CN111081805A - 一种基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池结构及其制备方法 - Google Patents

一种基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池结构及其制备方法 Download PDF

Info

Publication number
CN111081805A
CN111081805A CN201911338817.9A CN201911338817A CN111081805A CN 111081805 A CN111081805 A CN 111081805A CN 201911338817 A CN201911338817 A CN 201911338817A CN 111081805 A CN111081805 A CN 111081805A
Authority
CN
China
Prior art keywords
layer
ingan
graphene
gaas
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911338817.9A
Other languages
English (en)
Other versions
CN111081805B (zh
Inventor
李国强
余粤锋
刘兴江
高鹏
张志杰
林静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
CETC 18 Research Institute
Original Assignee
South China University of Technology SCUT
CETC 18 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT, CETC 18 Research Institute filed Critical South China University of Technology SCUT
Priority to CN201911338817.9A priority Critical patent/CN111081805B/zh
Publication of CN111081805A publication Critical patent/CN111081805A/zh
Application granted granted Critical
Publication of CN111081805B publication Critical patent/CN111081805B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/07Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明属于太阳电池领域,公开了一种基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池结构及其制备方法。所述太阳电池包括由下至上依次层叠的Au背电极、GaAs外延层、第一石墨烯层、Au纳米颗粒层、第二石墨烯层,InGaN纳米柱阵列层、第三石墨烯层、Al2O3减反射层及在外围设置Au顶电极与第三石墨烯层接触。本发明利用能够发生等离激元效应的Au纳米颗粒层/Graphene复合表面作为子结结合结构,既提高整体光利用率,也实现了极高导电的子结间界面,从而提高GaAs太阳电池的转化效率。

Description

一种基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池结构 及其制备方法
技术领域
本发明属于太阳电池领域,具体涉及一种基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池结构及其制备方法。
背景技术
能源问题是世界各国共同面对的巨大挑战,高效太阳能光伏技术作为支撑国民经济、可持续发展战略以及提高我国国际竞争力的重要先进生产力,已成为国家科学技术长期发展规划中至关重要的发展方向。因此,发展高效太阳能光伏技术、提高太阳电池光电转换效率,增强太阳电池实用性刻不容缓。
迄今为止,采用Si基、Ge基等间接带隙半导体材料为主的太阳电池工艺日趋成熟,此外,由于材料本身的性质,光电转换效率提升受到了很大限制。以GaAs为主的Ⅲ-Ⅴ族化合物半导体材料在光伏领域的应用得到了充分的重视与推广。然而,由于GaAs表面具有高的载流子复合速率,导致GaAs太阳电池的光电转效率低,GaAs基太阳电池的高转换效率必须要有复杂的结构和繁琐的工艺支撑,大大限制了以GaAs基为主的Ⅲ-Ⅴ族化合物半导体材料太阳电池的生产和应用。经过本团队前期在太阳电池领域的研究发现,相对于传统的pn结GaAs太阳电池,使用透光性、导电性极优的石墨烯与n-GaAs材料通过范德瓦耳斯贴合,通过肖特基势垒将光生电子空穴对分离产生电流,能够大大提升GaAs太阳电池的电流密度和光利用率,石墨烯的引入为太阳电池效率极限的提升具有重要意义,同时也极大地简化了器件工艺(Nat.Phonics,13,312-318(2019))。然而,石墨烯/半导体肖特基结分离电子空穴对所形成的内建电场强度小于常规pn结,石墨烯/GaAs肖特基结太阳电池的开路电压始终难以得到实质性的提升。
发明内容
针对以上现有技术存在的缺点和不足之处,本发明的首要目的在于提供一种基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池结构。
本发明的另一目的在于提供上述基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池结构的制备方法。
本发明目的至少通过以下之一的技术方案实现。
本发明提供的一种基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池,所述太阳电池包括由下至上依次层叠的Au背电极、Si掺杂GaAs外延层、第一石墨烯层、Au纳米颗粒层、第二石墨烯层、InGaN纳米柱阵列层、第三石墨烯层和Al2O3减反射层,所述Al2O3减反射层面积小于第三石墨烯层的面积,在Al2O3减反射层外围设置有Au顶电极(即Ag接触电极),且所述Au顶电极与第三石墨烯层接触。
优选地,所述Al2O3减反射层面积相对于第三石墨烯层等比例缩小。
本发明利用能够发生等离激元效应的Au纳米颗粒层/Graphene复合表面作为子结结合结构,既提高整体光利用率,也实现了极高导电的子结间界面,从而提高GaAs太阳电池的转化效率。
进一步地,所述Si掺杂GaAs外延层的晶向为[100],在所述Si掺杂GaAs外延层中,Si的掺杂浓度为6×1017-1×1018/cm3;所述Si掺杂GaAs外延层的载流子迁移率为1500~2000cm2/(v·s);所述InGaN纳米柱层厚度为100-400nm,所述InGaN纳米柱阵列层为InxGa(1-x)N,x为0-0.5;所述InGaN纳米柱阵列层中In/Ga原子比例为0~1;所述InGaN纳米柱阵列层的纳米柱阵列密度为100~400/μm2,所述纳米柱直径为30~100nm。
所述Si掺杂GaAs外延层的厚度为0.7mm-1.2mm。所述Si掺杂GaAs外延层的掺杂剂为Si。
进一步地,所述Au纳米颗粒层的纳米颗粒粒径为50~150nm,所述Au纳米颗粒层的密度为107~109/cm2
进一步地,所述Au背电极的厚度为100~200nm;所述Si掺杂GaAs外延层的厚度为0.7-1.2mm;所述InGaN纳米柱层的厚度为100~400nm;所述第一石墨烯层、第二石墨烯层及第三石墨烯层的厚度均为1~3层原子厚度;所述Al2O3减反射层的厚度为20-100nm。
本发明提供一种制备权上述的基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池的方法,其包括如下步骤:
(1)将Si掺杂GaAs外延层基片经清洗后退火处理,然后在基片背面蒸镀一层金作为背电极层,得到Au背电极,蒸镀结束后退火处理;
(2)通过液相法将石墨烯转移到所述Si掺杂GaAs外延层的正面上,烘干处理后,得到第一石墨烯层;
(3)通过电子束蒸镀在第一石墨烯层上蒸镀10nm~30nm的Au层,随后进行真空退火,形成粒径为50~150nm的Au纳米颗粒层;
(4)将Si/SiO2复合衬底基片经清洗后退火处理,用步骤(2)中的液相法转移石墨烯至Si衬底表面,烘干处理,得到第二石墨烯层,随后用分子束外延法(MBE法)在第二石墨烯层上制备InGaN纳米柱阵列层;
(5)使用HF溶液将步骤(4)所述Si/SiO2复合衬底基片的SiO2层腐蚀去除,剥离第二石墨烯层/InGaN纳米柱阵列层复合结构,随后转移到超纯水中反复漂洗,并转移到步骤所述Au纳米颗粒层上;
(6)使用液相法将石墨烯转移至InGaN纳米柱阵列层上,烘干处理,得到第三石墨烯层结构;
(7)利用掩膜版,在第三石墨烯层上用电子束蒸镀法制备一层氧化铝作为减反射层;所述减反射层的面积小于第三石墨烯层;
(8)利用掩膜版,在第三石墨烯层上和氧化铝减反射层周围用电子束蒸镀法制备Au顶电极层,得到所述基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池。
进一步地,步骤(1)所述清洗包括:依次用丙酮、乙醇和超纯水进行超声清洗,然后用盐酸润洗,最后用去离子水进行冲洗。所述丙酮优选AR级丙酮。
进一步地,步骤(1)所述背电极层的蒸镀速率为0.7-1.5nm/s;所述退火处理的温度为150~300℃,退火处理时间为0.5~10min。
进一步地,步骤(3)所述Au纳米颗粒层的蒸镀速率为0.3~0.7nm/s,蒸镀的镀旋转速率为3~7s/圈,蒸镀温度控制在20~40℃;真空退火的温度为100~200℃,真空退火的时间为10s~5min。
优选地,步骤(3)所述真空退火环境的真空度为10-2~10-8torr。
进一步地,步骤(5)所述HF溶液的浓度范围为0.01-1mol/l。所述HF溶液的浓度主要影响石墨烯层的结构完整度,浓度太低使剥离工艺时间太长,石墨烯层中各位置接触溶液的时间不同,在转移过程容易造成破坏,此外,浓度过高会直接破坏石墨烯结构,石墨烯结构破坏会导致电池电流损失甚至电池没有响应。
进一步地,步骤(7)中所述Al2O3减反射层的蒸镀速率为0.1-0.4nm/s。
优选地,步骤(7)所述Al2O3减反射层的蒸镀速率为0.2nm/s。
优选地,步骤(2)、步骤(4)和步骤(6)所述烘干处理的温度为100-140℃。
本发明的原理如下:
n型GaAs与石墨烯之间形成了肖特基结构,受光激发产生电子空穴对,电子通过石墨烯薄膜层通往外电路从而使内电路保持电势差,产生电池效应,同时Au纳米颗粒层在石墨烯层表面受光发生的等离激元效应能够增强光吸收;另一方面,转移到Au纳米颗粒层之上的石墨烯/InGaN复合结构,依靠Au纳米颗粒层与石墨烯的范德华力结合,同时利用石墨烯与Au的欧姆接触,实现子结贴合,制成二结太阳电池;另一方面,InGaN纳米柱阵列可以通过调控In/Ga原子比例控制短路电流和响应波长,实现叠层串列二结电池的电流匹配和带隙匹配,最大程度地提高光利用率和开路电压,从而提高了太阳能电池的光伏转换效率。
相对于现有技术,本发明具有如下优点及有益效果:
(1)本发明提供的基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池,相比于GaAs体系多结电池中的其他短波子结材料,InGaN纳米柱阵列可通过In/Ga原子比例的调整同时实现短路电流可调和带隙可调的性质,能够实现二结电池的电流匹配,提高电池效率;
(2)本发明提供的基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池,通过Au纳米颗粒层金属纳米颗粒与石墨烯接触,受光时产生等离激元效应增强光吸收的同时,还以Au纳米颗粒层与第二石墨烯层实现欧姆接触,以将子结电池串联,增大电池整体电压,拓宽电池整体的光谱响应范围,实现电池光电转换效率的提升。
附图说明
图1为实施例提供的基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池的整体示意图;
其中,Al2O3减反射层1,Au顶电极2,第三石墨烯层3,InGaN纳米柱阵列层4,第二石墨烯层5,Au纳米颗粒层6,第一石墨烯层7,Si掺杂GaAs外延层8,Au背电极9;
图2为实施例1提供的基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池的外量子效率曲线示意图;
图3为实施例1-2提供的基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池的J-V曲线示意图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
图1为实施例提供的基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池的整体示意图,所述太阳电池包括由下至上依次层叠的Au背电极9、Si掺杂GaAs外延层8、第一石墨烯层7、Au纳米颗粒层6、第二石墨烯层5、InGaN纳米柱阵列层4、第三石墨烯层3和Al2O3减反射层1,且Al2O3减反射层1面积相对于第三石墨烯层3等比例缩小,在Al2O3减反射层1外围设置有Au顶电极2,且所述Au顶电极2与第三石墨烯层3接触。
下述实施例中,第一石墨烯层、第二石墨烯层、第三石墨烯层的制备方法均可参考文献(陈鑫耀,田博,蔡伟伟.MPEE-CVD法可控多层石墨烯制备[J].功能材料,2016(12).)。
实施例1
一种制备所述基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池的方法,包括如下步骤:
(1)将厚度为1.0mm的Si掺杂GaAs外延层基片(Si掺杂浓度为8×1017/cm3)依次经AR级丙酮、乙醇和超纯水进行超声清洗,然后用盐酸润洗,最后用去离子水进行冲洗后退火处理,退火温度为280℃,退火持续20min,然后在基片背面蒸镀一层金作为背电极层,蒸镀速率为1nm/s,总厚度为150nm,蒸镀结束后再次退火处理,退火温度为270℃,退火时间为30s;
