CN109273551B - 一种石墨烯/GaInP多结异质太阳能电池及其制备方法 - Google Patents

一种石墨烯/GaInP多结异质太阳能电池及其制备方法 Download PDF

Info

Publication number
CN109273551B
CN109273551B CN201811057062.0A CN201811057062A CN109273551B CN 109273551 B CN109273551 B CN 109273551B CN 201811057062 A CN201811057062 A CN 201811057062A CN 109273551 B CN109273551 B CN 109273551B
Authority
CN
China
Prior art keywords
graphene
solar cell
layer
tunneling layer
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811057062.0A
Other languages
English (en)
Other versions
CN109273551A (zh
Inventor
林时胜
延燕飞
陆阳华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201811057062.0A priority Critical patent/CN109273551B/zh
Publication of CN109273551A publication Critical patent/CN109273551A/zh
Application granted granted Critical
Publication of CN109273551B publication Critical patent/CN109273551B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种石墨烯/GaInP多结异质太阳能电池及其制备方法,该石墨烯/GaxIn1‑xP多结异质太阳能电池由石墨烯/GaxIn1‑xP顶电池、GaAs中电池和Ge底电池三结组成,利用GaxIn1‑xP、GaAs和Ge的帯隙宽度不同,可吸收不同频率的电磁波,有效提高太阳能电池的整体转换效率。与现有技术相比,本发明中石墨烯可直接转移到GaxIn1‑xP上,且顶电极可直接键合至第二隧穿层上;同时石墨烯与GaxIn1‑xP形成的异质结拥有较高的开路电压,也使石墨烯/GaxIn1‑xP太阳能电池具有更高的光电转换效率。本发明的多结异质太阳能电池性价比高、工艺简单、易于商业推广。

Description

一种石墨烯/GaInP多结异质太阳能电池及其制备方法
技术领域
本发明涉及一种太阳能电池及其制造方法,尤其涉及一种石墨烯/GaxIn1-xP多结异质太阳能电池及其制备方法,属于新型太阳能电池技术领域。
背景技术
能源危机与环境问题是当今世界发展的两大难题,为了维持全球近70亿人口的可持续发展,人们迫切需求总量大、污染小的可再生清洁能源。在所有二次能源中,太阳能因其范围广、无污染、能量大、时间久等优势成为大家关注的焦点。对太阳能的利用通常有光热转换和光电转换两种方式,其中通过光生伏特效应将太阳能直接转化为电能的太阳能光电产业是二十世纪八十年代后发展最快,也是最有前景的领域之一。目前商业化的太阳能电池产品中,晶体硅(单晶和多晶)太阳能电池的市场份额最大,一直保持85%以上的市场占有率。在太阳能光伏电池产业中,转换效率的提高一直是科研研究的热点,平均多晶硅太阳能电池的转化效率实测为20%左右,远低于理论值。在太空中,卫星等系统需要利用宝贵的太阳光,如何获得高转换效率的太阳能电池是目前研究的热点。
石墨烯是一种由单层碳原子以sp2杂化轨道排布形成的六角蜂窝状二维碳纳米材料,其导带与价带关于狄拉克点呈镜像对称关系,这种独特的电子能带结构,使其拥有极高的载流子迁移率(比硅高100倍)、反常的量子霍尔效应、高达97.7%的透光率、有下转换效应、功函数可调等诸多优势。此外,石墨烯自2004年发现至今,已有许多制备方法,如机械剥离、化学气相沉积(CVD)、氧化还原、表面外延及碳纳米管打开等。工艺成熟,可得到高纯度、低价位的石墨烯。这些独特的属性也让石墨烯成为众多科学家研究的热点,纷纷投入到高效能石墨烯异质结太阳能电池的制备中。佛罗里达大学的科学家通过掺入TFSA调整石墨烯的能级,制造出的石墨烯/硅异质结太阳能电池效率从1.9%提升到8.6%。北京大学和MIT的研究人员通过优化硅表面氧化层的厚度,得到效率为15.6%的的石墨烯/硅异质结太阳能电池。2015年,浙江大学Lin小组利用石墨烯与GaAs形成的异质器件获得了18.5%的太阳能转换效率;2017年,该小组预测石墨烯太阳能效率可以超过30%。
普通单晶太阳能电池只能吸收特定频段的太阳能辐射,这也是其光电转换效率低的主要原因。通过选取对特定频段太阳能吸收效果最好的三种材料Ge、GaAs和GaxIn1-xP,自下而上依次累叠起来,利用三者的帯隙宽度不同,可主要吸收不同频率的电磁波,从而有效提供高太阳能电池的整体转换效率。其中GaxIn1-xP的帯隙宽度最高可达2.10eV,主要吸收650nm以下的光;GaAs的帯隙宽度为1.42eV,吸收650-880nm的光;Ge的帯隙宽度为0.67eV,吸收880-1850nm的光。由于传统的三结太阳能电池中,GaxIn1-xP需要与GaAs晶格匹配,这限定了GaxIn1-xP中Ga的含量只能在50%以达到较好的晶体质量。由于石墨烯与GaxIn1-xP形成的异质器件是范德华力结合的,因此无需晶格匹配,而且我们可以获得可转移的GaxIn1-xP衬底,这样石墨烯与GaxIn1-xP形成的异质器件就可以整体键合到GaAs/Ge双结太阳能电池上,获得无需严格晶格匹配的三结高效太阳能电池。特别指出,石墨烯与镓含量较高的GaxIn1-xP衬底形成的异质器件具有很高的开压,因此可以有效提升三结太阳能电池的开压,从而提升转换效率。
发明内容
本发明的目的在于提供一种石墨烯/GaxIn1-xP多结异质太阳能电池及其制备方法。
本发明的石墨烯/GaxIn1-xP多结异质太阳能电池,自下而上依次有背面电极、Ge电池、第一隧穿层、GaAs电池、第二隧穿层、石墨烯/GaxIn1-xP层、减反层和正面电极,石墨烯/GaxIn1-xP层是直接转移至第二隧穿层上形成键合,GaxIn1-xP与第二隧穿层直接接触。
所述的背面电极是金、钯、银、钛、铬、镍、ITO、FTO、AZO的一种或者几种的复合电极
所述的正面电极是金、钯、银、钛、铜、铂、铬、镍、ITO、FTO、AZO的一种或者几种的复合电极。
所述的第一隧穿层和第二隧穿层均选自重掺杂的:AlGaAs、GaInP、GaAs、InGaAs。
所述的GaxIn1-xP为n型或p型掺杂的GaxIn1-xP,0<x<1。
所述的石墨烯/GaxIn1-xP层中石墨烯的厚度为0.4纳米至10纳米。
所述的减反层为具有减少反射作用的透光薄膜,选自氧化硅、氮化硅、氧化铝、氧化钛、碳化硅、氮化硼和氧化铪中的任意一种或几种。
制备上述的石墨烯/GaxIn1-xP多结异质太阳能电池的方法,包括如下步骤:
1)首先制备Ge太阳能电池,在Ge太阳能电池一面制作背面电极,另一面制作第一隧穿层;
2)在步骤1)所得的第一隧穿层上生长GaAs电池,再在GaAs电池上制作第二隧穿层;
3)制备GaxIn1-xP,采用湿法转移将石墨烯转移至GaxIn1-xP上形成石墨烯/GaxIn1-xP结构,再采用湿法转移将石墨烯/GaxIn1-xP结构转移在第二隧穿层上,使GaxIn1-xP与第二隧穿层直接接触形成键合;
4)在上述石墨烯上制备减反层并制作正面电极,得到石墨烯/GaxIn1-xP多结异质太阳能电池。
上述方案中,第一、二隧穿层、GaAs电池、GaxIn1-xP层都可以采用常规的MOCVD技术制备。
本发明对所述的Ge电池及GaAs电池的结构均无特殊限定,可以为本领域技术人员所熟知的以Ge或GaAs为主要材料的任意同质PN结太阳能电池。
本发明的石墨烯/GaxIn1-xP多结异质太阳能电池利用Ge、GaAs、GaxIn1-xP的帯隙不同,可对不同频率的太阳能分别吸收,有效提高太阳能电池的光电转换效率。增加的减反层可以减少反射,增加太阳能利用率。除此之外,与已有的多结太阳能电池相比,石墨烯可直接转移到GaxIn1-xP上,且本发明的顶电池结构可直接键合至第二隧穿层上,这极大的避免了传统三结电池制备时都需要面对的晶格匹配的问题;另外石墨烯与GaxIn1-xP形成的异质结拥有较高的开路电压,也使石墨烯/GaxIn1-xP太阳能电池具有更高的光电转换效率。本发明阐述的基于石墨烯/GaxIn1-xP的多结异质太阳能电池具有性价比高、工艺简单、易于商业化推广的特点。
附图说明
图1为石墨烯/GaxIn1-xP多结异质太阳能电池的结构示意图;
图2为石墨烯/Ga0.5In0.5P的J-V曲线图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步说明。
参照图1,本发明的石墨烯/GaxIn1-xP多结异质太阳能电池,其特征在于自下而上依次有背面电极1、Ge电池2、第一隧穿层3、GaAs电池4、第二隧穿层5、石墨烯/GaxIn1-xP层6、减反层7和正面电极8。
实施例1:
1)首先制备Ge太阳能电池并在一面用Ag制作背面电极,另一面制作重掺杂的GaInP作为第一隧穿层;
2)在步骤1)所得的Ge太阳能电池第一隧穿层上生长GaAs电池层并制作重掺杂的GaInP作为第二隧穿层;
3)剪下一块5cm*5cm长于铜上的石墨烯,用细胶带将其四周粘在匀胶台上;放入匀胶机上,滴上光刻胶聚甲基丙烯酸甲酯(PMMA);先每秒500转匀胶5-10秒,再每秒4000转匀胶60秒;将石墨烯取下,在105℃下烘干10-15分钟;剪去被胶带粘过的四周后,用N2枪清洁;最后放入腐蚀液中2小时,清洗后用预先生长好的Ga0.5In0.5P衬底将石墨烯捞起,自然风干后放入丙酮中去除PMMA;
4)用步骤2)获得的结构将石墨烯/Ga0.5In0.5P捞起从而将石墨烯/Ga0.5In0.5P转移至第二隧穿层上直接键合,烘干;
5)在石墨烯/Ga0.5In0.5P上增加TiO2/SiO2双层薄膜作为减反层并制作正面电极——Ag电极。
当x=0.5时,Ga0.5In0.5P的帯隙宽度为1.90eV,主要吸收波长小于655nm的太阳光;而GaAs的帯隙宽度为1.424eV,主要吸收波长为665-880nm的太阳光;Ge的帯隙宽度为0.661eV,主要吸收波长为880-1850nm的太阳光;三者自下而上以Ge电池、GaAs电池、石墨烯/Ga0.5In0.5P电池序列排布,可有效提高太阳能电池的光电转换效率。除此之外,与已有的多结太阳能电池相比,石墨烯可直接转移到GaxIn1-xP上,且该顶结结构不需要晶格匹配可直接进行键合;另外石墨烯与GaxIn1-xP形成的异质结拥有较高的开路电压,也使石墨烯/GaxIn1-xP太阳能电池具有更高的光电转换效率。本发明阐述的基于石墨烯/GaxIn1-xP的多结异质太阳能电池性价比高、工艺简单、易于商业化推广。
实施例2:
1)首先制备Ge太阳能电池并在一面用Pt制作背面电极,另一面制作重掺杂的AsGa作为第一隧穿层;
2)在步骤1)所得的Ge太阳能电池第一隧穿层上生长GaAs电池层并制作重掺杂的AsGa作为第二隧穿层;
3)剪下一块5cm*5cm的铜基底石墨烯,用细胶带将其四周粘在匀胶台上;放入匀胶机上,滴上光刻胶PMMA;先每秒500转匀胶5-10秒,再每秒4000转匀胶60秒;将石墨烯取下,在105℃下烘干10-15分钟;剪去被胶带粘过的四周后,用N2枪清洁;最后放入腐蚀液中2小时,清洗后用预先生长好的Ga0.5In0.5P衬底将石墨烯捞起,自然风干后放入丙酮中去除PMMA;4)用步骤2)获得的结构将石墨烯/Ga0.6In0.4P捞起从而将石墨烯/Ga0.6In0.4P转移至第二隧穿层上直接键合,烘干;
5)在石墨烯/Ga0.6In0.4P上增加TiO2/SiO2双层薄膜作为减反层并制作正面电极——Pt电极。
实施例3:
1)首先制备Ge太阳能电池并在一面用Au制作背面电极,另一面制作重掺杂的GaInP作为第一隧穿层;
2)在步骤1)所得的Ge太阳能电池第一隧穿层上生长GaAs电池层并制作重掺杂的GaInP作为第二隧穿层;
3)剪下一块5cm*5cm长于铜上的石墨烯,用细胶带将其四周粘在匀胶台上;放入匀胶机上,滴上光刻胶PMMA;先每秒500转匀胶5-10秒,再每秒4000转匀胶60秒;将石墨烯取下,在105℃下烘干10-15分钟;剪去被胶带粘过的四周后,用N2枪清洁;最后放入腐蚀液中2小时,清洗后用预先生长好的Ga0.5In0.5P衬底将石墨烯捞起,自然风干后放入丙酮中去除PMMA;4)用步骤2)获得的结构将石墨烯/Ga0.6In0.4P捞起从而将石墨烯/Ga0.6In0.4P转移至第二隧穿层上直接键合,烘干;
5)在石墨烯/Ga0.6In0.4P上增加TiO2/SiO2双层薄膜作为减反层并制作正面电极——Au电极。
实施例4:
1)首先制备Ge太阳能电池并在一面用Cu制作背面电极,另一面制作重掺杂的AsGa作为第一隧穿层;
2)在步骤1)所得的Ge太阳能电池第一隧穿层上生长GaAs电池层并制作重掺杂的AsGa作为第二隧穿层;
3)剪下一块5cm*5cm长于铜上的石墨烯,用细胶带将其四周粘在匀胶台上;放入匀胶机上,滴上光刻胶PMMA;先每秒500转匀胶5-10秒,再每秒4000转匀胶60秒;将石墨烯取下,在105℃下烘干10-15分钟;剪去被胶带粘过的四周后,用N2枪清洁;最后放入腐蚀液中2小时,清洗后用预先生长好的Ga0.5In0.5P衬底将石墨烯捞起,自然风干后放入丙酮中去除PMMA;
4)用步骤2)获得的结构将石墨烯/Ga0.5In0.5P捞起从而将石墨烯/Ga0.5In0.5P转移至第二隧穿层上直接键合,烘干;
5)在石墨烯/Ga0.5In0.5P上增加TiO2/SiO2双层薄膜作为减反层并制作正面电极——Cu电极。

Claims (8)

1.一种石墨烯/GaxIn1-xP多结异质太阳能电池,其特征在于,自下而上依次有背面电极(1)、Ge电池(2)、第一隧穿层(3)、GaAs电池(4)、第二隧穿层(5)、石墨烯/GaxIn1-xP层(6)、减反层(7)和正面电极(8),石墨烯/GaxIn1-xP层(6)是直接转移至第二隧穿层上形成键合,GaxIn1-xP与第二隧穿层直接接触。
2.如权利要求1所述的石墨烯/GaxIn1-xP多结异质太阳能电池,其特征在于,所述的背面电极(1)是金、钯、银、钛、铬、镍、ITO、FTO、AZO的一种或者几种的复合电极。
3.如权利要求1所述的石墨烯/GaxIn1-xP多结异质太阳能电池,其特征在于,所述的正面电极(8)是金、钯、银、钛、铜、铂、铬、镍、ITO、FTO、AZO的一种或者几种的复合电极。
4.如权利要求1所述的石墨烯/GaxIn1-xP多结异质太阳能电池,其特征在于,所述的第一隧穿层(3)和第二隧穿层(5)均选自重掺杂的:AlGaAs、GaInP、GaAs、InGaAs。
5.如权利要求1所述的石墨烯/GaxIn1-xP多结异质太阳能电池,其特征在于,所述的GaxIn1-xP为n型或p型掺杂的GaxIn1-xP,0<x<1。
6.如权利要求1所述的石墨烯/GaxIn1-xP多结异质太阳能电池,其特征在于,所述的石墨烯/GaxIn1-xP层(6)中石墨烯的厚度为0.4纳米至10纳米。
7.如权利要求1所述的石墨烯/GaxIn1-xP多结异质太阳能电池,其特征在于,所述的减反层(7)为具有减少反射作用的透光薄膜,选自氧化硅、氮化硅、氧化铝、氧化钛、碳化硅、氮化硼和氧化铪中的任意一种或几种。
8.制备如权利要求1-7任一项所述的石墨烯/GaxIn1-xP多结异质太阳能电池的方法,其特征在于该方法包括如下步骤:
1)首先制备Ge太阳能电池,在Ge太阳能电池一面制作背面电极,另一面制作第一隧穿层;
2)在步骤1)所得的第一隧穿层上生长GaAs电池,再在GaAs电池上制作第二隧穿层;
3)制备GaxIn1-xP,采用湿法转移将石墨烯转移至GaxIn1-xP上形成石墨烯/GaxIn1-xP层,再采用湿法转移将石墨烯/GaxIn1-xP层转移在第二隧穿层上,使GaxIn1-xP与第二隧穿层直接接触并键合;
4)在上述石墨烯上制备减反层并制作正面电极,得到石墨烯/GaxIn1-xP多结异质太阳能电池。
CN201811057062.0A 2018-09-11 2018-09-11 一种石墨烯/GaInP多结异质太阳能电池及其制备方法 Active CN109273551B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811057062.0A CN109273551B (zh) 2018-09-11 2018-09-11 一种石墨烯/GaInP多结异质太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811057062.0A CN109273551B (zh) 2018-09-11 2018-09-11 一种石墨烯/GaInP多结异质太阳能电池及其制备方法

Publications (2)

Publication Number Publication Date
CN109273551A CN109273551A (zh) 2019-01-25
CN109273551B true CN109273551B (zh) 2020-07-10

Family

ID=65189145

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811057062.0A Active CN109273551B (zh) 2018-09-11 2018-09-11 一种石墨烯/GaInP多结异质太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN109273551B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110137269A (zh) * 2019-04-16 2019-08-16 浙江大学 一种石墨烯/InGaN多结异质太阳能电池及其制备方法
CN110980712A (zh) * 2019-12-24 2020-04-10 广东墨睿科技有限公司 一种无缝隙转移石墨烯的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101489776B1 (ko) * 2012-12-28 2015-02-04 포항공과대학교 산학협력단 양자점 태양전지의 제조방법
CN104332522B (zh) * 2014-11-07 2017-02-15 常熟理工学院 一种石墨烯双结太阳能电池及其制备方法
CN104851935B (zh) * 2015-04-08 2017-03-29 浙江大学 一种电场调控的石墨烯/磷化铟太阳电池及其制备方法
CN108389913A (zh) * 2018-01-31 2018-08-10 华南理工大学 一种GaAs表面钝化增强石墨烯肖特基结太阳电池性能的方法

Also Published As

Publication number Publication date
CN109273551A (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
Płaczek-Popko Top PV market solar cells 2016
Razykov et al. Solar photovoltaic electricity: Current status and future prospects
CN203481251U (zh) 一种薄膜太阳能电池
CN210156403U (zh) 一种串联型钙钛矿/同质结硅叠层太阳能电池
CN109273551B (zh) 一种石墨烯/GaInP多结异质太阳能电池及其制备方法
CN102931275A (zh) 一种具有超晶格结构的新型薄膜太阳电池
CN210073891U (zh) 一种提高抗辐照性能的多结太阳能电池
CN109216484B (zh) 一种石墨烯/AlGaAs多结异质太阳能电池及其制备方法
CN106252430B (zh) 一种晶体硅异质结太阳电池
CN114335348B (zh) 一种pn异质结硒化锑/钙钛矿太阳能电池及其制备方法
CN102790117B (zh) GaInP/GaAs/InGaNAs/Ge四结太阳能电池及其制备方法
CN110137269A (zh) 一种石墨烯/InGaN多结异质太阳能电池及其制备方法
CN111081805A (zh) 一种基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池结构及其制备方法
CN101521248B (zh) 硅基高效双结太阳能电池的制造方法
CN101459206A (zh) 高效多结太阳能电池的制造方法
Mirkamali et al. Simulation of the efficiency of CdS/CdTe tandem multi-junction solar cells
CN110534612A (zh) 一种反向生长三结太阳电池的制备方法
CN110556445A (zh) 一种叠层并联太阳能电池
Tsakalakos Introduction to photovoltaic physics, applications, and technologies
CN208706661U (zh) 一种太阳电池
CN108538937B (zh) 一种太阳电池及其制备方法
CN110137295B (zh) 一种二硫化钼/镓铟氮或铝镓砷多结异质太阳能电池及其制备方法
CN101931015A (zh) 一种透明电极的太阳能电池及其制法
CN208580756U (zh) 一种叠层串联太阳能电池
CN112331774B (zh) 砷化镓/碳纳米管异质结超薄太阳能电池结构及其制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant