CN109216484B - 一种石墨烯/AlGaAs多结异质太阳能电池及其制备方法 - Google Patents

一种石墨烯/AlGaAs多结异质太阳能电池及其制备方法 Download PDF

Info

Publication number
CN109216484B
CN109216484B CN201811058580.4A CN201811058580A CN109216484B CN 109216484 B CN109216484 B CN 109216484B CN 201811058580 A CN201811058580 A CN 201811058580A CN 109216484 B CN109216484 B CN 109216484B
Authority
CN
China
Prior art keywords
graphene
solar cell
junction
layer
tunneling layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811058580.4A
Other languages
English (en)
Other versions
CN109216484A (zh
Inventor
林时胜
延燕飞
戴越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201811058580.4A priority Critical patent/CN109216484B/zh
Publication of CN109216484A publication Critical patent/CN109216484A/zh
Application granted granted Critical
Publication of CN109216484B publication Critical patent/CN109216484B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/074Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a heterojunction with an element of Group IV of the Periodic Table, e.g. ITO/Si, GaAs/Si or CdTe/Si solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种石墨烯/AlGaAs多结异质太阳能电池及其制备方法,该太阳能电池自下而上依次为:背面电极、多结半导体衬底(包括Ge电池、第一隧穿层、GaAs电池、第二隧穿层)、石墨烯/AlxGa1‑xAs层、正面电极。本发明的多结异质太阳能电池利用Ge、GaAs、AlxGa1‑xAs的帯隙不同,可对不同频率的太阳能分别吸收,从而显著提高太阳能电池的光电转换效率。此外,与传统多结太阳能电池相比,石墨烯与半导体形成异质结不需要晶格匹配,且顶电池可直接键合至多结半导体层衬底上,同时石墨烯与半导体形成的异质结具有更高的开路电压。本发明的多结异质太阳能电池具有转化效率高、工艺简单、便于推广的特点。

Description

一种石墨烯/AlGaAs多结异质太阳能电池及其制备方法
技术领域
本发明涉及一种太阳能电池及其制造方法,尤其涉及一种石墨烯/AlxGa1-xAs多结异质太阳能电池及其制备方法,属于新型太阳能电池技术领域。
背景技术
近几十年来,随着人类数量的膨胀、社会经济的发展,能源需求日益增多。人们在不断努力维持巨大能源消耗的同时,也在尝试最大限度地降低地球资源成本。这时候,越来越多的科学家把目光投向了可再生的太阳能。可以说,太阳能是一种取之不尽、用之不竭的二次清洁能源,它总量大、无污染,是解决当今能源问题的最有效途径之一。在对太阳能的利用中,大阳能光电是近些年来发展最快、最具活力的研究领域,也是其中最受瞩目的项目之一。目前,晶体硅太阳能电池占据市场80%以上的份额。但与常规发电相比,太阳能电池发电具有转换效率低、发电成本高的劣势,限制了其进一步的发展。
将太阳能直接转换为电能的太阳能电池是支持人类为可持续发展最有前途的方式之一。因此,高效的太阳能电池是全世界数十年来科学家们关注的焦点。除了广泛使用的传统半导体PN结太阳能电池之外,基于贵金属纳米颗粒,碳材料,钙钛矿材料和有机材料的结构是高性能太阳能电池的有力候选。作为碳材料的基本成员,只有一个单层碳原子的石墨烯在科学界的广泛关注,其中具有极高的电子迁移率,高度可调的导电性,微尺度弹道传输,异常的量子霍尔效应,2.3%的可见光吸收率和高机械强度等优异的电学,光学和物理性能,所有这些特性使石墨烯成为人类发展材料中明确的“异类”。其中石墨烯在太阳能电池领域的应用研究已有显著成效。目前,有研究者发现利用石墨烯作为栅电极可以调控底层石墨烯的费米能级,在电场的调控下,理论预计石墨烯太阳电池的光电转换效率可以超过30%,预示着未来商业化的前景。
太阳能光谱在390nm~11590nm之间是连续的,拥有不同能带宽度的材料只能吸收特定频率的光谱,这就导致了普通单晶太阳能电池对太阳能的利用率有限。我们选取对不同波段吸收效果最好的材料,按照禁带宽度从大到小的顺序从上到下累叠起来,让波长最短的光被最上层的宽隙材料电池利用,波长较长的光能透射进去让较窄禁带宽度的材料电池利用,这就有可能最大限度地将光能转换为电能。石墨烯/AlxGa1-xAs多结异质太阳能电池的一个重要特点是利用Ge、GaAs、AlxGa1-xAs的帯隙不同,可对不同频率的太阳能分别吸收,从而显著提高太阳能电池的光电转换效率。其中Ge的帯隙宽度为0.661eV,GaAs的帯隙宽度为1.424eV,当x<0.45时,AlxGa1-xAs的帯隙宽度为(1.424+1.247x)eV;当x>0.45时,AlxGa1-xAs的帯隙宽度为(1.9+0.125x+0.143x2)eV;最高可达2.168eV。因此石墨烯/AlxGa1- xAs异质器件构成的太阳能电池可以作为Ge和GaAs的顶结电池,实现三结对不同能量入射太阳光的吸收。此外由于AlGaAs与GaAs存在晶格失配,因此直接在GaAs上生长较厚AlxGa1- xAs会引入严重的应力,从而影响三结太阳能电池的转换效率,本发明使用石墨烯/AlxGa1- xAs太阳能电池直接转移到Ge和GaAs电池之上可以很好的解决应力失配的问题。
发明内容
本发明的目的在于提供一种石墨烯/AlxGa1-xAs多结异质太阳能电池及其制备方法。
本发明的石墨烯/AlxGa1-xAs多结异质太阳能电池,自下而上依次有背面电极、多结半导体层、石墨烯/AlxGa1-xAs层和正面电极,且石墨烯/AlxGa1-xAs层是直接转移至多结半导体层上,AlxGa1-xAs与多结半导体层直接接触,石墨烯设置在AlxGa1-xAs上,其中AlxGa1-xAs层中0<x<1。
所述的多结半导体层自下而上依次包括Ge电池、第一隧穿层、GaAs电池、第二隧穿层。
所述的第一隧穿层、第二隧穿层均选自重掺杂的:AlGaAs、GaInP、GaAs、或InGaAs。
所述的石墨烯/AlxGa1-xAs层中石墨烯的厚度为0.4纳米至10纳米。
所述的AlxGa1-xAs中,x大于0.2且x小于0.5。
所述的背面电极是金、钯、银、钛、铬、镍、ITO、FTO、AZO的一种或者几种的复合电极。
所述的正面电极是金、钯、银、钛、铜、铂、铬、镍、ITO、FTO、AZO的一种或者几种的复合电极。
上述的石墨烯/AlxGa1-xAs多结异质太阳能电池的制备方法,包括如下步骤:
1)首先制备Ge太阳能电池,然后在Ge太阳能电池一面制作背面电极,另一面制作第一隧穿层;
2)再在第一隧穿层上生长GaAs太阳能电池,之后在GaAs太阳能电池上制作第二隧穿层;
3)采用湿法转移将石墨烯转移至预先生长好的AlxGa1-xAs上,获得石墨烯/AlxGa1- xAs,再采用湿法转移法将石墨烯/AlxGa1-xAs转移至第二隧穿层上,使AlxGa1-xAs与第二隧穿层直接接触并键合,最后在石墨烯上制备正面电极,得到石墨烯/AlxGa1-xAs多结异质太阳能电池。
本发明对所述的Ge电池及GaAs电池的结构均无特殊限定,可以为本领域技术人员所熟知的以Ge或GaAs为主要材料的任意同质PN结太阳能电池。
本发明的石墨烯/AlxGa1-xAs多结异质太阳能电池利用Ge、GaAs、AlxGa1-xAs的帯隙不同,可对不同频率的太阳能分别吸收,从而显著提高太阳能电池的光电转换效率。此外,与传统多结太阳能电池相比,石墨烯与半导体形成异质结不需要晶格匹配,同时石墨烯/AlxGa1-xAs顶电池也可直接转移至第二隧穿层上,避免了传统三结电池制备时所要面临的晶格匹配的问题,此外石墨烯与AlxGa1-xAs形成的异质结具有更高的开路电压(石墨烯/Al0.3Ga0.7As的J-V曲线见附图2所示),可以有效提高转化效率,效果显著,工艺简单,便于推广。
附图说明
图1为石墨烯/AlxGa1-xAs多结异质太阳能电池的结构示意图;
图2为石墨烯/Al0.3Ga0.7As的J-V曲线图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步说明。
参照图1,本发明的石墨烯/AlxGa1-xAs层多结异质太阳能电池,其特征在于自下而上依次有自下而上依次有背面电极1、多结半导体层2、石墨烯/AlxGa1-xAs层3和正面电极4。
实施例1:
1)首先制备Ge太阳能电池,然后在Ge太阳能电池一面制作背面电极——Ag电极,另一面制作重掺杂的GaAs作为第一隧穿层;
2)在1)的基础上再在第一隧穿层上利用MOCVD技术,以三甲基镓(TMGa)为生长源,在680℃下生长GaAs太阳能电池,并制作重掺杂的GaAs作为第二隧穿层;
3)预先生长一层N型Al0.5Ga0.5As,通过柔性高分子材料如聚甲基丙烯酸甲酯(PMMA)作为支撑层将单层石墨烯湿法转移至其上获得石墨烯/Al0.5Ga0.5As,再用步骤2)获得的结构将石墨烯/Al0.5Ga0.5As捞起,从而使石墨烯/Al0.5Ga0.5As转移至第二隧穿层上,然后用丙酮异丙醇去除PMMA;在石墨烯上制备正面Ag电极,得到石墨烯/AlxGa1-xAs三结太阳能电池。
当x=0.5时,AlxGa1-xAs的帯隙宽度为1.998eV,而Ge的帯隙宽度为0.661eV,GaAs的帯隙宽度为1.424eV,三者自下而上以Ge、GaAs、石墨烯/AlxGa1-xAs序列排布,帯隙宽度依次增大,可对不同频率的太阳能分别吸收,从而显著提高太阳能电池的光电转换效率。
实施例2:
1)首先制备Ge太阳能电池,然后在Ge太阳能电池一面制作背面电极——Au电极,另一面制作重掺杂的AlGaAs作为第一隧穿层;
2)在1)的基础上再在第一隧穿层上利用MOCVD技术,以三甲基镓(TMGa)为生长源,在680℃下生长GaAs太阳能电池,并制作重掺杂的AlGaAs作为第二隧穿层;
3)预先生长一层N型Al0.3Ga0.7As,通过柔性高分子材料如聚甲基丙烯酸甲酯(PMMA)作为支撑层将单层石墨烯湿法转移至其上获得石墨烯/Al0.3Ga0.7As,再用步骤2)获得的结构将石墨烯/Al0.3Ga0.7As捞起,从而将石墨烯/Al0.3Ga0.7As转移至第二隧穿层上,然后用丙酮异丙醇去除PMMA;并在石墨烯上制备正面Au电极,得到一种石墨烯/AlxGa1-xAs三结太阳能电池。
实施例3:
1)首先制备Ge太阳能电池,然后在Ge太阳能电池一面制作背面电极——Ag电极,另一面制作重掺杂的GaAs作为第一隧穿层;
2)在1)的基础上再在第一隧穿层上利用MOCVD技术,以三甲基铝(TMAl)为生长源,在680℃下生长GaAs太阳能电池,并制作重掺杂的GaAs作为第二隧穿层;
3)预先生长一层P型Al0.5Ga0.5As,通过柔性高分子材料如聚甲基丙烯酸甲酯(PMMA)作为支撑层将单层石墨烯湿法转移至其上获得石墨烯/Al0.5Ga0.5As,再用步骤2)获得的结构将石墨烯/Al0.5Ga0.5As捞起,从而将石墨烯/Al0.5Ga0.5As转移至第二隧穿层上,然后用丙酮异丙醇去除PMMA;并在石墨烯上制备正面Ag电极,得到一种石墨烯/AlxGa1-xAs三结太阳能电池。
实施例4:
1)首先制备Ge太阳能电池,然后在Ge太阳能电池一面制作背面电极——Au电极,另一面制作重掺杂的AlGaAs作为第一隧穿层;
2)在1)的基础上再在第一隧穿层上利用MOCVD技术,以三甲基铝(TMAl)为生长源,在680℃下生长GaAs太阳能电池,并制作重掺杂的AlGaAs作为第二隧穿层;
3)预先生长一层P型Al0.2Ga0.8As,通过柔性高分子材料如聚甲基丙烯酸甲酯(PMMA)作为支撑层将单层石墨烯湿法转移至其上获得石墨烯/Al0.2Ga0.8As,再用步骤2)获得的结构将石墨烯/Al0.2Ga0.8As捞起,从而将石墨烯/Al0.2Ga0.8As转移至第二隧穿层上,然后用丙酮异丙醇去除PMMA;并在石墨烯上制备正面Au电极,得到一种石墨烯/AlxGa1-xAs三结太阳能电池。
本发明的太阳能电池与已有的多结太阳能电池相比,石墨烯与半导体形成异质结不需要晶格匹配,同时石墨烯与AlxGa1-xAs形成的异质结可以作为顶电池直接转移到第二隧穿层上,不需要考虑晶格匹配的问题,且该异质结具有较高的开路电压(石墨烯/Al0.3Ga0.7As的J-V见附图2所示),因此光电转换效率更高。本发明阐述的石墨烯/AlxGa1-xAs多结异质太阳能电池具有转化效率高、工艺简单、便于推广的特点。

Claims (7)

1.一种石墨烯/AlxGa1-xAs多结异质太阳能电池,其特征在于,自下而上依次有背面电极(1)、多结半导体层(2)、石墨烯/AlxGa1-xAs层(3)和正面电极(4),且石墨烯/AlxGa1-xAs层(3)是直接转移至多结半导体层表面形成键合,AlxGa1-xAs与多结半导体层直接接触,石墨烯设置在AlxGa1-xAs上,其中AlxGa1-xAs层中0<x<1;所述的多结半导体层(2)自下而上依次包括Ge电池、第一隧穿层、GaAs电池、第二隧穿层。
2.根据权利要求1所述的石墨烯/AlxGa1-xAs多结异质太阳能电池,其特征在于,所述的第一隧穿层、第二隧穿层均选自重掺杂的:AlGaAs、GaInP、GaAs、或InGaAs。
3.根据权利要求1所述的石墨烯/AlxGa1-xAs多结异质太阳能电池,其特征在于,所述的石墨烯/AlxGa1-xAs层(3)中石墨烯的厚度为0.4纳米至10纳米。
4.根据权利要求1所述的石墨烯/AlxGa1-xAs多结异质太阳能电池,其特征在于,所述的AlxGa1-xAs中,x为0.2~0.5。
5.根据权利要求1所述的石墨烯/AlxGa1-xAs多结异质太阳能电池,其特征在于,所述的背面电极是金、钯、银、钛、铬、镍、ITO、FTO、AZO的一种或者几种的复合电极。
6.根据权利要求1所述的石墨烯/AlxGa1-xAs多结异质太阳能电池,其特征在于,所述的正面电极是金、钯、银、钛、铜、铂、铬、镍、ITO、FTO、AZO的一种或者几种的复合电极。
7.制造如权利要求1-6任一项所述的石墨烯/AlxGa1-xAs多结异质太阳能电池的方法,其特征在于,该方法包括如下步骤:
1)首先制备Ge太阳能电池,然后在Ge太阳能电池一面制作背面电极,另一面生长第一隧穿层;
2)再在第一隧穿层上生长GaAs太阳能电池,之后在GaAs太阳能电池上制作第二隧穿层;
3)采用湿法转移将石墨烯转移至预先生长好的AlxGa1-xAs上,获得石墨烯/AlxGa1-xAs,再采用湿法转移法将石墨烯/AlxGa1-xAs转移至第二隧穿层上,使AlxGa1-xAs与第二隧穿层直接接触并键合,最后在石墨烯上制备正面电极,得到石墨烯/AlxGa1-xAs多结异质太阳能电池。
CN201811058580.4A 2018-09-11 2018-09-11 一种石墨烯/AlGaAs多结异质太阳能电池及其制备方法 Active CN109216484B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811058580.4A CN109216484B (zh) 2018-09-11 2018-09-11 一种石墨烯/AlGaAs多结异质太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811058580.4A CN109216484B (zh) 2018-09-11 2018-09-11 一种石墨烯/AlGaAs多结异质太阳能电池及其制备方法

Publications (2)

Publication Number Publication Date
CN109216484A CN109216484A (zh) 2019-01-15
CN109216484B true CN109216484B (zh) 2020-06-23

Family

ID=64983446

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811058580.4A Active CN109216484B (zh) 2018-09-11 2018-09-11 一种石墨烯/AlGaAs多结异质太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN109216484B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110137295B (zh) * 2019-04-16 2022-08-05 浙江大学 一种二硫化钼/镓铟氮或铝镓砷多结异质太阳能电池及其制备方法
CN110137269A (zh) * 2019-04-16 2019-08-16 浙江大学 一种石墨烯/InGaN多结异质太阳能电池及其制备方法
CN111628031A (zh) * 2020-06-01 2020-09-04 浙江大学 一种基于石墨烯/半导体异质集成的多结太阳能电池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129708A1 (en) * 2010-04-16 2011-10-20 Institutt For Energiteknikk Thin film solar cell electrode with graphene electrode layer
CN102376787A (zh) * 2011-11-04 2012-03-14 电子科技大学 一种石墨烯太阳能电池及其制备方法
CN104332522B (zh) * 2014-11-07 2017-02-15 常熟理工学院 一种石墨烯双结太阳能电池及其制备方法
CN108365047A (zh) * 2018-01-31 2018-08-03 华南理工大学 一种石墨烯-GaAs肖特基结太阳能电池及其制备方法

Also Published As

Publication number Publication date
CN109216484A (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
Razykov et al. Solar photovoltaic electricity: Current status and future prospects
CN103650165B (zh) 具有用于集中光伏应用的铜格栅的隧道结太阳能电池
CN112086535B (zh) 一种叠层电池
CN109728119B (zh) 一种石墨烯/AlGaAs/GaAs/GaInAs多异质结太阳能电池及其制备方法
CN110600614B (zh) 一种钙钛矿/钙钛矿两端叠层太阳能电池的隧穿结结构
US20080110486A1 (en) Amorphous-crystalline tandem nanostructured solar cells
Yue et al. SnS homojunction nanowire-based solar cells
Manna et al. Nanotechnology in the development of photovoltaic cells
CN109216484B (zh) 一种石墨烯/AlGaAs多结异质太阳能电池及其制备方法
CN106129146B (zh) 一种以黑磷烯作为导电材料的硒化锑薄膜太阳能电池及其制备方法
CN111755534A (zh) 一种石墨烯/半导体内建电场调控的pn结太阳能电池及其制备方法
CN103219414B (zh) GaInP/GaAs/InGaAsP/InGaAs四结级联太阳电池的制作方法
CN102790117B (zh) GaInP/GaAs/InGaNAs/Ge四结太阳能电池及其制备方法
CN108735848B (zh) 多结叠层激光光伏电池及其制作方法
CN202503000U (zh) 高效三结太阳能电池
CN109273551B (zh) 一种石墨烯/GaInP多结异质太阳能电池及其制备方法
CN110137269A (zh) 一种石墨烯/InGaN多结异质太阳能电池及其制备方法
CN106409958A (zh) 基于石墨衬底的倒装三结太阳电池及其制备方法
CN111081805A (zh) 一种基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池结构及其制备方法
JP5669228B2 (ja) 多接合太陽電池およびその製造方法
CN110556445A (zh) 一种叠层并联太阳能电池
CN210692559U (zh) 一种倒装生长的双异质结四结柔性太阳能电池
Mizuno et al. A “smart stack” triple-junction cell consisting of InGaP/GaAs and crystalline Si
Tanaka et al. Development of ZnTe-based solar cells
CN102231402B (zh) 一种ii-vi族稀释氧化物半导体薄膜太阳电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant