阱蓝光探测器的电极结构的俯视面示意图;
图3为实施1所制备的多量子阱蓝光探测器的X射线衍射图谱;
图4为实施1所制备的多量子阱蓝光探测器的透射电镜俯视图像;
图5为实施例1制备的多量子阱蓝光探测器的PL曲线图;
图6为实施例1制备的多量子阱蓝光探测器的光电流曲线图;
图7为实施例1制备的多量子阱蓝光探测器的暗电流曲线图;
图1中,1-衬底;2-缓冲层;3-GaN/InGaN 多量子阱层;4-金属层电极。
本发明的实施方式
下面结合实施例,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例 1
本实施例提供了一种多量子阱蓝光探测器,如图1所示,包括从下到上依次排布的衬底1、缓冲层2和GaN/InGaN 多量子阱层3,GaN/InGaN 多量子阱层3的上表面连接金属层电极4,缓冲层2为从下到上依次排布的AlN层、AlGaN层和GaN层,GaN/InGaN 多量子阱层3为在缓冲层2上依次交替生长的GaN层和InGaN层,交替生长的周期为6,GaN层的厚度为12 nm,InGaN层的厚度为3 nm。
衬底1为Si衬底;AlN层、AlGaN层和GaN层的厚度分别为300 nm、600 nm、3 μm。
如图2所示,电极的形状为叉指电极,金属层电极4为Ti/Ni/Au金属层,Ti/Ni/Au金属层为从下到上排布的Ti金属层、Ni金属层和Au金属层,Ti金属层的厚度为20 nm,Ni金属层的厚度为100 nm,Au金属层的厚度为100 nm。
本实施例还提供了制备所述多量子阱蓝光探测器的方法,包括以下步骤:
(1)采用 MOCVD方法在衬底1上生长缓冲层2,再在缓冲层2上生长InGaN /GaN多量子阱层3;
(2)在GaN/InGaN多量子阱层3上进行光刻,在GaN/InGaN多量子阱层3上表面匀胶、烘干、曝光、显影和氧离子处理,确定电极形状,并通过蒸镀工艺将金属层电极4蒸镀在GaN/InGaN多量子阱层3上表面。
采用MOCVD方法在衬底1上从下到上依次外延生长AlN层、AlGaN层和GaN层的温度分别为1100 ℃、1100 ℃和1000 ℃。
采用MOCVD方法在缓冲层2上生长GaN/InGaN 多量子阱层3的温度为600 ℃。
烘干时间为40 s,曝光时间为5 s,显影时间为40 s,氧离子处理时间为2 min。
金属层电极4的蒸镀速率为0.23 nm/min。
将本实施例制备的多量子阱蓝光探测器进行测试。
图3为本实施例所得多量子阱蓝光探测器的X射线衍射图谱,可以看出各薄膜层峰位都十分明显。通过与标准各个峰比对,测试峰与标准峰基本重合。可见通过MOCVD 技术,在Si衬底上生长出质量较好的AlN/AlGaN/GaN 缓冲层,并在缓冲层上生长出质量较好GaN/InGaN多量子阱层,并且InGaN表面有更多的富In团簇。
图4为本实施例所得多量子阱蓝光探测器的透射电镜俯视图像,可以清楚看到通过MOCVD 技术,在缓冲层上生长出均匀且周期好的GaN/InGaN多量子阱层,并且InGaN表面有更多的富In团簇。
图5为本实施例所得多量子阱蓝光探测器的PL曲线。由曲线可看出,在450 nm处有极为显著的波峰。说明该探测器在蓝光波段拥有更高的量子效率,因此在蓝光波段拥有高速的响应。
图6为本实施例所得多量子阱蓝光探测器的光电流曲线。由曲线可看出,在450 nm处,光电流为0.0712 A。说明该探测器在蓝光波段拥有更高的量子效率以及较高的灵敏度。
图7为本实施例所得多量子阱蓝光探测器的暗电流曲线,由图可见,制作电极为肖特基接触,暗电流达到10 -7A,说明载流子注入效率高,该探测器外延在蓝光波段拥有高速的响应。
实施例 2
本实施例提供了一种多量子阱蓝光探测器,如图1所示,包括从下到上依次排布的衬底1、缓冲层2和GaN/InGaN 多量子阱层3,GaN/InGaN 多量子阱层3的上表面连接金属层电极4,缓冲层2为从下到上依次排布的AlN层、AlGaN层和GaN层,GaN/InGaN 多量子阱层3为在缓冲层2上依次交替生长的GaN层和InGaN层,交替生长的周期为7,GaN层的厚度为13 nm,InGaN层的厚度为4 nm。
衬底1为Si衬底;AlN层、AlGaN层和GaN层的厚度分别为350 nm、650 nm、3.5 μm。
如图2所示,金属层电极4为Ti/Ni/Au金属层,Ti/Ni/Au金属层为从下到上排布的Ti金属层、Ni金属层和Au金属层,Ti金属层的厚度为25 nm,Ni金属层的厚度为105 nm,Au金属层的厚度为105 nm。
本实施例还提供了制备所述多量子阱蓝光探测器的方法,包括以下步骤:
(1)采用 MOCVD方法在衬底1上生长缓冲层2,再在缓冲层2上生长InGaN /GaN多量子阱层3;
(2)在GaN/InGaN多量子阱层3上进行光刻,在GaN/InGaN多量子阱层3上表面匀胶、烘干、曝光、显影和氧离子处理,确定电极形状,并通过蒸镀工艺将金属层电极4蒸镀在GaN/InGaN多量子阱层3上表面。
采用MOCVD方法在衬底1上从下到上依次外延生长AlN层、AlGaN层和GaN层的温度分别为1150 ℃、1150 ℃和1050 ℃。
采用MOCVD方法在缓冲层2上生长GaN/InGaN 多量子阱层3的温度为700 ℃。
烘干时间为45 s,曝光时间为7 s,显影时间为47 s,氧离子处理时间为2.5 min。
金属层电极4的蒸镀速率为0.25 nm/min。
将本实施例制备的多量子阱蓝光探测器进行测试。
本实施例制备的多量子阱蓝光探测器的相关性能和实施例1相似,相关性能参数可参照实施例1的相应附图。
实施例 3
本实施例提供了一种多量子阱蓝光探测器,如图1所示,包括从下到上依次排布的衬底1、缓冲层2和GaN/InGaN 多量子阱层3,GaN/InGaN 多量子阱层3的上表面连接金属层电极4,缓冲层2为从下到上依次排布的AlN层、AlGaN层和GaN层,GaN/InGaN 多量子阱层3为在缓冲层2上依次交替生长的GaN层和InGaN层,交替生长的周期为8,GaN层的厚度为15 nm,InGaN层的厚度为5 nm。
衬底1为Si衬底;AlN层、AlGaN层和GaN层的厚度分别为400 nm、700 nm、4 μm。
如图2所示,金属层电极4为Ti/Ni/Au金属层,Ti/Ni/Au金属层为从下到上排布的Ti金属层,Ni金属层和Au金属层,Ti金属层的厚度为30 nm,Ni金属层的厚度为110 nm,Au金属层的厚度为110 nm。
本实施例还提供了制备所述多量子阱蓝光探测器的方法,包括以下步骤:
(1)采用 MOCVD方法在衬底1上生长缓冲层2,再在缓冲层2上生长InGaN /GaN多量子阱层3;
(2)在GaN/InGaN多量子阱层3上进行光刻,在GaN/InGaN多量子阱层3上表面匀胶、烘干、曝光、显影和氧离子处理,确定电极形状,并通过蒸镀工艺将金属层电极4蒸镀在GaN/InGaN多量子阱层3上表面。
采用MOCVD方法在衬底1上从下到上依次外延生长AlN层、AlGaN层和GaN层的温度分别为1200 ℃、1200 ℃和1150 ℃。
采用MOCVD方法在缓冲层2上生长GaN/InGaN 多量子阱层3的温度为750 ℃。
烘干时间为50 s,曝光时间为10 s,显影时间为50 s,氧离子处理时间为3 min。
金属层电极4的蒸镀速率为0.28 nm/min。
将本实施例制备的多量子阱蓝光探测器进行测试。
本实施例制备的多量子阱蓝光探测器的相关性能和实施例1相似,相关性能参数可参照实施例1的相应附图。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种多量子阱蓝光探测器,其特征在于,包括从下到上依次排布的衬底、缓冲层、GaN/InGaN 多量子阱层和金属层电极,缓冲层为从下到上依次排布的AlN层、AlGaN层和GaN层,GaN/InGaN 多量子阱层为在缓冲层上依次交替生长的GaN层和InGaN层,交替生长的周期为6~8,GaN层的厚度为12~15 nm,InGaN层的厚度为3~5nm。
  2. 根据权利要求1所述的多量子阱蓝光探测器,其特征在于,衬底为Si衬底。
  3. 根据权利要求1所述的多量子阱蓝光探测器,其特征在于,AlN层、AlGaN层和GaN层的厚度分别为300~400 nm、600~700 nm、3~4 μm。
  4. 根据权利要求1所述的多量子阱蓝光探测器,其特征在于,金属层电极的形状为叉指电极;金属层电极为Ti/Ni/Au金属层,Ti/Ni/Au金属层为从下到上排布的Ti金属层、Ni金属层和Au金属层,Ti金属层的厚度为20~30nm、Ni金属层的厚度为100~110nm,Au金属层的厚度为100~110nm。
  5. 制备权利要求1至4任一项所述多量子阱蓝光探测器的方法,其特征在于,包括以下步骤:
    (1)采用 MOCVD方法 在衬底上生长缓冲层,再在缓冲层上生长InGaN /GaN多量子阱层;
    (2)在GaN/InGaN多量子阱层上进行光刻,在GaN/InGaN多量子阱层上表面匀胶、烘干、曝光、显影和氧离子处理,确定电极形状,并通过蒸镀工艺将金属层电极蒸镀在GaN/InGaN多量子阱层上表面。
  6. 根据权利要求5所述的制备多量子阱蓝光探测器的方法,其特征在于,采用MOCVD方法在衬底上从下到上依次外延生长AlN层、AlGaN层和GaN层的温度分别为1100~1200℃、1100~1200℃和1000~1150℃。
  7. 根据权利要求5所述的制备多量子阱蓝光探测器的方法,其特征在于,采用MOCVD方法在缓冲层上生长GaN/InGaN 多量子阱层的温度为600~750℃。
  8. 根据权利要求5所述的制备多量子阱蓝光探测器的方法,其特征在于,烘干时间为40~50 s,曝光时间为5~10 s,显影时间为40~50 s,氧离子处理时间为2~3 min。
  9. 根据权利要求5所述的制备多量子阱蓝光探测器的方法,其特征在于,金属层电极的蒸镀速率为0.23~0.28 nm/min。
  10. 权利要求1所述的多量子阱蓝光探测器在蓝光探测中的应用。
PCT/CN2020/106452 2019-07-31 2020-07-31 一种多量子阱蓝光探测器及制备方法与应用 WO2021018307A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910703159.2 2019-07-31
CN201910703159.2A CN110459628A (zh) 2019-07-31 2019-07-31 一种多量子阱蓝光探测器及制备方法与应用

Publications (1)

Publication Number Publication Date
WO2021018307A1 true WO2021018307A1 (zh) 2021-02-04

Family

ID=68484349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106452 WO2021018307A1 (zh) 2019-07-31 2020-07-31 一种多量子阱蓝光探测器及制备方法与应用

Country Status (2)

Country Link
CN (1) CN110459628A (zh)
WO (1) WO2021018307A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110459628A (zh) * 2019-07-31 2019-11-15 华南理工大学 一种多量子阱蓝光探测器及制备方法与应用
CN113224193B (zh) * 2021-04-12 2022-06-14 华南理工大学 结合嵌入电极与钝化层结构的InGaN/GaN多量子阱蓝光探测器及其制备方法与应用
CN113972294A (zh) * 2021-09-26 2022-01-25 华南理工大学 一种碳化钛/InGaN异质结蓝光探测器及其制备方法
CN116191203B (zh) * 2023-04-21 2023-07-14 深圳市星汉激光科技股份有限公司 一种高效率蓝光半导体激光芯片

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105056984A (zh) * 2015-08-07 2015-11-18 北京大学 一种可见光响应的氮化物光催化材料及制备方法
CN105405915A (zh) * 2015-12-04 2016-03-16 华南理工大学 一种InGaN基蓝光探测器及其制备方法
US20170084786A1 (en) * 2015-09-17 2017-03-23 Freescale Semiconductor, Inc. Electronic devices with nanorings, and methods of manufacture thereof
CN106653896A (zh) * 2017-01-04 2017-05-10 广东省半导体产业技术研究院 一种用于可见光通信的InGaN量子点光电探测器及其制备方法
CN107482070A (zh) * 2017-07-17 2017-12-15 中山大学 一种凹槽型电极结构的InGaN基MSM可见光光电探测器
CN110459628A (zh) * 2019-07-31 2019-11-15 华南理工大学 一种多量子阱蓝光探测器及制备方法与应用
CN210607284U (zh) * 2019-07-31 2020-05-22 华南理工大学 一种多量子阱蓝光探测器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100383985C (zh) * 2004-10-29 2008-04-23 南京大学 提高氮化镓光导型紫外光电探测器响应度方法及探测器
CN103022217A (zh) * 2012-11-22 2013-04-03 中山大学 一种BeMgZnO基MSM日盲探测器及其制备方法
CN104681677B (zh) * 2015-02-17 2017-10-27 吉林大学 一种具有微孔结构的NiO‑AlGaN紫外发光管及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105056984A (zh) * 2015-08-07 2015-11-18 北京大学 一种可见光响应的氮化物光催化材料及制备方法
US20170084786A1 (en) * 2015-09-17 2017-03-23 Freescale Semiconductor, Inc. Electronic devices with nanorings, and methods of manufacture thereof
CN105405915A (zh) * 2015-12-04 2016-03-16 华南理工大学 一种InGaN基蓝光探测器及其制备方法
CN106653896A (zh) * 2017-01-04 2017-05-10 广东省半导体产业技术研究院 一种用于可见光通信的InGaN量子点光电探测器及其制备方法
CN107482070A (zh) * 2017-07-17 2017-12-15 中山大学 一种凹槽型电极结构的InGaN基MSM可见光光电探测器
CN110459628A (zh) * 2019-07-31 2019-11-15 华南理工大学 一种多量子阱蓝光探测器及制备方法与应用
CN210607284U (zh) * 2019-07-31 2020-05-22 华南理工大学 一种多量子阱蓝光探测器

Also Published As

Publication number Publication date
CN110459628A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
WO2021018307A1 (zh) 一种多量子阱蓝光探测器及制备方法与应用
WO2021018261A1 (zh) Si衬底InGaN可见光探测器及制备方法与应用
CN113224198B (zh) 一种2DWS2/InGaN II型异质结自驱动蓝光探测器及其制备方法与应用
JP2013545299A (ja) 化合物半導体装置及びその製造方法
WO2023045172A1 (zh) 一种碳化钛/InGaN异质结蓝光探测器及其制备方法
CN104733579B (zh) 半导体发光器件及其制备方法
CN110911270B (zh) 一种高质量氧化镓薄膜及其同质外延生长方法
WO2022218141A1 (zh) 结合嵌入电极与钝化层结构的 InGaN/GaN 多量子阱蓝光探测器及其制备方法与应用
CN110364584A (zh) 基于局域表面等离激元效应的深紫外msm探测器及制备方法
CN114220878A (zh) 一种具有载流子传输层的Ga2O3/GaN日盲紫外探测器及其制备方法
CN114267747B (zh) 具有金属栅结构的Ga2O3/AlGaN/GaN日盲紫外探测器及其制备方法
CN112234117B (zh) 基于n-GaN/p-GaSe/石墨烯异质结的自驱动超宽光谱光电探测器及制备方法
CN212011003U (zh) 一种Si衬底InGaN可见光探测器
CN210607284U (zh) 一种多量子阱蓝光探测器
CN102263166B (zh) 采用纳米粒子提高AlGaN基探测器性能的方法
CN106409958A (zh) 基于石墨衬底的倒装三结太阳电池及其制备方法
Chen et al. Improved performance of a back-illuminated GaN-based metal-semiconductor-metal ultraviolet photodetector by in-situ modification of one-dimensional ZnO nanorods on its screw dislocations
CN111354629B (zh) 一种用于紫外LED的AlN缓冲层结构及其制作方法
WO2020228336A1 (zh) 一种基于GaN的LED外延片及其制备方法
WO2023045171A1 (zh) 一种二硒化钼/InGaN多光谱光电探测器及其制备方法与应用
CN219800871U (zh) 一种2D h-BN/AlGaNⅡ型异质结自驱动紫外光探测器
US20220328706A1 (en) Ingan/gan multiple quantum well blue light detector combined with embedded electrode and passivation layer structure and preparation method and application thereof
CN219040493U (zh) 一种2D Ga2S3/GaN II型异质结自驱动紫外光探测器
CN206225325U (zh) 生长在铝酸镁钪衬底上的GaN薄膜
CN114899263B (zh) 一种InGaN/GaN超晶格结构太阳能电池外延结构及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20846986

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20846986

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.10.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20846986

Country of ref document: EP

Kind code of ref document: A1