CN114899263B - 一种InGaN/GaN超晶格结构太阳能电池外延结构及其制备方法 - Google Patents

一种InGaN/GaN超晶格结构太阳能电池外延结构及其制备方法 Download PDF

Info

Publication number
CN114899263B
CN114899263B CN202210578014.6A CN202210578014A CN114899263B CN 114899263 B CN114899263 B CN 114899263B CN 202210578014 A CN202210578014 A CN 202210578014A CN 114899263 B CN114899263 B CN 114899263B
Authority
CN
China
Prior art keywords
layer
ingan
gan
doped
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210578014.6A
Other languages
English (en)
Other versions
CN114899263A (zh
Inventor
单恒升
宋一凡
李诚科
李明慧
刘胜威
梅云俭
江红涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202210578014.6A priority Critical patent/CN114899263B/zh
Publication of CN114899263A publication Critical patent/CN114899263A/zh
Application granted granted Critical
Publication of CN114899263B publication Critical patent/CN114899263B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/025Continuous growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • H01L31/035263Doping superlattices, e.g. nipi superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明属于太阳能电池技术领域,公开了一种InGaN/GaN超晶格结构太阳能电池外延结构,其自下而上依次包括衬底、成核层、本征层、第一掺杂层、超晶格层、缓冲层、势垒层、第二掺杂层和第三掺杂层;本征层为包括两个台面的阶梯状结构,两个台面分别为第一台面和第二台面,且第一掺杂层、超晶格层、缓冲层、势垒层、第二掺杂层和第三掺杂层均设置在第一台面正上方。本发明光电转换效率优于传统的InGaN/GaN多量子阱太阳能电池,提高了光生空穴载流子的输运效率,提高了短路电流,提升了电池的整体性能。本发明还提出了上述太阳能电池外延结构的制备方法,其采用易于产业化的MOCVD外延技术外延材料和利用成熟LED工艺制造器件,便于加工制造和大规模推广。

Description

一种InGaN/GaN超晶格结构太阳能电池外延结构及其制备 方法
技术领域
本发明涉及太阳能电池技术领域,尤其涉及一种InGaN/GaN超晶格结构太阳能电池外延结构及其制备方法。
背景技术
近年来,宽带隙Ⅲ-Ⅴ族化合物半导体(以GaN为代表)作为第三代电子材料正在兴起,尤其是InN化合物以及InN与GaN或AIN的组合化合物半导体材料受到了越来越多的关注,它们在光电子器件、光电集成、超高速微电子器件和超高频微波器件及电路上得到了重要应用,具有十分广阔的前景。相比于其他光伏材料,Ⅲ-Ⅴ族材料特性主要包括大的载流子迁移率,高吸收率和良好的耐辐射性能,是用于光伏材料研发的理想材料。
氮化镓(GaN)作为Ⅲ-Ⅴ族氮化物半导体材料具有禁带宽度大、电子迁移率高、热导率高、硬度高、化学性质稳定、介电常数小以及抗辐射能力强等优点,其在微电子学、光电子学甚至空间领域都有巨大的应用潜力。在GaN材料体系中,InGaN材料和器件禁带宽度从0.7eV到3.4eV连续可调,其波段完整从近红外光谱区域覆盖到紫外光谱区域,与太阳光谱完美匹配;同时InGaN合金也具有较高的吸收系数,其中带边吸收系数到105cm-1,波长为400nm的InGaN材料可以吸收98%以上的入射光,且InGaN材料还具有优异的抗辐射性能、较好的温度稳定性和较大的电子迁移率。因此,InGaN基太阳能电池的研究越来越受到科研工作者的关注。
InGaN基太阳能电池是一种新型的半导体太阳能电池,研究表明通过调节In组分来改变禁带宽度大小从0.7eV到3.4eV,可以覆盖整个太阳光谱,已成为国际上氮化物材料和新型高效太阳电池研究领域的前沿研究方向。在对InGaN基太阳能电池的研究中,本领域进行了很多关于InGaN外延材料的研究,主要是关于InGaN多量子阱的生长过程及其器件性能的方法,包括侧向外延生长的使用、多量子阱周期数的优化、不同衬底的使用和不同GaN晶体取向上的生长等方法。这些方法揭示了InGaN层的材料质量、结构完整性和相应的光伏特性之间的关系。
在InGaN基太阳能电池的制备工艺中,由于GaN和InN晶体的晶格常数与热膨胀系数有较大差别,导致的p型层结晶质量存在差异,制备出来的p型结构相比较体材料p型结构,表面形貌很粗糙而且外延质量较差。针对上述缺陷,本领域提出的InGaN/GaN多量子阱太阳能电池很好的克服了这一点,但是其光电转换效率较低,导致太阳能电池光电转换效率低,这制约着InGaN/GaN多量子阱太阳能电池的发展。
基于上述分析,本领域亟需对InGaN基太阳能电池的结构和制备工艺提出改进,并提出一种InGaN/GaN超晶格结构太阳能电池外延结构及其制备方法,从而解决InGaN/GaN多量子阱太阳能电池材料光电转换效率低以及电池的整体性能低等问题。
发明内容
本发明的目的在于提出一种InGaN/GaN超晶格结构太阳能电池外延结构,其光电转换效率优于传统的InGaN/GaN多量子阱太阳能电池,提高了短路电流,增加了太阳能电池的光电转换效率,提升了电池的整体性能。
实现本发明目的所采用的技术方案是:
一种InGaN/GaN超晶格结构太阳能电池外延结构,自下而上依次包括衬底、成核层、本征层、第一掺杂层、超晶格层、缓冲层、势垒层、第二掺杂层和第三掺杂层;本征层为包括两个台面的阶梯状结构,两个台面分别为第一台面和第二台面,且第一掺杂层、超晶格层、缓冲层、势垒层、第二掺杂层和第三掺杂层均设置在第一台面正上方。
进一步地,第三掺杂层表面还间隔设置有第一电极和第二电极;第二台面表面还设有第三电极。
进一步地,超晶格层为InGaN/GaN超晶格层,且InGaN/GaN超晶格层的周期数为20层。
进一步地,第一电极为P型电极;第二电极为ITO电极;第三电极为N型电极。
进一步地,第一掺杂层为Si掺杂的n-GaN层;第二掺杂层为Mg掺杂的P+层;第三掺杂层为Mg掺杂的P++层。
进一步地,衬底材料为Al2O3;成核层、本征层、缓冲层和势垒层材料均为GaN。
本发明的另一目的在于提出一种InGaN/GaN超晶格结构太阳能电池外延结构的制备方法,其采用易于产业化的MOCVD外延技术外延材料和利用成熟LED工艺制造器件,便于加工制造和大规模推广。
实现本发明另一目的所采用的技术方案是:
一种InGaN/GaN超晶格结构太阳能电池外延结构的制备方法,具体包括以下步骤:
步骤S1,在800-1200℃下将衬底烘烤8-15min;
步骤S2,在700-1080℃下在衬底上依次生长成核层和本征层;
步骤S3,在950-1270℃下在本征层的第一台面上生长第一掺杂层;
步骤S4,在740-1140℃下在第一掺杂层上生长超晶格层;
步骤S5,在1000-1350℃下在超晶格层上生长缓冲层;
步骤S6,在780-1050℃下在缓冲层上生长势垒层;
步骤S7,在820-1100℃下在势垒层上生长第二掺杂层;
步骤S8,在810-1200℃下在第二掺杂层上生长第三掺杂层。
进一步地,还包括以下步骤:步骤S9,在第三掺杂层表面间隔设置第一电极和第二电极,且在本征层的第二台面上设置第三电极。
进一步地,步骤S4的具体步骤为:在第一掺杂层上生长周期数为20的In0.2Ga0.8N/GaN超晶格层,每层In0.2Ga0.8N/GaN层的厚度为7nm,每层GaN层的厚度为4nm。
进一步地,第一掺杂层的掺杂浓度为1×1018cm-3;第二掺杂层的掺杂浓度为1×1020cm-3;第三掺杂层的掺杂浓度为1×1021cm-3
实现本发明技术方案所采用的原理在于:目前用到的三元和四元氮化物合金材料多是无序的合金材料,即不同III族元素是无序排列的,而已有的三元和四元氮化物合金研究所针对也几乎都是无序合金材料。但是除了无序合金材料,还有一种实现能带工程的方法,即利用短周期超晶格结构代替无序合金材料。而超晶格结构材料的单层厚度都非常小,只有一两个或者几个到十几个原子单层,因此相邻超晶格周期势阱内的电子有很强的相互耦合,这使得超晶格中分立的能级展宽成能带,而不像量子阱结构一直具有分立的能级。例如利用InGaN/GaN超晶格结构代替InGaN/GaN多量子阱,InGaN/GaN超晶格结构太阳能电池的效率高于传统的InGaN/GaN多量子阱太阳能电池。
针对InGaN/GaN多量子阱太阳能电池材料光电转换效率低下,本发明提出了InGaN/GaN超晶格结构的太阳能电池,由于生长的InGaN/GaN超晶格结构周期厚度更优,而且具有较低的位错密度和较低的光生载流子的复合中心,所以生长出更好的晶体质量。使用InGaN/GaN超晶格结构有利于太阳能电池的载流子的收集,可以改善晶体质量以及有助于提高器件的性能。
本发明的有益效果在于:
(1)本发明的提出的InGaN/GaN超晶格结构的超晶格太阳能电池,具有较好的晶格匹配和较低的热膨胀系数,由于超晶格的微带效应,可以使得势阱中的载流子能够吸收比多量子阱禁带宽度更小的光子能量以跃迁到导带中,提高短路电流,从而得到高效的超晶格太阳能电池。
(2)本发明的InGaN/GaN超晶格的最优In组分为0.2,具有较低的位错密度,较低的光生载流子的复合中心和更好的晶体质量;与传统的同In组分InGaN/GaN多量子阱太阳能电池相比,本发明的太阳能电池光电转换效率达到0.75%,提高了0.13%。
(3)本发明通过生长20个周期的厚度为3/4nm的InGaN/GaN超晶格层,提高光生空穴载流子的输运效率,增加了太阳能电池的光电转换效率,并且在同生长条件下光电转换效率大于传统相同周期数的厚度为3/9nm的InGaN/GaN多量子阱太阳能电池。
(4)本发明采用易于产业化的MOCVD外延技术外延材料和利用成熟LED工艺制造器件,便于加工制造和大规模推广;且由于超晶格材料适应目前生产线,本发明的方案在太阳能电池中具有较强的应用价值。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将结合附图及实施例对本发明作进一步说明,下面描述中的附图仅仅是本发明的部分实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图:
图1是本发明整体结构的一种截面示意图。
图2是本发明InGaN/GaN超晶格结构太阳能电池结构和传统InGaN/GaN多量子阱结构的实验对比结果图。
图中:1.衬底;2.成核层;3.本征层;4.第一掺杂层;5.超晶格层;6.缓冲层;7.势垒层;8.第二掺杂层;9.第三掺杂层;10.第一电极;11.第二电极;12.第三电极。
具体实施方式
为了使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明的部分实施例,而不是全部实施例。基于本发明的实施例,本领域普通技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
如图1所示,一种InGaN/GaN超晶格结构太阳能电池外延结构,自下而上依次包括衬底1、成核层2、本征层3、第一掺杂层4、超晶格层5、缓冲层6、势垒层7、第二掺杂层8和第三掺杂层9;本征层3为包括两个台面的阶梯状结构,两个台面分别为第一台面和第二台面,且第一掺杂层4、超晶格层5、缓冲层6、势垒层7、第二掺杂层8和第三掺杂层9均设置在第一台面正上方。第三掺杂层9表面还间隔设置有第一电极10和第二电极11;第二台面表面还设有第三电极12。
在本发明中,衬底1的材料为蓝宝石Al2O3,且衬底1的厚度为410μm-450μm,优选地,衬底1的厚度为430μm。
成核层2的材料为GaN,其生长在衬底1上,且成核层2的厚度为75μm-100μm,优选地,成核层2的厚度为80μm。
本征层3的材料为GaN,其生长在成核层2上,且本征层3的厚度为180nm-220nm,优选地,本征层3的厚度为200nm。
第一掺杂层4为Si掺杂的n-GaN层,其生长在本征层3上,第一掺杂层4的厚度为2μm,掺杂浓度为11×1018cm-3
超晶格层5为InGaN/GaN超晶格层5,其生长在第一掺杂层4上,且InGaN/GaN超晶格层5的周期数为20层,厚度为3/4nm。
缓冲层6为u-GaN层,其生长在超晶格层5上,且缓冲层6的厚度为79nm-110nm,优选地,缓冲层6的厚度为80nm。
势垒层7的材料为GaN,其生长在缓冲层6上,且势垒层7的厚度为18nm-24nm,优选地,势垒层7的厚度为20nm。
第二掺杂层8为Mg掺杂的P+层,其生长在GaN势垒层7上,掺杂浓度为1×1020cm-3
第三掺杂层9为Mg掺杂的P++层,其生长在第二掺杂层8上,掺杂浓度为1×1021cm-3;且第三掺杂层9厚度为30nm-50nm,优选地,第三掺杂层9的厚度为40nm。
第一电极10为P型电极,其主要材料为Cr、Ni或Au中的一种或多种组合。
第二电极11为ITO电极;ITO又称导电玻璃,其是在钠钙基或硅硼基基片玻璃的基础上,利用磁控溅射的方法镀上一层氧化铟锡膜加工制作成的。ITO作为纳米铟锡金属氧化物,具有很好的导电性和透明性。为使得其透光率和导电性能最佳,本发明优选第二电极11为掺Sn的ITO膜,其透光率达90%以上;且ITO中SnO2与In2O3的1∶9。
第三电极12为N型电极,其主要材料为Cr、Ni或Au中的一种或多种组合。
制备上述InGaN/GaN超晶格结构太阳能电池外延结构的方法,具体包括以下步骤:
步骤S1,采用MOCVD设备,升温至1000℃在氢气氛围下烘烤衬底10min;
步骤S2,降温至980℃,在衬底1上生长厚度为80μm的GaN成核层2;然后在该温度下在GaN成核层2上生长厚度为200nm的GaN本征层3;
步骤S3,升温至1070℃,在GaN本征层3上生长Si掺杂的n-GaN层,即第一掺杂层4:第一掺杂层4为第一掺杂层4的厚度为2μm,掺杂浓度为11×1018cm-3
步骤S4,将温度降至840℃,在第一掺杂层4上生长周期数为20的In0.2Ga0.8N/GaN超晶格结构,每层In0.2Ga0.8N/GaN层的厚度为7nm,每层GaN层的厚度为4nm;
步骤S5,升温至1100℃,在超晶格层5上生长厚度为80nm的u-GaN缓冲层6;
步骤S6,在950℃的温度下在缓冲层6上生长厚度为20nm的GaN势垒层77;
步骤S7,降温至920℃,在势垒层7上生长Mg掺杂的P+层,即第二掺杂层8:Mg层的掺杂浓度为1×1020cm-3
步骤S8,降温至900℃,在第二掺杂层8上生长Mg掺杂的P++层,即第三掺杂层9:Mg层的掺杂浓度为1×1021cm-3
在本发明的步骤中,还包括步骤S9,具体为:在第三掺杂层9表面间隔设置第一电极10和第二电极11,且在本征层3的第二台面上设置第三电极12。
本发明采用易于产业化的MOCVD外延技术外延材料和利用成熟LED工艺制造器件;而且光电转换效率优于传统的InGaN/GaN多量子阱太阳能电池。通过生长20个周期的厚度为3/4nm的InGaN/GaN超晶格层5,提高了短路电流,增加了太阳能电池的光电转换效率,并且在同生长条件下光电转换效率大于传统20个周期的厚度为3/9nm的InGaN/GaN多量子阱太阳能电池。
在其他参数和环境条件相同的情况下,分别建立InGaN/GaN超晶格结构太阳能电池结构和传统InGaN/GaN多量子阱结构,分别测试两者的光电转换效率。具体结果如图2所示。根据图2的I-V曲线可见,当0.2In组分时,超晶格结构的InGaN/GaN太阳能电池比传统InGaN/GaN多量子阱结构有更高的光电转换效率。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步地的详细说明,所应理解的是,以上所述仅为本发明的具体实施方法而已,并不用于限制本发明,凡是在本发明的主旨之内,所做的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种InGaN/GaN超晶格结构太阳能电池外延结构,其特征在于,自下而上依次包括衬底(1)、成核层(2)、本征层(3)、第一掺杂层(4)、超晶格层(5)、缓冲层(6)、势垒层(7)、第二掺杂层(8)和第三掺杂层(9);本征层(3)为包括两个台面的阶梯状结构,两个台面分别为第一台面和第二台面,且第一掺杂层(4)、超晶格层(5)、缓冲层(6)、势垒层(7)、第二掺杂层(8)和第三掺杂层(9)均设置在第一台面正上方,超晶格层(5)为InGaN/GaN超晶格层;
第一电极(10)为P型电极;第二电极(11)为ITO电极;第三电极(12)为N型电极;
第一掺杂层(4)为Si掺杂的n-GaN层;第二掺杂层(8)为Mg掺杂的P+层;第三掺杂层(9)为Mg掺杂的P++层;
InGaN/GaN超晶格结构太阳能电池外延结构的制备方法,具体包括以下步骤:
步骤S1,在800-1200℃下将衬底(1)烘烤8-15min;
步骤S2,在700-1080℃下在衬底(1)上依次生长成核层(2)和本征层(3);
步骤S3,在950-1270℃下在本征层(3)的第一台面上生长第一掺杂层(4);
步骤S4,在740-1140℃下在第一掺杂层(4)上生长超晶格层(5);
步骤S5,在1000-1350℃下在超晶格层(5)上生长缓冲层(6);
步骤S6,在780-1050℃下在缓冲层(6)上生长势垒层(7);
步骤S7,在820-1100℃下在势垒层(7)上生长第二掺杂层(8);
步骤S8,在810-1200℃下在第二掺杂层(8)上生长第三掺杂层(9)。
2.根据权利要求1所述的InGaN/GaN超晶格结构太阳能电池外延结构,其特征在于,第三掺杂层(9)表面还间隔设置有第一电极(10)和第二电极(11)。
3.根据权利要求1或2所述的InGaN/GaN超晶格结构太阳能电池外延结构,其特征在于,InGaN/GaN超晶格层的周期数为20层。
4.根据权利要求1所述的InGaN/GaN超晶格结构太阳能电池外延结构,其特征在于,衬底(1)材料为Al2O3;成核层(2)、本征层(3)、缓冲层(6)和势垒层(7)材料均为GaN。
5.根据权利要求4所述的InGaN/GaN超晶格结构太阳能电池外延结构,其特征在于,还包括以下步骤:步骤S9,在第三掺杂层(9)表面间隔设置第一电极(10)和第二电极(11)。
6.根据权利要求5所述的InGaN/GaN超晶格结构太阳能电池外延结构,其特征在于,步骤S4的具体步骤为:在第一掺杂层(4)上生长周期数为20的In0.2Ga0.8N/GaN超晶格层(5),每层In0.2Ga0.8N/GaN层的厚度为7nm,每层GaN层的厚度为4nm。
7.根据权利要求6所述的InGaN/GaN超晶格结构太阳能电池外延结构,其特征在于,第一掺杂层(4)的掺杂浓度为1×1018cm-3;第二掺杂层(8)的掺杂浓度为1×1020cm-3;第三掺杂层(9)的掺杂浓度为1×1021cm-3
CN202210578014.6A 2022-05-25 2022-05-25 一种InGaN/GaN超晶格结构太阳能电池外延结构及其制备方法 Active CN114899263B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210578014.6A CN114899263B (zh) 2022-05-25 2022-05-25 一种InGaN/GaN超晶格结构太阳能电池外延结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210578014.6A CN114899263B (zh) 2022-05-25 2022-05-25 一种InGaN/GaN超晶格结构太阳能电池外延结构及其制备方法

Publications (2)

Publication Number Publication Date
CN114899263A CN114899263A (zh) 2022-08-12
CN114899263B true CN114899263B (zh) 2024-01-30

Family

ID=82726232

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210578014.6A Active CN114899263B (zh) 2022-05-25 2022-05-25 一种InGaN/GaN超晶格结构太阳能电池外延结构及其制备方法

Country Status (1)

Country Link
CN (1) CN114899263B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080089044A (ko) * 2007-03-30 2008-10-06 서울옵토디바이스주식회사 초격자 구조의 장벽층을 갖는 근자외선 발광 다이오드
CN102315291A (zh) * 2011-09-29 2012-01-11 西安电子科技大学 含有超晶格结构的p-i-n型InGaN太阳电池
CN203367339U (zh) * 2013-06-20 2013-12-25 淮安澳洋顺昌光电技术有限公司 一种氮化镓基发光二极管外延片mqs发光层
CN105056984A (zh) * 2015-08-07 2015-11-18 北京大学 一种可见光响应的氮化物光催化材料及制备方法
CN105140366A (zh) * 2015-09-24 2015-12-09 映瑞光电科技(上海)有限公司 GaN基LED外延结构及其制备方法
CN205900577U (zh) * 2016-06-01 2017-01-18 聚灿光电科技股份有限公司 宽频谱GaN基LED外延结构
CN108878608A (zh) * 2018-06-01 2018-11-23 太原理工大学 一种具有应变减少结构的InGaN量子点LED外延结构
CN110335904A (zh) * 2019-07-10 2019-10-15 陕西科技大学 一种插入AlInGaN势垒层结构的InGaN/GaN多量子阱太阳能电池
CN110364420A (zh) * 2019-07-16 2019-10-22 北京工业大学 一种插入InGaN/GaN超晶格结构改善非极性GaN材料质量的外延生长方法
CN110504334A (zh) * 2019-08-28 2019-11-26 陕西科技大学 一种高In组分的InGaN/GaN多量子阱太阳能电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102369933B1 (ko) * 2015-08-03 2022-03-04 삼성전자주식회사 반도체 발광소자 및 그 제조 방법
WO2017124879A1 (zh) * 2016-01-18 2017-07-27 厦门市三安光电科技有限公司 一种半极性led结构及其制备方法
CN107046071A (zh) * 2017-04-06 2017-08-15 中国科学院半导体研究所 基于多孔DBR的InGaN基谐振腔增强型探测器芯片

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080089044A (ko) * 2007-03-30 2008-10-06 서울옵토디바이스주식회사 초격자 구조의 장벽층을 갖는 근자외선 발광 다이오드
CN102315291A (zh) * 2011-09-29 2012-01-11 西安电子科技大学 含有超晶格结构的p-i-n型InGaN太阳电池
CN203367339U (zh) * 2013-06-20 2013-12-25 淮安澳洋顺昌光电技术有限公司 一种氮化镓基发光二极管外延片mqs发光层
CN105056984A (zh) * 2015-08-07 2015-11-18 北京大学 一种可见光响应的氮化物光催化材料及制备方法
CN105140366A (zh) * 2015-09-24 2015-12-09 映瑞光电科技(上海)有限公司 GaN基LED外延结构及其制备方法
CN205900577U (zh) * 2016-06-01 2017-01-18 聚灿光电科技股份有限公司 宽频谱GaN基LED外延结构
CN108878608A (zh) * 2018-06-01 2018-11-23 太原理工大学 一种具有应变减少结构的InGaN量子点LED外延结构
CN110335904A (zh) * 2019-07-10 2019-10-15 陕西科技大学 一种插入AlInGaN势垒层结构的InGaN/GaN多量子阱太阳能电池
CN110364420A (zh) * 2019-07-16 2019-10-22 北京工业大学 一种插入InGaN/GaN超晶格结构改善非极性GaN材料质量的外延生长方法
CN110504334A (zh) * 2019-08-28 2019-11-26 陕西科技大学 一种高In组分的InGaN/GaN多量子阱太阳能电池

Also Published As

Publication number Publication date
CN114899263A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
US9437769B2 (en) Four-junction quaternary compound solar cell and method thereof
CN103247709B (zh) 增强AlGaN基深紫外探测器响应度的方法
JP2010512664A (ja) 酸化亜鉛多接合光電池及び光電子装置
Liou Design and fabrication of InxGa1− xN/GaN solar cells with a multiple-quantum-well structure on SiCN/Si (111) substrates
Lin et al. Numerical analysis of InxGa1− xN/SnS and AlxGa1− xN/SnS heterojunction solar cells
CN114220920A (zh) 一种量子点红外探测器及其制备方法
Laxmi et al. III-Nitride/Si tandem solar cell for high spectral response: Key attributes of auto-tunneling mechanisms
CN109216484B (zh) 一种石墨烯/AlGaAs多结异质太阳能电池及其制备方法
KR101063699B1 (ko) 태양전지 및 이의 제조방법
Jani et al. Design, growth, fabrication and characterization of high-band gap InGaN/GaN solar cells
US20110220198A1 (en) Method and Device Utilizing Strained AZO Layer and Interfacial Fermi Level Pinning in Bifacial Thin Film PV Cells
CN103022257B (zh) p-i-n结InGaN太阳电池制造方法
CN105552149A (zh) 基于自支撑GaN衬底的高In组分InGaN/GaN量子阱结构太阳能电池及其制法
CN210778633U (zh) 一种氮化物多结太阳能电池
JP6335784B2 (ja) 可変バンドギャップ太陽電池
CN102738311B (zh) 一种InGaN/Si双结太阳能电池的制备方法
KR101322652B1 (ko) ZnS/CIGS 박막태양전지 및 제조방법
CN114899263B (zh) 一种InGaN/GaN超晶格结构太阳能电池外延结构及其制备方法
Shafi et al. A numerical simulation for efficiency enhancement of CZTS based thin film solar cell using SCAPS-1D
CN106409958A (zh) 基于石墨衬底的倒装三结太阳电池及其制备方法
CN110137269A (zh) 一种石墨烯/InGaN多结异质太阳能电池及其制备方法
CN102738267B (zh) 具有超晶格结构的太阳能电池及其制备方法
Liou In $ _x $ Ga $ _ {1-x} $ N–GaN-Based Solar Cells With a Multiple-Quantum-Well Structure on SiCN–Si (111) Substrates
CN210052751U (zh) 多结太阳能电池
CN102231402B (zh) 一种ii-vi族稀释氧化物半导体薄膜太阳电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant