CN110137269A - 一种石墨烯/InGaN多结异质太阳能电池及其制备方法 - Google Patents

一种石墨烯/InGaN多结异质太阳能电池及其制备方法 Download PDF

Info

Publication number
CN110137269A
CN110137269A CN201910305474.XA CN201910305474A CN110137269A CN 110137269 A CN110137269 A CN 110137269A CN 201910305474 A CN201910305474 A CN 201910305474A CN 110137269 A CN110137269 A CN 110137269A
Authority
CN
China
Prior art keywords
graphene
layer
solar battery
ties
tunnel junctions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910305474.XA
Other languages
English (en)
Inventor
林时胜
姚天易
孙利杰
周大勇
陆阳华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Shanghai Academy of Spaceflight Technology SAST
Original Assignee
Zhejiang University ZJU
Shanghai Academy of Spaceflight Technology SAST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU, Shanghai Academy of Spaceflight Technology SAST filed Critical Zhejiang University ZJU
Priority to CN201910305474.XA priority Critical patent/CN110137269A/zh
Publication of CN110137269A publication Critical patent/CN110137269A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/30Coatings
    • H10F77/306Coatings for devices having potential barriers
    • H10F77/311Coatings for devices having potential barriers for photovoltaic cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/19Photovoltaic cells having multiple potential barriers of different types, e.g. tandem cells having both PN and PIN junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/121The active layers comprising only Group IV materials
    • H10F71/1212The active layers comprising only Group IV materials consisting of germanium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/127The active layers comprising only Group III-V materials, e.g. GaAs or InP
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/30Coatings
    • H10F77/306Coatings for devices having potential barriers
    • H10F77/311Coatings for devices having potential barriers for photovoltaic cells
    • H10F77/315Coatings for devices having potential barriers for photovoltaic cells the coatings being antireflective or having enhancing optical properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种石墨烯/InGaN多结异质太阳能电池,该太阳能电池自下而上依次包括:背面电极、Ge电池层、第一隧穿结、GaAs电池层、第二隧穿结、石墨烯/InxGa1‑xN层、量子点层、减反层和正面电极。本发明的多结异质太阳能电池通过调节InxGa1‑xN中x的值,InGaN的禁带宽度可在3.4eV(GaN)到0.7eV(InN)之间连续变化,可有效控制其吸收光谱范围。同时,石墨烯与InxGa1‑ xN形成异质结不需要晶格匹配,可直接转移。除此之外,石墨烯与InxGa1‑xN形成的异质结拥有较高的开路电压,也使石墨烯/InxGa1‑xN太阳能电池具有更高的光电转换效率。本发明阐述的基于石墨烯/InxGa1‑xN的多结异质太阳能电池性价比高、工艺简单、易于商业化推广。

Description

一种石墨烯/InGaN多结异质太阳能电池及其制备方法
技术领域
本发明涉及一种太阳能电池及其制造方法,尤其涉及一种石墨烯/InGaN(即石墨烯/InxGa1-xN)多结异质太阳能电池及其制备方法,属于新型太阳能电池技术领域。
背景技术
现如今,能源危机和环境问题已经成为世界性的重大技术难题,而我国过分依赖煤、石油、天然气等传统能源的能源结构也亟待改变。“绿水青山就是金山银山”——随着我国政府对生态环境问题的日益重视,总量大、无污染的太阳能成为大家关注的焦点。其中太阳能电池光伏产业成为二十世纪八十年代后增长最快的高新技术产业之一,其最近5年的年平均增长率为49.5%。目前商业化的太阳能电池产品中,晶体硅(单晶和多晶)太阳能电池的市场份额最大,一直保持85%以上的市场占有率。但太阳能发电所占比例还很低,究其原因,很重要的一点是太阳能电池发电成本较高。成本高来源于两个方面,一是其组件本身价格高,二是其光电转换效率低。市面上的传统硅晶太阳能电池的光电转换效率实测在20%左右,远低于S-Q极限转换效率32%,如何提高商业硅晶太阳能电池的光电转换效率、降低太阳能发电成本显得尤为重要。
石墨烯自2004年被发现以来,因其独特的结构和优异的性能,成为各方追逐的焦点。其中石墨烯具有极高的电子迁移率,高度可调的导电性,微尺度弹道传输,异常的量子霍尔效应,2.3%的可见光吸收率和高机械强度等突出的电学,光学和物理性能,使其在太阳能光伏产业中大展身手。其制备方法也日渐成熟,现已可通过多种方法制得纯度高、价格低的石墨烯。2017年,浙江大学Lin课题小组预测石墨烯太阳能效率可以超过30%。
太阳能光谱范围极广,其中99.9%的能量集中在可见光、红外光和紫外光,地面上观测到的太阳能波长范围为0.295-2.5um。单晶太阳能电池因只能吸收特定频段的太阳能光而限制了其光电转换效率的提升,多结太阳能电池则在此方面有突出的优势。选取Ge、GaAs和InxGa1-xN这三种禁带宽度不同的材料,从下到上叠加起来,扩大了整个太阳能电池可吸收的太阳能频率范围,从而大大提高了光电转换效率。其中InxGa1-xN的禁带宽度可在3.4eV(GaN)到0.7eV(InN)之间连续变化,可调节In的含量将InxGa1-xN的禁带宽度控制在1.8eV-2.0eV,主要吸收650nm以下的光;GaAs的帯隙宽度为1.42eV,吸收650-880nm的光;Ge的帯隙宽度为0.67eV,吸收880-1850nm的光。
此外,与传统多结太阳能电池相比,石墨烯/InxGa1-xN多结异质太阳能电池的结区位于器件表面,因此通过前表面的设计可以有效的提高其转化效率;同时石墨烯与半导体之间形成异质结不需要晶格匹配,方便器件的制备和转移;石墨烯与InxGa1-xN形成的异质结带隙更大也具有更高的开路电压,从而可以进一步提升多结太阳能电池的整体效率。
发明内容
本发明的目的在于提供一种石墨烯/InxGa1-xN多结异质太阳能电池及其制备方法。
本发明的石墨烯/InxGa1-xN多结异质太阳能电池,自下而上依次有背面电极、Ge电池层、第一隧穿结、GaAs电池层、第二隧穿结、石墨烯/InxGa1-xN层、量子点层、减反层和正面电极;所述的石墨烯/InxGa1-xN层(6)是通过湿法转移至第二隧穿结上并使得InxGa1-xN与第二隧穿结直接接触。
上述技术方案中,所述的背面电极可以是金、钯、银、钛、铬、镍、ITO、FTO、AZO的一种或者几种的复合电极。
所述的正面电极可以是金、钯、银、钛、铜、铂、铬、镍、ITO、FTO、AZO的一种或者几种的复合电极。
所述的第一隧穿结和第二隧穿结均可以是重掺杂的AlGaAs、GaInP、GaAs、InGaAs一种或几种。
所述的InxGa1-xN为n型或p型掺杂的InxGa1-xN,0<x<1。
所述的量子点层通常为金、银、铝、镍、或氧化锌,量子点尺寸为5纳米至200纳米。
所述的减反层为具有减少反射作用的透光薄膜,可以是氧化硅、氮化硅、氧化铝、氧化钛、碳化硅、氮化硼和氧化铪中的任意一种或几种。
制造上述石墨烯/InxGa1-xN多结异质太阳能电池的方法,包括如下步骤:
1)首先制备Ge太阳能电池并在一面制作背面电极,另一面制作第一隧穿结;
2)在步骤1)所得的Ge太阳能电池第一隧穿结上生长GaAs电池层并制作第二隧穿结;
3)采用湿法转移将石墨烯转移至预先生长好的InxGa1-xN上,获得石墨烯/InxGa1- xN,再采用湿法转移将石墨烯/InxGa1-xN转移至步骤2)所得的双结半导体衬底第二隧穿结上,使得InxGa1-xN与第二隧穿结直接接触;
4)在步骤3)的基础上,在石墨烯层上添加量子点层;
5)在步骤4)的基础上,在量子点层上制作减反层;
6)在步骤5)的基础上,在减反层上制作正面电极。
本发明的石墨烯/InxGa1-xN多结异质太阳能电池利用Ge、GaAs、InxGa1-xN的帯隙不同,可对不同频率的太阳能分别吸收,有效提高太阳能电池的光电转换效率。减反层可以减少反射,增加太阳能利用率。利用量子点可以进行光掺杂,利用表面等离子增强直接作用于异质结结区,相比较于传统pn结结区处于相对较深的位置,本发明提出的表面等离子共振可以有效提高石墨烯/InxGa1-xN多结异质太阳能电池的转化效率。与传统多结太阳能电池相比,石墨烯与半导体之间形成异质结不需要晶格匹配,方便器件的制备和转移;石墨烯与InxGa1-xN形成的异质结带隙更大也具有更高的开路电压,从而可以进一步提升多结太阳能电池的整体效率。本发明阐述的基于石墨烯/InxGa1-xN的多结异质太阳能电池具有性价比高、工艺简单、易于商业化推广的特点。
附图说明
图1为石墨烯/InxGa1-xN多结异质太阳能电池的结构示意图;
图2为石墨烯/In0.5Ga0.5N在光照条件下的J-V曲线图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步说明。
参照图1,本发明的石墨烯/InxGa1-xN多结异质太阳能电池,其特征在于自下而上依次有背面电极(1)、Ge电池层(2)、第一隧穿结(3)、GaAs电池层(4)、第二隧穿结(5)、石墨烯/InxGa1-xN层(6)、量子点层(7)、减反层(8)和正面电极(9)。
实施例1:
1)首先制备Ge太阳能电池并在一面用Ag制作背面电极,另一面制作重掺杂的GaInP作为第一隧穿结;
2)在步骤1)所得的Ge太阳能电池第一隧穿结上生长GaAs电池层并制作重掺杂的GaInP作为第二隧穿结;
3)预先生长一层N型In0.5Ga0.5N,通过柔性高分子材料如聚甲基丙烯酸甲酯(PMMA)作为支撑层将单层石墨烯湿法转移至其上获得石墨烯/In0.5Ga0.5N,再用步骤2)获得的结构将石墨烯/In0.5Ga0.5N捞起,从而使石墨烯/In0.5Ga0.5N转移至第二隧穿结上,然后用丙酮异丙醇去除PMMA;
4)在石墨烯/In0.5Ga0.5N上增加TiO2/SiO2双层薄膜作为减反层并制作正面电极——Ag电极。
5)在石墨烯上旋涂20纳米粒径的氧化锌量子点溶液得到量子点增强的三结太阳能电池。
通过调节InxGa1-xN中x的值,InGaN的禁带宽度可在3.4eV(GaN)到0.7eV(InN)之间连续变化,可有效控制其吸收光谱范围。当x=0.5时,In0.5Ga0.5N的禁带宽度为2.05eV,而GaAs禁带宽度是1.42eV,Ge的禁带宽度是0.65eV。三者自上而下依次叠加,组成以石墨烯/In0.5Ga0.5N为顶电池、GaAs为中电池、Ge为底电池的三结太阳能电池。因此,太阳光可以从上而下梯度吸收,从而提高光吸收率。另外光照情况下在表面的量子点对石墨烯进行光掺杂,提高光在太阳能电池中的吸收和收集,提高光电转换效率。
实施例2:
1)首先制备Ge太阳能电池并在一面用Au制作背面电极,另一面制作重掺杂的GaInP作为第一隧穿结;
2)在步骤1)所得的Ge太阳能电池第一隧穿结上生长GaAs电池层并制作重掺杂的GaInP作为第二隧穿结;
3)预先生长一层N型In0.4Ga0.6N,通过柔性高分子材料如聚甲基丙烯酸甲酯(PMMA)作为支撑层将单层石墨烯湿法转移至其上获得石墨烯/In0.4Ga0.6N,再用步骤2)获得的结构将石墨烯/In0.4Ga0.6N捞起,从而使石墨烯/In0.4Ga0.6N转移至第二隧穿结上,然后用丙酮异丙醇去除PMMA;
4)在石墨烯/In0.4Ga0.6N上增加TiO2/SiO2双层薄膜作为减反层并制作正面电极——Au电极。
5)在石墨烯上旋涂20纳米粒径的氧化锌量子点溶液得到量子点增强的三结太阳能电池。
实施例3:
1)首先制备Ge太阳能电池并在一面用Pt制作背面电极,另一面制作重掺杂的GaInP作为第一隧穿结;
2)在步骤1)所得的Ge太阳能电池第一隧穿结上生长GaAs电池层并制作重掺杂的GaInP作为第二隧穿结;
3)预先生长一层N型In0.4Ga0.6N,通过柔性高分子材料如聚甲基丙烯酸甲酯(PMMA)作为支撑层将单层石墨烯湿法转移至其上获得石墨烯/In0.4Ga0.6N,再用步骤2)获得的结构将石墨烯/In0.4Ga0.6N捞起,从而使石墨烯/In0.4Ga0.6N转移至第二隧穿结上,然后用丙酮异丙醇去除PMMA;
4)在石墨烯/In0.4Ga0.6N上增加TiO2/SiO2双层薄膜作为减反层并制作正面电极——Pt电极。
5)在石墨烯上旋涂20纳米粒径的氧化锌量子点溶液得到量子点增强的三结太阳能电池。
实施例4:
1)首先制备Ge太阳能电池并在一面用Cu制作背面电极,另一面制作重掺杂的GaInP作为第一隧穿结;
2)在步骤1)所得的Ge太阳能电池第一隧穿结上生长GaAs电池层并制作重掺杂的GaInP作为第二隧穿结;
3)预先生长一层N型In0.5Ga0.5N,通过柔性高分子材料如聚甲基丙烯酸甲酯(PMMA)作为支撑层将单层石墨烯湿法转移至其上获得石墨烯/In0.5Ga0.5N,再用步骤2)获得的结构将石墨烯/In0.5Ga0.5N捞起,从而使石墨烯/In0.5Ga0.5N转移至第二隧穿结上,然后用丙酮异丙醇去除PMMA;
4)在石墨烯/In0.5Ga0.5N上增加TiO2/SiO2双层薄膜作为减反层并制作正面电极——Cu电极。
5)在石墨烯上旋涂20纳米粒径的氧化锌量子点溶液得到量子点增强的三结太阳能电池。

Claims (9)

1.一种石墨烯/InxGa1-xN多结异质太阳能电池,其特征在于,自下而上依次有背面电极(1)、Ge电池层(2)、第一隧穿结(3)、GaAs电池层(4)、第二隧穿结(5)、石墨烯/InxGa1-xN层(6)、量子点层(7)、减反层(8)和正面电极(9);所述的石墨烯/InxGa1-xN层(6)是通过湿法转移至第二隧穿结上并使得InxGa1-xN与第二隧穿结直接接触。
2.根据权利要求1所述的石墨烯/InxGa1-xN多结异质太阳能电池,其特征在于,所述的背面电极(1)是金、钯、银、钛、铬、镍、ITO、FTO、AZO的一种或者几种的复合电极。
3.根据权利要求1所述的石墨烯/InxGa1-xN多结异质太阳能电池,其特征在于,所述的正面电极(9)是金、钯、银、钛、铜、铂、铬、镍、ITO、FTO、AZO的一种或者几种的复合电极。
4.根据权利要求1所述的石墨烯/InxGa1-xN多结异质太阳能电池,其特征在于,所述的第一隧穿结(3)和第二隧穿结(5)选自重掺杂的AlGaAs、GaInP、GaAs、InGaAs中的一种或几种。
5.根据权利要求1所述的石墨烯/InxGa1-xN多结异质太阳能电池,其特征在于,所述的InxGa1-xN为n型或p型掺杂的InxGa1-xN,0<x<1。
6.根据权利要求1所述的石墨烯/InxGa1-xN多结异质太阳能电池,其特征在于,所述的石墨烯/InxGa1-xN层(3)中石墨烯的厚度为0.4纳米至10纳米。
7.根据权利要求1所述石墨烯/InxGa1-xN多结异质太阳能电池,其特征在于,所述的量子点层(7)为金、银、铝、镍、氧化锌中的一种,量子点尺寸为5纳米至200纳米。
8.根据权利要求1所述的石墨烯/InxGa1-xN多结异质太阳能电池,其特征在于,所述的减反层(8)为具有减反射透光薄膜,选自氧化硅、氮化硅、氧化铝、氧化钛、碳化硅、氮化硼和氧化铪中的任意一种或几种。
9.制备如权利要求1-8任一项所述的石墨烯/InxGa1-xN多结异质太阳能电池的方法,其特征在于,该方法包括如下步骤:
1)首先制备Ge太阳能电池并在一面制作背面电极,另一面制作第一隧穿结;
2)在步骤1)所得的Ge太阳能电池第一隧穿结上生长GaAs电池层并制作第二隧穿结;
3)采用湿法转移将石墨烯转移至预先生长好的InxGa1-xN上,获得石墨烯/InxGa1-xN,再采用湿法转移将石墨烯/InxGa1-xN转移至步骤2)所得的双结半导体衬底第二隧穿结上,使得InxGa1-xN与第二隧穿结直接接触;
4)在步骤3)的基础上,在石墨烯层上添加量子点层;
5)在步骤4)的基础上,在量子点层上制作减反层;
6)在步骤5)的基础上,在减反层上制作正面电极。
CN201910305474.XA 2019-04-16 2019-04-16 一种石墨烯/InGaN多结异质太阳能电池及其制备方法 Pending CN110137269A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910305474.XA CN110137269A (zh) 2019-04-16 2019-04-16 一种石墨烯/InGaN多结异质太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910305474.XA CN110137269A (zh) 2019-04-16 2019-04-16 一种石墨烯/InGaN多结异质太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
CN110137269A true CN110137269A (zh) 2019-08-16

Family

ID=67570156

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910305474.XA Pending CN110137269A (zh) 2019-04-16 2019-04-16 一种石墨烯/InGaN多结异质太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN110137269A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111081805A (zh) * 2019-12-23 2020-04-28 华南理工大学 一种基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池结构及其制备方法
CN113972298A (zh) * 2021-09-29 2022-01-25 华南理工大学 一种自供电偏振可见光探测器及制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746013A (zh) * 2014-01-20 2014-04-23 广东瑞德兴阳光伏科技有限公司 一种石墨烯太阳能电池及其制备方法
CN105679861A (zh) * 2016-01-20 2016-06-15 浙江大学 一种表面等离子增强的二维材料/半导体异质结太阳能电池及其制备方法
CN109216484A (zh) * 2018-09-11 2019-01-15 浙江大学 一种石墨烯/AlGaAs多结异质太阳能电池及其制备方法
CN109273551A (zh) * 2018-09-11 2019-01-25 浙江大学 一种石墨烯/GaInP多结异质太阳能电池及其制备方法
CN109545868A (zh) * 2018-12-05 2019-03-29 深圳清华大学研究院 石墨烯量子点/黑硅异质结太阳能电池及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746013A (zh) * 2014-01-20 2014-04-23 广东瑞德兴阳光伏科技有限公司 一种石墨烯太阳能电池及其制备方法
CN105679861A (zh) * 2016-01-20 2016-06-15 浙江大学 一种表面等离子增强的二维材料/半导体异质结太阳能电池及其制备方法
CN109216484A (zh) * 2018-09-11 2019-01-15 浙江大学 一种石墨烯/AlGaAs多结异质太阳能电池及其制备方法
CN109273551A (zh) * 2018-09-11 2019-01-25 浙江大学 一种石墨烯/GaInP多结异质太阳能电池及其制备方法
CN109545868A (zh) * 2018-12-05 2019-03-29 深圳清华大学研究院 石墨烯量子点/黑硅异质结太阳能电池及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111081805A (zh) * 2019-12-23 2020-04-28 华南理工大学 一种基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池结构及其制备方法
CN113972298A (zh) * 2021-09-29 2022-01-25 华南理工大学 一种自供电偏振可见光探测器及制备方法与应用
CN113972298B (zh) * 2021-09-29 2024-03-22 华南理工大学 一种自供电偏振可见光探测器及制备方法与应用

Similar Documents

Publication Publication Date Title
GB2559800B (en) Multijunction photovoltaic device
CN101221992B (zh) 多层膜-纳米线复合物、双面型和串联型太阳能电池
CN106067493B (zh) 一种微晶格失配量子阱太阳能电池及其制备方法
CN107564989A (zh) 一种钙钛矿/硅异质结叠层太阳电池中隧穿结的结构设计
CN101552322B (zh) 一种氧化锌基有机/无机杂化纳米结构太阳电池
Manna et al. Nanotechnology in the development of photovoltaic cells
CN103560155A (zh) 一种基于晶体硅材料的化合物半导体异质结太阳电池
CN103296123A (zh) P-型碳量子点/n-型硅纳米线阵列异质结太阳能电池及其制备方法
CN109728119B (zh) 一种石墨烯/AlGaAs/GaAs/GaInAs多异质结太阳能电池及其制备方法
CN103000709B (zh) 背电极、背电极吸收层复合结构及太阳能电池
CN101752444A (zh) p-i-n型InGaN量子点太阳能电池结构及其制作方法
Zhang et al. Development of inorganic solar cells by nano-technology
CN109216484B (zh) 一种石墨烯/AlGaAs多结异质太阳能电池及其制备方法
CN103094378B (zh) 含有变In组分InGaN/GaN多层量子阱结构的背入射太阳能电池
CN110137269A (zh) 一种石墨烯/InGaN多结异质太阳能电池及其制备方法
CN104485421B (zh) 一种钙钛矿/纳米线混合型太阳能电池及其制备方法
CN204558503U (zh) 一种具有非晶硅/微晶硅复合层的hit太阳能电池
CN204315587U (zh) 基于GaN纳米线阵列的太阳能电池
CN109273551B (zh) 一种石墨烯/GaInP多结异质太阳能电池及其制备方法
CN101820010B (zh) 一种一维阵列纳米结构太阳能电池及其制备方法
CN102623524A (zh) 一种半导体太阳能电池及其制作方法
CN102832271A (zh) 一种掺入量子点的多结叠层太阳电池设计
CN105244390A (zh) 基于纳米石墨电子传输层的多量子阱光伏电池及制备方法
CN115411064A (zh) 一种太阳能电池
CN117832291A (zh) 一种太阳能电池及光伏组件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190816

WD01 Invention patent application deemed withdrawn after publication