(2)通过液相法将石墨烯转移到Si掺杂GaAs外延层上,具体过程为将生长在铜基底上的石墨烯表面旋涂PMMA固定,随后放在0.2mol/l的硝酸铁溶液表面,将铜基底彻底腐蚀,随后用陪片将其在超纯水进行5次转移,已彻底除去残余的Cu离子,最后将其转移到已经过预处理的GaAs外延层上,烘干处理后,得到第一石墨烯层;
(3)通过电子束蒸镀在第一石墨烯层上蒸镀平均粒径为70nm的Au纳米颗粒层;蒸镀速率为0.5nm/s,蒸镀旋转速率为5s/圈,衬底台温度为25℃,随后进行真空退火,真空退火温度为100℃,真空退火时间为20s,形成Au纳米颗粒层;
(4)将Si/SiO2复合衬底基片经清洗后退火处理,清洗及退火与(1)相同,用(2)的方法转移石墨烯至Si衬底表面,烘干,得到第二石墨烯层,随后用分子束外延法(MBE法)制备InGaN纳米柱阵列层,具体为将衬底温度升到720℃,N分压为4sccm,Ga束流量为8×10- 8torr,In束流量为2×10-8torr,射频功率为200W的条件下生长InGaN纳米柱,生长时间为1小时,生长速率为200nm/h;
(5)使用0.01mol/L的HF溶液将Si/SiO2/Graphene/InGaN中的SiO2层腐蚀去除,剥离第二石墨烯层/InGaN纳米柱阵列的复合结构,随后用陪片将被剥离的第二石墨烯层/InGaN纳米柱阵列复合结构转移到超纯水中反复漂洗;
(6)再次使用(2)、(4)的方法将石墨烯转移至InGaN纳米柱阵列层上,烘干,得到第三石墨烯层结构;
(7)利用掩膜版,在第三石墨烯层上用电子束蒸镀法制备一层氧化铝作为减反射层,蒸镀速率为0.1nm/s,厚度为25nm,减反射层面积需为第三石墨烯层等比例缩小;
(8)利用掩膜版,在第三石墨烯层上、氧化铝减反射层周围用电子束蒸镀法制备Au顶电极层,厚度与背电极相等,顶电极层只与第三石墨烯层接触,得到所述基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池。
本实施例所得基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池的外量子效率与有无InGaN层结构的GaAs石墨烯太阳电池的J-V曲线分别如图2、图3所示。图2为实施例1的外量子效率曲线,在500nm附近的波段,EQE较其他波段高,可见对应波段的InGaN材料的加入成功提升了该波段的光子利用率,图3为实施例1-2中的太阳电池的J-V曲线,对比了无InGaN结构器件及实施例1和实施例2的电流-电压特性,可见InGaN子结的引入成功地增大了开路电压和短路电流,并说明调控InGaN以调控子结电流能够有效电流匹配。图3中的示例1表示实施例1得到的基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池,示例2表示实施例2得到的基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池,无InGaN结构器件(即无纳米柱阵列层结构器件)为Au/GaAs/Graphene/减反射膜+银浆电极的太阳电池器件结构。
本实施例提供的基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池是一种垂直结构的单结太阳电池元件,其将生长于Si上的石墨烯/InGaN纳米柱/石墨烯结构转移到GaAs/石墨烯/Au纳米颗粒层单结石墨烯肖特基结太阳电池上,制成GaAs/InGaN两结石墨烯肖特基结太阳电池,一方面以InGaN纳米柱阵列作为陷光结构,增强光吸收,另一方面通过InGaN纳米柱的表面态抑制光生载流子在结构内部的复合,大幅提升载流子寿命,减少电流损耗,同时利用InxGa1-xN纳米柱材料中可控的In/Ga比控制InGaN子结的光响应波段与短路电流密度,实现二结电池的带隙和电流匹配,大幅提高整体输出功率与短路电流密度,实现光电转换效率的提升。
同时该电池结构简单,制作周期短,易于实现,工艺过程中产生的污染物少,可见此结构为一种具有实用性的高效新型太阳电池结构。
实施例2
一种制备所述基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池的方法,包括如下步骤:
(1)将厚度为1.2nm的Si掺杂GaAs外延层基片(Si掺杂浓度为8×1017/cm3)依次经AR级丙酮、乙醇和超纯水进行超声清洗,然后用盐酸润洗,最后用去离子水进行冲洗后退火处理,退火温度为200℃,退火持续17min,然后在基片背面蒸镀一层金作为背电极层,蒸镀速率为0.8nm/s,总厚度为100nm,蒸镀结束后再次退火处理,退火温度为175℃,退火时间为40s;
(2)通过液相法将石墨烯转移到Si掺杂GaAs外延层上,具体过程为将生长在铜基底上的石墨烯表面旋涂PMMA固定,随后放在0.2mol/l的硝酸铁溶液表面,将铜基底彻底腐蚀,随后用陪片将其在超纯水进行5次转移,已彻底除去残余的Cu离子,最后将其转移到已经过预处理的GaAs外延层上,烘干处理后,得到第一石墨烯层;
(3)通过电子束蒸镀在第一石墨烯层上蒸镀平均粒径为115nm的Au纳米颗粒层,蒸镀速率为0.4nm/s,蒸镀旋转速率为7s/圈,衬底台温度为25℃,随后进行真空退火,温度为120℃,时间为25s,形成Au纳米颗粒层;
(4)将Si/SiO2复合衬底基片经清洗后退火处理,清洗及退火与(1)相同,用(2)的方法转移石墨烯至Si衬底表面,烘干,得到第二石墨烯层,随后用分子束外延法(MBE法)制备InGaN纳米柱阵列层,具体为将衬底温度升到680℃,N分压为3sccm,Ga束流量为7×10- 8torr,In束流量为3×10-8torr,射频功率为180W的条件下生长InGaN纳米柱,生长时间为1.2小时,生长速率为150nm/h;
(5)使用0.01mol/l的HF溶液将Si/SiO2/Graphene/InGaN中的SiO2层腐蚀去除,剥离第二石墨烯层/InGaN纳米柱阵列的复合结构,随后用陪片将被剥离的第二石墨烯层/InGaN纳米柱阵列复合结构转移到超纯水中反复漂洗;
(6)再次使用(2)、(4)的方法将石墨烯转移至InGaN纳米柱阵列层上,烘干处理,得到第三石墨烯层结构;
(7)利用掩膜版,在第三石墨烯层上用电子束蒸镀法制备一层氧化铝作为减反射层,蒸镀速率为0.2nm/s,厚度为30nm,减反射层面积需为第三石墨烯层等比例缩小;
(8)利用掩膜版,在第三石墨烯层上、氧化铝减反射层周围用电子束蒸镀法制备Au顶电极层,厚度与背电极相等,顶电极层只与第三石墨烯层接触,得到所述基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池。
本实施例提供的基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池是一种垂直结构的单结太阳电池元件,其将生长于Si上的石墨烯/InGaN纳米柱/石墨烯结构转移到GaAs/石墨烯/Au纳米颗粒层单结石墨烯肖特基结太阳电池上,制成GaAs/InGaN两结石墨烯肖特基结太阳电池,一方面以InGaN纳米柱阵列作为陷光结构,增强光吸收,另一方面通过InGaN纳米柱的表面态抑制光生载流子在结构内部的复合,大幅提升载流子寿命,减少电流损耗,同时利用InxGa1-xN纳米柱材料中可控的In/Ga比控制InGaN子结的光响应波段与短路电流密度,实现二结电池的带隙和电流匹配,大幅提高整体输出功率与短路电流密度,实现光电转换效率的提升,可参照图1、图2及图3。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池,其特征在于,所述太阳电池包括由下至上依次层叠的Au背电极(9)、Si掺杂GaAs外延层(8)、第一石墨烯层(7)、Au纳米颗粒层(6)、第二石墨烯层(5)、InGaN纳米柱阵列层(4)、第三石墨烯层(3)和Al2O3减反射层(1),所述Al2O3减反射层(1)面积小于第三石墨烯层(3)的面积,在Al2O3减反射层(1)外围设置有Au顶电极(2),且所述Au顶电极(2)与第三石墨烯层(3)接触。
2.根据权利要求1所述的基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池,其特征在于,所述Si掺杂GaAs外延层(8)的晶向为[100],所述Si掺杂GaAs外延层(8)的厚度为0.7mm-1.2mm,在所述Si掺杂GaAs外延层(8)中,Si的掺杂浓度为6×1017-1×1018/cm3;所述Si掺杂GaAs外延层(8)的载流子迁移率为1500~2000cm2/(v·s);所述InGaN纳米柱层(4)厚度为100-400nm,,所述InGaN纳米柱阵列层(4)为InxGa(1-x)N,x为0~0.5;所述InGaN纳米柱阵列层(4)中In/Ga原子比例为0~1;所述InGaN纳米柱阵列层(4)的纳米柱阵列密度为100~400/μm2,所述纳米柱直径为30~100nm。
3.根据权利要求1所述的基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池,其特征在于,所述Au纳米颗粒层(6)的纳米颗粒粒径为50~150nm,所述Au纳米颗粒层(6)的密度为107-109/cm2
4.根据权利要求1所述的基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池,其特征在于,所述Au背电极(9)的厚度为100-200nm;所述Si掺杂GaAs外延层(8)的厚度为0.7-1.2mm;所述InGaN纳米柱层的厚度为100-400nm;所述第一石墨烯层(7)、第二石墨烯层(5)及第三石墨烯层(3)的厚度均为1~3层原子厚度;所述Al2O3减反射层(1)的厚度为20-100nm。
5.一种制备权利要求1-4任一项所述的基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池的方法,其特征在于,包括如下步骤:
(1)将Si掺杂GaAs外延层(8)基片经清洗后退火处理,然后在基片的背面蒸镀一层金作为背电极层,得到Au背电极(9),蒸镀结束后退火处理;
(2)通过液相法将石墨烯转移到所述Si掺杂GaAs外延层(8)的正面上,烘干处理后,得到第一石墨烯层(7);
(3)通过电子束蒸镀在第一石墨烯层(7)上蒸镀10nm~30nm的Au层,随后进行真空退火,形成粒径为50~150nm的Au纳米颗粒层(6);
(4)将Si/SiO2复合衬底基片经清洗后退火处理,用步骤(2)中的液相法转移石墨烯至Si衬底表面,烘干处理,得到第二石墨烯层(5),随后用分子束外延法在第二石墨烯层(5)上制备InGaN纳米柱阵列层(4);
(5)使用HF溶液将步骤(4)所述Si/SiO2复合衬底基片的SiO2层腐蚀去除,剥离第二石墨烯层(5)/InGaN纳米柱阵列层(4)复合结构,随后转移到超纯水中反复漂洗,并转移到步骤(3)所述Au纳米颗粒层(6)上;
(6)使用液相法将石墨烯转移至InGaN纳米柱阵列层(4)上,烘干处理,得到第三石墨烯层(3)结构;
(7)利用掩膜版,在第三石墨烯层(3)上用电子束蒸镀法制备一层氧化铝作为减反射层(2);
(8)利用掩膜版,在第三石墨烯层(3)上和氧化铝减反射层(2)周围用电子束蒸镀法制备Au顶电极层(1),得到所述基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池。
6.根据权利要求5所述的制备基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池的方法,其特征在于,步骤(1)所述清洗包括:依次用丙酮、乙醇和超纯水进行超声清洗,然后用盐酸润洗,最后用去离子水进行冲洗。
7.根据权利要求5所述的制备基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池的方法,其特征在于,步骤(1)所述背电极层(9)的蒸镀速率为0.7~1.5nm/s;所述退火处理的温度为150~300℃,退火处理时间为0.5~10min。
8.根据权利要求5所述的制备基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池的方法,其特征在于,步骤(3)所述Au纳米颗粒层(6)的蒸镀速率为0.3~0.7nm/s,蒸镀的镀旋转速率为3~7s/圈,蒸镀温度控制在20~40℃;真空退火的温度为100~200℃,真空退火的时间为10s~5min。
9.根据权利要求5所述的制备基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池的方法,其特征在于,步骤(5)所述HF溶液的浓度范围为0.01-1mol/L。
10.根据权利要求5所述的制备基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池的方法,其特征在于,步骤(7)中所述Al2O3减反射层的蒸镀速率为0.1-0.4nm/s。
CN201911338817.9A 2019-12-23 2019-12-23 一种基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池结构及其制备方法 Active CN111081805B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911338817.9A CN111081805B (zh) 2019-12-23 2019-12-23 一种基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911338817.9A CN111081805B (zh) 2019-12-23 2019-12-23 一种基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池结构及其制备方法

Publications (2)

Publication Number Publication Date
CN111081805A true CN111081805A (zh) 2020-04-28
CN111081805B CN111081805B (zh) 2021-11-02

Family

ID=70316897

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911338817.9A Active CN111081805B (zh) 2019-12-23 2019-12-23 一种基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池结构及其制备方法

Country Status (1)

Country Link
CN (1) CN111081805B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111916521A (zh) * 2020-06-09 2020-11-10 华南理工大学 一种具有界面等离激元效应的双结GaAs/Si肖特基结太阳电池及其制备方法
CN111916522A (zh) * 2020-06-09 2020-11-10 华南理工大学 一种钯连接的双结GaAs/Si肖特基结太阳电池及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201516A (zh) * 2011-04-22 2011-09-28 中国科学院苏州纳米技术与纳米仿生研究所 InGaN纳米柱阵列有源区LED及其制备方法
CN103107229A (zh) * 2013-02-25 2013-05-15 中国科学院苏州纳米技术与纳米仿生研究所 新型石墨烯/半导体多结级联太阳电池及其制备方法
CN103887073A (zh) * 2014-03-31 2014-06-25 北京大学 一种基于表面等离子体增强原理的太阳能电池及其制备方法
CN109728119A (zh) * 2018-11-30 2019-05-07 浙江大学 一种石墨烯/AlGaAs/GaAs/GaInAs多异质结太阳能电池及其制备方法
CN109768111A (zh) * 2018-12-13 2019-05-17 华南理工大学 一种GaAs纳米柱-石墨烯肖特基结太阳能电池及其制备方法
CN110137269A (zh) * 2019-04-16 2019-08-16 浙江大学 一种石墨烯/InGaN多结异质太阳能电池及其制备方法
CN110246913A (zh) * 2019-06-21 2019-09-17 华南理工大学 一种InGaN纳米柱阵列基GSG型可调谐光电探测器及其制备方法
CN110571289A (zh) * 2019-09-23 2019-12-13 华南理工大学 一种InP-石墨烯太阳电池及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201516A (zh) * 2011-04-22 2011-09-28 中国科学院苏州纳米技术与纳米仿生研究所 InGaN纳米柱阵列有源区LED及其制备方法
CN103107229A (zh) * 2013-02-25 2013-05-15 中国科学院苏州纳米技术与纳米仿生研究所 新型石墨烯/半导体多结级联太阳电池及其制备方法
CN103887073A (zh) * 2014-03-31 2014-06-25 北京大学 一种基于表面等离子体增强原理的太阳能电池及其制备方法
CN109728119A (zh) * 2018-11-30 2019-05-07 浙江大学 一种石墨烯/AlGaAs/GaAs/GaInAs多异质结太阳能电池及其制备方法
CN109768111A (zh) * 2018-12-13 2019-05-17 华南理工大学 一种GaAs纳米柱-石墨烯肖特基结太阳能电池及其制备方法
CN110137269A (zh) * 2019-04-16 2019-08-16 浙江大学 一种石墨烯/InGaN多结异质太阳能电池及其制备方法
CN110246913A (zh) * 2019-06-21 2019-09-17 华南理工大学 一种InGaN纳米柱阵列基GSG型可调谐光电探测器及其制备方法
CN110571289A (zh) * 2019-09-23 2019-12-13 华南理工大学 一种InP-石墨烯太阳电池及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111916521A (zh) * 2020-06-09 2020-11-10 华南理工大学 一种具有界面等离激元效应的双结GaAs/Si肖特基结太阳电池及其制备方法
CN111916522A (zh) * 2020-06-09 2020-11-10 华南理工大学 一种钯连接的双结GaAs/Si肖特基结太阳电池及其制备方法

Also Published As

Publication number Publication date
CN111081805B (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
TWI542026B (zh) 高效多接面太陽能電池
Asim et al. A review on the role of materials science in solar cells
US9437769B2 (en) Four-junction quaternary compound solar cell and method thereof
US20150194562A1 (en) Silicon heterojunction photovoltaic device with wide band gap emitter
CN111081805B (zh) 一种基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池结构及其制备方法
Ghosh et al. Recent progress in Si hetero-junction solar cell: A comprehensive review
Pouladi et al. High‐efficiency flexible III‐V photovoltaic solar cells based on single‐crystal‐like thin films directly grown on metallic tapes
CN110571289B (zh) 一种InP-石墨烯太阳电池及其制备方法
Makita et al. Mechanical stacked GaAs//CuIn1− yGaySe2 three‐junction solar cells with 30% efficiency via an improved bonding interface and area current‐matching technique
CN103000709B (zh) 背电极、背电极吸收层复合结构及太阳能电池
CN109216484B (zh) 一种石墨烯/AlGaAs多结异质太阳能电池及其制备方法
Tang Copper indium gallium selenide thin film solar cells
Zhou et al. An investigation on a crystalline-silicon solar cell with black silicon layer at the rear
CN108735848B (zh) 多结叠层激光光伏电池及其制作方法
Makita et al. GaAs//CuIn 1− y Ga y Se 2 Three-Junction Solar Cells With 28.06% Efficiency Fabricated Using a Bonding Technique Involving Pd Nanoparticles and an Adhesive
US20150122329A1 (en) Silicon heterojunction photovoltaic device with non-crystalline wide band gap emitter
CN110534612B (zh) 一种反向生长三结太阳电池的制备方法
CN109273551B (zh) 一种石墨烯/GaInP多结异质太阳能电池及其制备方法
CN210429835U (zh) 一种InP-石墨烯太阳电池
CN101521248B (zh) 硅基高效双结太阳能电池的制造方法
CN110444616B (zh) 一种超薄晶硅太阳电池及其制备方法
CN102231402B (zh) 一种ii-vi族稀释氧化物半导体薄膜太阳电池
CN111916521A (zh) 一种具有界面等离激元效应的双结GaAs/Si肖特基结太阳电池及其制备方法
CN110504334A (zh) 一种高In组分的InGaN/GaN多量子阱太阳能电池
Sun Recent progress in anti-reflection layer fabrication for solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant