CN110246913A - 一种InGaN纳米柱阵列基GSG型可调谐光电探测器及其制备方法 - Google Patents

一种InGaN纳米柱阵列基GSG型可调谐光电探测器及其制备方法 Download PDF

Info

Publication number
CN110246913A
CN110246913A CN201910544187.4A CN201910544187A CN110246913A CN 110246913 A CN110246913 A CN 110246913A CN 201910544187 A CN201910544187 A CN 201910544187A CN 110246913 A CN110246913 A CN 110246913A
Authority
CN
China
Prior art keywords
graphene
layer
column array
nano column
ingan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910544187.4A
Other languages
English (en)
Inventor
李国强
郑昱林
王文樑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201910544187.4A priority Critical patent/CN110246913A/zh
Publication of CN110246913A publication Critical patent/CN110246913A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种InGaN纳米柱阵列基GSG型可调谐光电探测器及其制备方法。所述光电探测器包括由下至上的衬底、底层石墨烯层、InGaN纳米柱阵列和与纳米柱阵列间形成肖特基接触的顶层石墨烯层,还包括位于纳米柱阵列一侧的第一Au金属层电极,以及位于纳米柱阵列另一侧的阻隔底层和顶层石墨烯层接触的SiO2绝缘层,且第一Au金属层电极和SiO2绝缘层均位于底层石墨烯层上方,第二Au金属层电极与SiO2绝缘层通过顶层石墨烯层隔开。所述光电探测器对近红外、可见光至紫外光具有高的灵敏探测,同时具有超快的响应时间以及超高的光响应度的特点(响应时间<80μs,响应度达到2.0×104A/W)。

Description

一种InGaN纳米柱阵列基GSG型可调谐光电探测器及其制备 方法
技术领域
本发明涉及紫外探测器的技术领域,特别涉及一种InGaN纳米柱阵列基GSG型可调谐光电探测器及其制备方法。
背景技术
光电探测技术因具有良好的高光敏度、非视线通讯、低窃听率等优点,在军事和民用的各个领域有广泛用途。在近红外或可见光波段主要用于近红外遥感、工业自动控制、可见光通信等;在紫外波段主要用于导弹制导、紫外分析、明火探测和太阳照度检测等方面。第三代宽带隙半导体材料(包含 GaN、AlN、InN以及三、四元化合物),因其具有禁带宽度大、电子迁移速率快、热稳定性好和抗辐射能力强等特性使其十分适合于制作频率高、功率大、集成度高和抗辐射的电子器件,在发光二极管、光电探测器件和太阳电池等许多领域得到广泛应用。
InGaN材料具有宽禁带、直接带隙,其能够通过调节合金的组分,实现禁带宽度从0.7 eV到3.4 eV的连续可调谐,相当于截止波长为365 nm到1770 nm,这个特性使它能探测近红外、可见光至紫外波段的信号,且无需滤光系统和做成浅结。而InGaN一维纳米柱材料由于其独特的纳米结构诱导的量子约束效应,如增强的载流子迁移率、优异的光吸收/发射和几乎无位错密度等,成为近年来研究的热点。一方面,一维纳米柱巨大的表面体积比显著增加了光吸收,提高了光生载流子的密度。另一方面,低维纳米结构限制了电荷载流子的活性区域,缩短了载流子传输时间。尽管InGaN一维纳米阵列具有巨大的潜力,但这类纳米结构阵列基器件的加工制备和单片集成还相当复杂。传统的策略主要集中在纳米结构器件的平坦化,方法是用绝缘聚合物填补纳米柱阵列中的空白,或在沉积过程中将纳米柱顶部聚结在一起。这样可能会引入位错,从而限制器件的性能。因此,最具挑战性的问题是InGaN一维纳米阵列基器件的集成以及简单高效的微加工。
发明内容
本发明的目的在于针对现有技术的不足,提供了一种InGaN纳米柱阵列基GSG型可调谐光电探测器及其制备方法。其中,2D石墨烯作为一种柔性和透明的顶部/背面接触电极进行集成,同时作为这种纳米阵列结构外延生长的种子层衬底,由此实现InGaN一维纳米阵列基器件的。该光电探测器同时具有超快的响应时间以及超高的光响应度的特点。
本发明的目的至少通过如下之一的技术方案实现。
一种InGaN纳米柱阵列基GSG型可调谐光电探测器,包括由下至上的衬底、底层石墨烯层、InGaN纳米柱阵列和与纳米柱阵列间形成肖特基接触的顶层石墨烯层,还包括位于纳米柱阵列一侧的第一Au金属层电极,以及位于纳米柱阵列另一侧的阻隔底层和顶层石墨烯层接触的SiO2绝缘层,且第一Au金属层电极和SiO2绝缘层均位于底层石墨烯层上方,第二Au金属层电极与SiO2绝缘层通过顶层石墨烯层隔开。
进一步地,所述衬底的厚度为420~430 μm。
进一步地,所述衬底为蓝宝石、Si或La0.3Sr1.7AlTaO6
进一步地,所述石墨烯层数为1~3层,厚度为3~5 nm。
进一步地,所述InGaN纳米柱阵列长度为280~400 nm,直径为60~80 nm,密度为4.0~12.0×109 /cm2
进一步地,阻隔上下石墨烯接触层的SiO2绝缘层的厚度为250~370 nm。
进一步地,所述第一Au金属层和第二Au金属层电极的厚度均为100~150 nm,长度为300~330 μm,宽度为50~75 μm,二者间距为250~300 μm。
上述InGaN纳米柱基GSG型光电探测器的制备方法,包括如下步骤:
(1)将铜箔进行清洗处理,除去表面残留物,然后在表面生长出底层石墨烯模板层,形成石墨烯/铜箔;
(2)对石墨烯/铜箔进行旋涂湿法转移,将石墨烯层转移至衬底表面,并进行转移后的清洗以去除PMMA,最后烘干,形成石墨烯/衬底结构,作为下一步InGaN纳米柱阵列自组装生长的模板层;
(3)在石墨烯/衬底结构上一侧生长SiO2绝缘层以阻隔上下石墨烯接触层导通,接着进行光刻处理和湿法刻蚀,形成图形化SiO2/石墨烯/衬底结构;
(4)利用石墨烯作为生长模板层,在图形化SiO2/石墨烯/衬底结构上直接生长得到InGaN纳米柱阵列,形成InGaN纳米柱阵列/石墨烯/衬底结构;
(5)重复步骤(1),并对得到的石墨烯/铜箔进行旋涂湿法转移,将石墨烯层转移至InGaN纳米柱阵列的上表面,并进行转移后的清洗,最后烘干,得到顶层石墨烯层,形成石墨烯/InGaN纳米柱阵列/石墨烯GSG型结构;再进行光刻处理,后利用电子束蒸发镀膜系统在样品表面上蒸镀Au金属层形成第一Au金属电极和第二Au金属电极,去胶,并转移至退火炉中进行热退火处理。得到所述InGaN纳米柱阵列基GSG型光电探测器。
进一步地,步骤(1)中,所述清洗为:依次用丙酮以及无水乙醇分别超声清洗8~10min 和3~5 min,去除表面的有机杂质,接着使用去离子水超声清洗3~5 min,最后用氮气枪吹走表面的水汽。
进一步的,步骤(1)中,通过PECVD生长石墨烯层,且工艺条件为:利用机械泵及分子泵抽真空至石英管内压力维持为1~2×10-6 Torr,接着加热至550~650 ℃,停下分子泵然后向腔体内通入H2和CH4,流量分别为40~60 sccm和30~45 sccm,压力维持为90~150 mTorr,沉积过程中射频等离子体功率保持在200 ~300 W,沉积时间为5~15分钟,沉积结束后在Ar气气氛下冷却至室温。
进一步地,步骤(2)和(5)中,旋涂湿法转移的方法为:对石墨烯/铜箔用PMMA旋涂覆25~30 s,转速为4500~5000 rpm,形成PMMA/石墨烯/铜箔;接着用湿法腐蚀铜箔,将铜箔溶于CuSO4: HCl: H2O = 4~5 g:20~25 ml:20~25 ml的溶液中30~40 min腐蚀铜箔,然后将PMMA包覆的石墨烯层使用去离子水中清洗3~5次,以去除任何残留的蚀刻液。
进一步地,步骤(2)和(5)中,转移后的清洗工艺为:将转移后的PMMA包覆的石墨烯/衬底结构至于丙酮中清洗2~4次,以去除任何残留的PMMA,最后烘干的温度为45~60℃,时间为0.8~1.2h。
进一步地,步骤(3)中,通过PECVD生长SiO2绝缘填充层,且工艺条件为:利用机械泵及分子泵抽真空至石英管内压力维持1~2×10-6 Torr,石英管加热至400~500 ℃,然后停下分子泵然后向腔体内通入SiH4和CO2,流量分别为50~100 sccm和150~200 sccm,生长过程中射频等离子体功率保持在250 ~300 W,沉积时间为10~20分钟,反应室内压力维持为80~200 mTorr下沉积SiO2绝缘填充层。
进一步地,步骤(3)和(5)中,所述光刻工艺为:先旋涂负性光刻胶40~60 s,经前烘、曝光、显影、坚膜,以及采用O2等离子体进行反应离子刻蚀处理2~4 min,清洗,最后热氮气烘干5~10 min。
更进一步地,所述前烘是65~75℃加热处理5~8 min。
更进一步地,所述曝光是将前烘处理后的样品和光刻掩膜版同时放置在光刻机上,然后紫外光源照射5~7 s。
更进一步地,所述显影是将曝光处理后的样品放入6~8 wt%的四丁基铵氢氧化物水溶液显影液中溶解60~100 s。
更进一步地,所述坚膜是55~75 ℃加热处理6~8 min。
更进一步地,所述清洗是使用去离子水超声清洗3~5 min,去除表面的无机杂质,最后用氮气枪吹走表面的水汽。
进一步地,步骤(3)中,湿法刻蚀的工艺为:将光刻后放入浓度为6~10 wt%的HF水溶液中刻蚀5~10 min;接着放入乙醇中洗涤3~5 min,去除表面有机物,放入去离子水中室温下超声清洗5~10 min;清洗后的样品用高纯干燥氮气吹干。
进一步地,步骤(4)中,通过PA-MBE生长InGaN纳米柱阵列,且工艺条件为:利用机械泵及分子泵抽真空至生长腔体内压力维持为1~2×10-9 Torr,并加热至880~900 ℃进行退火处理20~30 min以去除表面残留物。接着衬底温度升至550~950 ℃,用离子束等效压力(BEP)对Ga和In的束流进行了精确的测定,其中,Ga-BEP设定为1.5~5.5 × 10-8 Torr,In-BEP设定为1.5~2.5 × 10-7 Torr。N2流量为1.8~2.0 sccm,射频氮气等离子体功率为380~400 W,在生长过程中,基片的转速为8~10 rpm,总生长时间为3.0~4.0 h。
更进一步地,通过控制衬底温度,Ga-BEP和In-BEP可以控制InGaN的In组分从0~1可调,实现InxGa(1-x)N(0<x<1)的禁带宽度从0.7 eV到3.4 eV连续可调,从而实现探测365-1770nm波长可调谐光电探测器。
进一步地,步骤(5)中,所述电子束蒸发镀电极工艺为:将清洗好吹干的样品放入电子书蒸发镀膜系统中,机械泵和分子泵抽真空至5.0~6.0×10-4 Pa后,开始蒸镀金属电极,金属蒸发速率控制为2.0~3.0 Å/s,样品盘转速为10~20 rpm。
进一步地,步骤(5)中,所述去胶是在丙酮中浸泡20~25 min后超声处理1~3 min,从而去掉了不需要的部分,留下了所需的电极图案。
进一步地,步骤(5)中,所述热退火处理为样品置于快速退火炉中进行450~550 ℃处理2~3 min。
与现有技术相比,具有如下优点和有益效果:
(1)本发明的一种InGaN纳米柱基GSG型光电探测器提供了一种在石墨烯/衬底上直接范德华外延生长InGaN纳米柱阵列,再通过石墨烯的转移实现了石墨烯-InGaN纳米柱阵列-石墨烯 GSG 型光电探测器,并实现了单根纳米柱器件到纳米柱阵列器件的集成,制备工艺简单、省时高效以及能耗低的特点,有利于规模化生产。
(2)本发明的一种InGaN纳米柱基GSG型光电探测器实现了1D/2D材料结合的新型器件,一方面利用了石墨烯材料透明、导电和柔性的特点,提高了探测器对光的收集、光电响应灵敏度;另一方面利用了一维纳米柱材料巨大的比表面积和量子限域性,提高了光生载流子的密度和传输时间;其光电响应度和外量子效率达到了 ~104 A/W和~107 %,响应时间<80 μs。
(3)本发明的一种InGaN纳米柱基GSG型光电探测器中采用了InGaN纳米柱材料作为有源层材料,因为InGaN材料的禁带宽度可根据In组分的不同从0.7 eV到3.4 eV连续可调,因而可对波长为365 nm到1770 nm的光进行有效探测。
(4)本发明一种InGaN纳米柱基GSG型光电探测器可实现对近红外、可见光至紫外光的高灵敏探测,可应用于近红外遥感、工业自动控制、可见光通信、紫外导弹制导、明火探测和太阳照度检测等领域,经济效益可观。
附图说明
图1为本发明的InGaN纳米柱基GSG型光电探测器的结构剖面示意图;
图2为本发明的光电探测器的电极结构的俯视示意图;
图3为实施1生长的InGaN纳米柱阵列的扫描电镜剖视图;
图4为实施例1制备的光电探测器的电流随外加偏压变化的曲线图;
图5为实施例1制备的光电探测器的电流随波长响应曲线图;
图6为实施例1制备的光电探测器的时间响应曲线图;
图7为实施例2制备的光电探测器的电流随外加偏压变化的曲线图;
图8为实施例3制备的光电探测器的电流随外加偏压变化的曲线图。
具体实施方式
以下结合具体实施例及附图对本发明的技术方案作进一步详细的描述,但本发明的实施方式及保护范围不限于此。
下述实施例中,铜箔纯度99.99%(Alfa Aesar),PECVD(Tianjin ZhonghuanFurnace Co., Ltd),射频等离子体辅助分子束外延法(RF PA-MBE,MANTIS),PMMA(ALLRESIST AR-26)。
具体实施例中,本发明的InGaN纳米柱基GSG型光电探测器的结构剖面示意图如图1所示,由图1可知,由下至上,依次包括衬底1、底层石墨烯模板层2、SiO2绝缘层3、InGaN纳米柱阵列4、顶层石墨烯接触层5以及与上下石墨烯接触的Au金属层电极6;
其中,衬底1的厚度为420~430 μm、上下石墨烯2和5的层数为1~3层,厚度为3~5 nm、SiO2绝缘层3的厚度为250~370 nm、InGaN纳米柱阵列4的长度为280~400 nm、Au金属层电极6的厚度为100~150 nm,长度为300~330 μm,宽度为50~75 μm,间距为250~300 μm。
实施例1
In组分为0.02的InGaN纳米柱基GSG型光电探测器的制备(纳米柱为In0.02Ga0.98N),具体包括以下步骤:
(1)将铜箔进行清洗处理(依次用丙酮以及无水乙醇分别超声清洗10 min 和5 min,去除表面的有机杂质,接着使用去离子水超声清洗5 min,最后用氮气枪吹走表面的水汽),除去表面残留物后置于PECVD设备中,在其表面生长出单层的石墨烯层(生长条件为:利用机械泵及分子泵抽真空至石英管内压力维持为2×10-6 Torr,接着加热至650 ℃,停下分子泵然后向腔体内通入H2和CH4,流量分别为60 sccm和45 sccm,压力维持为150 mTorr,沉积过程中射频等离子体功率保持在200 W,沉积时间为5分钟,沉积结束后在Ar气气氛下冷却至室温),形成石墨烯/铜箔。
(2)对石墨烯/铜箔用PMMA旋涂覆25 s,转速为5000 rpm,形成PMMA/石墨烯/铜箔;接着用湿法腐蚀铜箔,将铜箔溶于CuSO4: HCl: H2O = 4 g:20 ml:20 ml的溶液中40 min。然后将PMMA包覆的石墨烯层在去离子水中清洗5次,以去除任何残留的蚀刻液。将单层石墨烯层转移至蓝宝石衬底表面,并将转移后的PMMA包覆的石墨烯/衬底结构至于丙酮中清洗2次,以去除任何残留的PMMA,最后在烘箱中烘烤0.8 h,温度为45 ℃,形成石墨烯/衬底结构,作为下一步InGaN纳米柱阵列自组装生长的模板层。
(3)将石墨烯/衬底结构置于PECVD中生长一层厚度为250 nm的SiO2绝缘层以阻隔上下石墨烯接触层导通(生长条件为:利用机械泵及分子泵抽真空至石英管内压力维持1×10-6 Torr,石英管加热至400 ℃,然后停下分子泵然后向腔体内通入SiH4和CO2,流量分别为100 sccm和200 sccm,生长过程中射频等离子体功率保持在250 W,沉积时间为10分钟,反应室内压力维持为200 mTorr下沉积SiO2绝缘填充层),接着进行光刻处理(工艺为:先利用匀胶机旋涂负性光刻胶40 s,经前烘(烘箱中进行75℃加热处理8 min)、曝光(将前烘处理后的样品和光刻掩膜版同时放置在光刻机上,然后紫外光源照射7 s)、显影(将曝光处理后的样品放入6 wt%的四丁基铵氢氧化物水溶液显影液中溶解100 s)、坚膜(在烘箱中进行55℃加热处理8 min),以及采用O2等离子体进行反应离子刻蚀处理4 min,清洗(使用去离子水超声清洗3 min,去除表面的无机杂质,最后用氮气枪吹走表面的水汽),最后热氮气烘干10 min);接着进行湿法刻蚀处理(工艺为:将光刻后的样品放入浓度为6 wt%的HF水溶液中刻蚀10 min;接着放入乙醇中洗涤5 min,去除表面有机物,放入去离子水中室温下超声清洗5 min;清洗后的样品用高纯干燥氮气吹干)。形成图形化SiO2/石墨烯/衬底结构。
(4)利用石墨烯作为生长模板层,在图形化SiO2/石墨烯/衬底结构上用PA-MBE直接生长得到InGaN纳米柱阵列,生长条件为:利用机械泵及分子泵抽真空至生长腔体内压力维持为1×10-9 Torr,并加热至900 ℃进行退火处理20 min以去除表面残留物。接着衬底温度升至950 ℃,用离子束等效压力(BEP)对Ga和In的束流进行了精确的测定,其中,Ga-BEP设定为5.5 × 10-8 Torr,In-BEP设定为1.5 × 10-7 Torr。N2流量为2.0 sccm,射频氮气等离子体功率为400 W,在生长过程中,基片的转速为10 rpm。总生长时间约为4.0 h。实现了In组分为0.02的In0.02Ga0.98N纳米柱阵列/石墨烯/衬底结构,其中InGaN禁带宽度为3.35eV。
(5)对InGaN纳米柱阵列/石墨烯/衬底结构进行PMMA旋涂湿法转移的方法(和上述步骤(2)中一致),将单层石墨烯层转移至InGaN纳米柱阵列顶表面,并进行转移后的清洗以去除PMMA(和上述步骤(2)中一致),最后在烘箱中烘烤0.8 h,温度为45 ℃,形成石墨烯/InGaN纳米柱阵列/石墨烯GSG型结构;再进行光刻处理(和上述步骤(3)中一致),后利用电子束蒸发镀膜系统在样品表面上蒸镀Au金属层作为电极(工艺为:将清洗好吹干的样品放入电子书蒸发镀膜系统中,机械泵和分子泵抽真空至6.0×10-4 Pa后,开始蒸镀金属电极,金属蒸发速率控制为3.0 Å/s,样品盘转速为20 r/min),去胶(在丙酮中浸泡25 min后超声处理3 min,从而去掉了不需要的部分,留下了所需的电极图案),并转移至退火炉中进行热退火处理(500 ℃下2 min)。得到所述In组分为0.02的InGaN纳米柱阵列基GSG型光电探测器。
所制备的In组分为0.02的In0.02Ga0.98N纳米柱阵列基GSG型光电探测器的结构剖面示意图参见图1,其中,蓝宝石衬底的厚度为420 μm、上下石墨烯的层数为单层,厚度为3nm、SiO2绝缘层的厚度为250 nm、InGaN纳米柱阵列的长度为280 nm、Au金属层电极的厚度为100 nm,长度为330 μm,宽度为75 μm,间距为300 μm;其俯视面示意图见图2;其外延生长的InGaN纳米柱阵列的扫描电镜剖视图见图3,可以看到生长出晶格十分完整、取向性好、均匀性好的纳米柱阵列,平均长度为330~360 nm。
所制备的In组分为0.02的In0.02Ga0.98N纳米柱阵列基GSG型光电探测器的电流随外加偏压变化的曲线图如图4所示,电流随着外加偏压的增大而增大,且形成了良好的肖特基接触。在1V偏压下,暗电流仅为0.16 nA,说明制备的光电探测器具有良好的暗电流特性,在380 nm光照射下,电流显著增大。此外,光电探测器的电流随波长响应曲线图如图5所示,由图5可知,制备的光电探测器在380 nm附近有十分高的响应,其响应度达到2.0 × 104 A/W。表明对紫外光的具有十分灵敏的探测效果;并且,光响应在380 nm后开始迅速下降,呈现陡峭的截止边,表明具有良好的可见光盲特性。此探测器还显示出超快的响应时间,如图5所示,其响应时间<80 μs。
实施例2
In组分为0.3的InGaN纳米柱基GSG型光电探测器的制备(纳米柱为In0.3Ga0.7N),具体包括以下步骤:
(1)将铜箔进行清洗处理(依次用丙酮以及无水乙醇分别超声清洗8 min 和3 min,去除表面的有机杂质,接着使用去离子水超声清洗4 min,最后用氮气枪吹走表面的水汽),除去表面残留物后置于PECVD设备中,在其表面生长出三层的石墨烯层(生长条件为:利用机械泵及分子泵抽真空至石英管内压力维持为1.6×10-6 Torr,接着加热至600 ℃,停下分子泵然后向腔体内通入H2和CH4,流量分别为40 sccm和30 sccm,压力维持为90 mTorr,沉积过程中射频等离子体功率保持在300 W,沉积时间为12分钟,沉积结束后在Ar气气氛下冷却至室温),形成石墨烯/铜箔。
(2)对石墨烯/铜箔用PMMA旋涂覆28s,转速为4500 rpm,形成PMMA/石墨烯/铜箔;接着用湿法腐蚀铜箔,将铜箔溶于CuSO4: HCl: H2O = 5 g:25 ml:25 ml的溶液中30 min。然后将PMMA包覆的石墨烯层在去离子水中清洗3次,以去除任何残留的蚀刻液。将三层石墨烯层转移至Si(111)衬底表面,并将转移后的PMMA包覆的石墨烯/衬底结构至于丙酮中清洗3次,以去除任何残留的PMMA,最后在烘箱中烘烤1.2 h,温度为50 ℃,形成石墨烯/衬底结构,作为下一步InGaN纳米柱阵列自组装生长的模板层。
(3)将石墨烯/衬底结构置于PECVD中生长一层厚度为300 nm的SiO2绝缘层以阻隔上下石墨烯接触层导通(生长条件为:利用机械泵及分子泵抽真空至石英管内压力维持1.5×10-6 Torr,石英管加热至500 ℃,然后停下分子泵然后向腔体内通入SiH4和CO2,流量分别为80 sccm和180 sccm,生长过程中射频等离子体功率保持在280 W,沉积时间为18分钟,反应室内压力维持为150 mTorr下沉积SiO2绝缘填充层),接着进行光刻处理(工艺为:先利用匀胶机旋涂负性光刻胶50 s,经前烘(烘箱中进行65℃加热处理7 min)、曝光(将前烘处理后的样品和光刻掩膜版同时放置在光刻机上,然后紫外光源照射6 s)、显影(将曝光处理后的样品放入8 wt%的四丁基铵氢氧化物水溶液显影液中溶解60 s)、坚膜(在烘箱中进行65℃加热处理7 min),以及采用O2等离子体进行反应离子刻蚀处理2 min,清洗(使用去离子水超声清洗5 min,去除表面的无机杂质,最后用氮气枪吹走表面的水汽),最后热氮气烘干8 min);接着进行和湿法刻蚀处理(工艺为:将光刻后的样品放入浓度为10 wt%的HF水溶液中刻蚀5 min;接着放入乙醇中洗涤4 min,去除表面有机物,放入去离子水中室温下超声清洗10 min;清洗后的样品用高纯干燥氮气吹干)。形成图形化SiO2/石墨烯/衬底结构。
(4)利用石墨烯作为生长模板层,在图形化SiO2/石墨烯/衬底结构上用PA-MBE直接生长得到InGaN纳米柱阵列,生长条件为:利用机械泵及分子泵抽真空至生长腔体内压力维持为1.5×10-9 Torr,并加热至880 ℃进行退火处理30 min以去除表面残留物。接着衬底温度升至900 ℃,用离子束等效压力(BEP)对Ga和In的束流进行了精确的测定,其中,Ga-BEP设定为3.5 × 10-8 Torr,In-BEP设定为2.2 × 10-7 Torr。N2流量为1.8 sccm,射频氮气等离子体功率为380 W,在生长过程中,基片的转速为8 rpm。总生长时间约为3.5 h。实现了In组分为0.3的InGaN纳米柱阵列/石墨烯/衬底结构,其中InGaN禁带宽度为2.6 eV。
(5)对InGaN纳米柱阵列/石墨烯/衬底结构进行PMMA旋涂湿法转移的方法(和上述步骤(2)中一致),将三层石墨烯层转移至InGaN纳米柱阵列顶表面,并进行转移后的清洗以去除PMMA(和上述步骤(2)中一致),最后在烘箱中烘烤1.2 h,温度为50 ℃,形成石墨烯/InGaN纳米柱阵列/石墨烯GSG型结构;再进行光刻处理(和上述步骤(3)中一致),后利用电子束蒸发镀膜系统在样品表面上蒸镀Au金属层作为电极(工艺为:将清洗好吹干的样品放入电子书蒸发镀膜系统中,机械泵和分子泵抽真空至5.0×10-4 Pa后,开始蒸镀金属电极,金属蒸发速率控制为2.0 Å/s,样品盘转速为10 r/min),去胶(在丙酮中浸泡20 min后超声处理1 min,从而去掉了不需要的部分,留下了所需的电极图案),并转移至退火炉中进行热退火处理(550 ℃下2.6 min)。得到所述In组分为0.3的InGaN纳米柱阵列基GSG型光电探测器。
所制备的In组分为0.3的InGaN纳米柱阵列基GSG型光电探测器中,Si(111)衬底的厚度为430 μm、上下石墨烯的层数为三层,厚度为5 nm、SiO2绝缘层的厚度为300 nm、InGaN纳米柱阵列的长度为330 nm、Au金属层电极的厚度为120 nm,长度为300 μm,宽度为65 μm,间距为260 μm。外延生长的InGaN纳米柱阵列的扫描电镜剖视图参考图3。
所制备的In组分为0.3的InGaN纳米柱阵列基GSG型光电探测器的电流随外加偏压变化的曲线图如图7所示,电流随着外加偏压的增大而增大,并形成了良好的肖特基接触。在1V偏压下,暗电流仅为0.18 nA,说明制备的光电探测器具有良好的暗电流特性,在480nm光照射下,电流显著增大,表明对蓝绿光的具有十分灵敏的探测效果。
实施例3
In组分为0.98的InGaN纳米柱基GSG型光电探测器的制备(纳米柱为In0.98Ga0.02N),具体包括以下步骤:
(1)将铜箔进行清洗处理(依次用丙酮以及无水乙醇分别超声清洗9 min 和4 min,去除表面的有机杂质,接着使用去离子水超声清洗3 min,最后用氮气枪吹走表面的水汽),除去表面残留物后置于PECVD设备中,在其表面生长出两层的石墨烯层(生长条件为:利用机械泵及分子泵抽真空至石英管内压力维持为1×10-6 Torr,接着加热至550 ℃,停下分子泵然后向腔体内通入H2和CH4,流量分别为50 sccm和40 sccm,压力维持为120 mTorr,沉积过程中射频等离子体功率保持在220 W,沉积时间为15分钟,沉积结束后在Ar气气氛下冷却至室温),形成石墨烯/铜箔。
(2)对石墨烯/铜箔用PMMA旋涂覆30 s,转速为4600 rpm,形成PMMA/石墨烯/铜箔;接着用湿法腐蚀铜箔,将铜箔溶于CuSO4: HCl: H2O = 4.5 g:22.5 ml:22.5 ml的溶液中35min。然后将PMMA包覆的石墨烯层在去离子水中清洗4次,以去除任何残留的蚀刻液。将两层石墨烯层转移至La0.3Sr1.7AlTaO6衬底表面,并将转移后的PMMA包覆的石墨烯/衬底结构至于丙酮中清洗4次,以去除任何残留的PMMA,最后在烘箱中烘烤1.0 h,温度为60 ℃,形成石墨烯/衬底结构,作为下一步InGaN纳米柱阵列自组装生长的模板层。
(3)将石墨烯/衬底结构置于PECVD中生长一层厚度为370 nm的SiO2绝缘层以阻隔上下石墨烯接触层导通(生长条件为:利用机械泵及分子泵抽真空至石英管内压力维持2×10-6 Torr,石英管加热至450 ℃,然后停下分子泵然后向腔体内通入SiH4和CO2,流量分别为50 sccm和150 sccm,生长过程中射频等离子体功率保持在300 W,沉积时间为20分钟,反应室内压力维持为80 mTorr下沉积SiO2绝缘填充层),接着进行光刻处理(工艺为:先利用匀胶机旋涂负性光刻胶60 s,经前烘(烘箱中进行70℃加热处理5 min)、曝光(将前烘处理后的样品和光刻掩膜版同时放置在光刻机上,然后紫外光源照射5 s)、显影(将曝光处理后的样品放入7 wt%的四丁基铵氢氧化物水溶液显影液中溶解80 s)、坚膜(在烘箱中进行75 ℃加热处理6 min),以及采用O2等离子体进行反应离子刻蚀处理3 min,清洗(使用去离子水超声清洗4 min,去除表面的无机杂质,最后用氮气枪吹走表面的水汽),最后热氮气烘干5min);接着进行和湿法刻蚀处理(工艺为:将光刻后的样品放入浓度为8 wt%的HF水溶液中刻蚀6 min;接着放入乙醇中洗涤3 min,去除表面有机物,放入去离子水中室温下超声清洗8 min;清洗后的样品用高纯干燥氮气吹干)。形成图形化SiO2/石墨烯/衬底结构。
(4)利用石墨烯作为生长模板层,在图形化SiO2/石墨烯/衬底结构上用PA-MBE直接生长得到InGaN纳米柱阵列,生长条件为:利用机械泵及分子泵抽真空至生长腔体内压力维持为2×10-9 Torr,并加热至890 ℃进行退火处理25 min以去除表面残留物。接着衬底温度升至550 ℃,用离子束等效压力(BEP)对Ga和In的束流进行了精确的测定,其中,Ga-BEP设定为1.5 × 10-8 Torr,In-BEP设定为2.5 × 10-7 Torr。N2流量为1.9 sccm,射频氮气等离子体功率为390 W,在生长过程中,基片的转速为9 rpm。总生长时间约为3.0 h。实现了In组分为0.98的In0.98Ga0.02N纳米柱阵列/石墨烯/衬底结构,其中InGaN禁带宽度为0.75 eV。
(5)对InGaN纳米柱阵列/石墨烯/衬底结构进行PMMA旋涂湿法转移的方法(和上述步骤(2)中一致),将三层石墨烯层转移至InGaN纳米柱阵列顶表面,并进行转移后的清洗以去除PMMA(和上述步骤(2)中一致),最后在烘箱中烘烤1.0 h,温度为60 ℃,形成石墨烯/InGaN纳米柱阵列/石墨烯GSG型结构;再进行光刻处理(和上述步骤(3)中一致),后利用电子束蒸发镀膜系统在样品表面上蒸镀Au金属层作为电极(工艺为:将清洗好吹干的样品放入电子书蒸发镀膜系统中,机械泵和分子泵抽真空至5.5×10-4 Pa后,开始蒸镀金属电极,金属蒸发速率控制为2.5 Å/s,样品盘转速为15 r/min),去胶(在丙酮中浸泡22 min后超声处理2 min,从而去掉了不需要的部分,留下了所需的电极图案),并转移至退火炉中进行热退火处理(450 ℃下3 min)。得到所述In组分为0.98的InGaN纳米柱阵列基GSG型光电探测器。
所制备的In组分为0.98的In0.98Ga0.02N纳米柱阵列基GSG型光电探测器中,La0.3Sr1.7AlTaO6衬底的厚度为425 μm、上下石墨烯的层数为两层,厚度为4 nm、SiO2绝缘层的厚度为370 nm、InGaN纳米柱阵列的长度为400 nm、Au金属层电极的厚度为150 nm,长度为310 μm,宽度为50 μm,间距为250 μm。外延生长的In0.98Ga0.02N纳米柱阵列的扫描电镜剖视图参考图3。
所制备的In组分为0.98的In0.98Ga0.02N纳米柱阵列基GSG型光电探测器的电流随外加偏压变化的曲线图如图8所示,电流随着外加偏压的增大而增大,形成了良好的肖特基接触。在1V偏压下,暗电流仅为0.13 nA,说明制备的光电探测器具有良好的暗电流特性,在1770 nm光照射下,电流显著增大,表明对近红外光的具有十分灵敏的探测效果。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种InGaN纳米柱阵列基GSG型可调谐光电探测器,其特征在于,包括由下至上的衬底(1)、底层石墨烯层(2)、InGaN纳米柱阵列(4)和与纳米柱阵列间形成肖特基接触的顶层石墨烯层(5),还包括位于纳米柱阵列(4)一侧的第一Au金属层电极(6),以及位于纳米柱阵列(4)另一侧的阻隔底层和顶层石墨烯层接触的SiO2绝缘层(3),且第一Au金属层电极(6)和SiO2绝缘层(3)均位于底层石墨烯层(2)上方,第二Au金属层电极(7)与SiO2绝缘层(3)通过顶层石墨烯层(5)隔开。
2.根据权利要求1所述的GSG型可调谐光电探测器,其特征在于,所述衬底(1)为蓝宝石、Si或La0.3Sr1.7AlTaO6,且厚度为420~430 μm;所述底层石墨烯层(2)和顶层石墨烯层(5)的层数为1~3层,厚度为3~5 nm;所述InGaN纳米柱阵列(4)长度为280~400 nm,直径为60~80nm,密度为4.0~12.0×109 /cm2; SiO2绝缘层(3)的厚度为250~370 nm;所述第一Au金属层电极(6)和第二Au金属层电极(7)的厚度均为100~150 nm,长度均为300~330 μm,宽度均为50~75 μm,二者间距为250~300 μm。
3.制备权利要求1~2任一项所述的GSG型可调谐光电探测器的制备方法,其特征在于,包括如下步骤:
(1)将铜箔进行清洗处理,然后在表面生长出底层石墨烯模板层(2),形成石墨烯/铜箔;
(2)通过对步骤(1)中的石墨烯/铜箔进行旋涂湿法转移,将底层石墨烯模板层(2)转移至衬底(1)表面,并进行转移后的清洗,最后烘干,形成石墨烯/衬底结构,作为下一步InGaN纳米柱阵列自组装生长的模板层;
(3)在步骤(2)中的石墨烯/衬底结构一侧上生长SiO2绝缘层(3),接着进行光刻处理和湿法刻蚀,形成图形化SiO2/石墨烯/衬底结构;
(4)在步骤(3)中的图形化SiO2/石墨烯/衬底结构上生长得到InGaN纳米柱阵列(4),形成InGaN纳米柱阵列/石墨烯/衬底结构;
(5)重复步骤(1),并对得到的石墨烯/铜箔进行旋涂湿法转移,将石墨烯层转移至InGaN纳米柱阵列(4)的上表面,并进行转移后的清洗,最后烘干,得到顶层石墨烯层(5),形成石墨烯/InGaN纳米柱阵列/石墨烯GSG型结构;再进行光刻处理,后利用电子束蒸发镀膜在石墨烯/InGaN纳米柱阵列/石墨烯GSG型结构表面上蒸镀Au金属层形成第一Au金属电极(6)和第二Au金属电极(7),去胶,并进行热退火处理,得到所述InGaN纳米柱阵列基GSG型光电探测器。
4.根据权利要求3所述的制备方法,其特征在于,所述步骤(1)中,清洗为:依次用丙酮超声清洗8~10 min,无水乙醇超声清洗3~5 min,去除表面的有机杂质,接着使用去离子水超声清洗3~5 min,最后用氮气枪吹走表面的水汽;步骤(1)中,通过PECVD生长底层石墨烯层(2),且工艺条件为:利用机械泵及分子泵抽真空至石英管内压力维持为1~2×10-6 Torr,接着加热至550~650 ℃,停下分子泵然后向腔体内通入H2和CH4,流量分别为40~60 sccm和30~45 sccm,压力维持为90~150 mTorr,沉积过程中射频等离子体功率保持在200 ~300 W,沉积时间为5~15分钟,沉积结束后在Ar气气氛下冷却至室温;
步骤(2)和(5)中,旋涂湿法转移的方法为:对石墨烯/铜箔用PMMA旋涂覆25~30 s,转速为4500~5000 rpm,形成PMMA/石墨烯/铜箔,接着将铜箔溶于CuSO4: HCl: H2O = 4~5 g:20~25 ml:20~25 ml的溶液中30~40 min腐蚀铜箔,然后将PMMA包覆的石墨烯层用去离子水中清洗3~5次,以去除任何残留的蚀刻液;转移后的清洗工艺为:将转移后的PMMA包覆的石墨烯/衬底结构至于丙酮中清洗2~4次,以去除任何残留的PMMA,最后烘干的温度为45~60℃,时间为0.8~1.2h。
5.根据权利要求3所述的制备方法,其特征在于,所述步骤(3)中,通过PECVD生长SiO2绝缘填充层(3),且工艺条件为:利用机械泵及分子泵抽真空至石英管内压力维持1~2×10-6 Torr,石英管加热至400~500 ℃,然后停下分子泵然后向腔体内通入SiH4和CO2,流量分别为50~100 sccm和150~200 sccm,生长过程中射频等离子体功率保持在250 ~300 W,沉积时间为10~20分钟,反应室内压力维持为80~200 mTorr下沉积SiO2绝缘填充层(3)。
6.根据权利要求3所述的制备方法,其特征在于,步骤(3)和(5)中,所述光刻工艺为:先旋涂负性光刻胶40~60 s,经前烘、曝光、显影和坚膜,以及采用O2等离子体进行反应离子刻蚀处理2~4 min,清洗,最后热氮气烘干5~10 min;
所述前烘是在65~75℃加热处理5~8 min;
所述曝光是将前烘处理后的样品和光刻掩膜版同时放置在光刻机上,然后紫外光源照射5~7 s;
所述显影是将曝光处理后的样品放入6~8 wt%的四丁基铵氢氧化物水溶液显影液中溶解60~100 s;
所述坚膜是55~75 ℃加热处理6~8 min;
所述清洗是使用去离子水超声清洗3~5 min,去除表面的无机杂质,最后用氮气枪吹走表面的水汽。
7.根据权利要求3所述的制备方法,其特征在于,步骤(3)中,湿法刻蚀的工艺为:光刻后放入浓度为6~10 wt%的HF水溶液中刻蚀5~10 min;接着放入乙醇中洗涤3~5 min,去除表面有机物,放入去离子水中室温下超声清洗5~10 min;清洗后用高纯干燥氮气吹干。
8.根据权利要求3所述的制备方法,其特征在于,步骤(4)中,通过PA-MBE生长InGaN纳米柱阵列,且工艺条件为:利用机械泵及分子泵抽真空至生长腔体内压力维持为1~2×10-9 Torr,并加热至880~900 ℃进行退火处理20~30 min以去除表面残留物;接着衬底温度升至550~950 ℃,用离子束等效压力对Ga和In的束流进行了测定,其中,Ga-BEP设定为1.5~5.5× 10-8 Torr,In-BEP设定为1.5~2.5 × 10-7 Torr,N2流量为1.8~2.0 sccm,射频氮气等离子体功率为380~400 W,在生长过程中,基片的转速为8~10 rpm,总生长时间为3.0~4.0 h。
9.根据权利要求3所述的制备方法,其特征在于,步骤(5)中,所述电子束蒸发镀电极工艺为:清洗吹干后放入电子书蒸发镀膜系统中,机械泵和分子泵抽真空至5.0~6.0×10-4 Pa后,开始蒸镀金属电极,金属蒸发速率控制为2.0~3.0 Å/s,样品盘转速为10~20 rpm。
10.根据权利要求3所述的制备方法,其特征在于,步骤(5)中,所述去胶是在丙酮中浸泡20~25 min后超声处理1~3 min,所述热退火处理为置于快速退火炉中进行450~550 ℃处理2~3 min。
CN201910544187.4A 2019-06-21 2019-06-21 一种InGaN纳米柱阵列基GSG型可调谐光电探测器及其制备方法 Pending CN110246913A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910544187.4A CN110246913A (zh) 2019-06-21 2019-06-21 一种InGaN纳米柱阵列基GSG型可调谐光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910544187.4A CN110246913A (zh) 2019-06-21 2019-06-21 一种InGaN纳米柱阵列基GSG型可调谐光电探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN110246913A true CN110246913A (zh) 2019-09-17

Family

ID=67888831

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910544187.4A Pending CN110246913A (zh) 2019-06-21 2019-06-21 一种InGaN纳米柱阵列基GSG型可调谐光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN110246913A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111081805A (zh) * 2019-12-23 2020-04-28 华南理工大学 一种基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池结构及其制备方法
CN111736367A (zh) * 2020-06-01 2020-10-02 西安电子科技大学 基于石墨烯的相位调制器、调制方法及制备方法
CN112304905A (zh) * 2020-10-22 2021-02-02 济南橘子智能科技有限公司 一种高性能波导传感系统及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203760500U (zh) * 2014-03-31 2014-08-06 中国电子科技集团公司第十三研究所 GaN基GSG型紫外探测器
CN105206727A (zh) * 2015-10-08 2015-12-30 南京大学 InGaN/GaN多量子阱单纳米柱LED器件及其制备方法
CN105866984A (zh) * 2016-06-12 2016-08-17 西北大学 一种石墨烯电光调制器及其制备方法
CN108156828A (zh) * 2015-07-31 2018-06-12 科莱约纳诺公司 用于在石墨基板上生长纳米线或纳米角锥体的方法
CN108292694A (zh) * 2015-07-13 2018-07-17 科莱约纳诺公司 纳米线/纳米锥形状的发光二极管及光检测器
CN109003883A (zh) * 2018-06-30 2018-12-14 华南理工大学 生长在硅/石墨烯复合衬底上的InGaN/GaN多量子阱纳米柱及其制备方法
CN210607281U (zh) * 2019-06-21 2020-05-22 华南理工大学 一种InGaN纳米柱阵列基GSG型可调谐光电探测器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203760500U (zh) * 2014-03-31 2014-08-06 中国电子科技集团公司第十三研究所 GaN基GSG型紫外探测器
CN108292694A (zh) * 2015-07-13 2018-07-17 科莱约纳诺公司 纳米线/纳米锥形状的发光二极管及光检测器
CN108156828A (zh) * 2015-07-31 2018-06-12 科莱约纳诺公司 用于在石墨基板上生长纳米线或纳米角锥体的方法
CN105206727A (zh) * 2015-10-08 2015-12-30 南京大学 InGaN/GaN多量子阱单纳米柱LED器件及其制备方法
CN105866984A (zh) * 2016-06-12 2016-08-17 西北大学 一种石墨烯电光调制器及其制备方法
CN109003883A (zh) * 2018-06-30 2018-12-14 华南理工大学 生长在硅/石墨烯复合衬底上的InGaN/GaN多量子阱纳米柱及其制备方法
CN210607281U (zh) * 2019-06-21 2020-05-22 华南理工大学 一种InGaN纳米柱阵列基GSG型可调谐光电探测器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111081805A (zh) * 2019-12-23 2020-04-28 华南理工大学 一种基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池结构及其制备方法
CN111736367A (zh) * 2020-06-01 2020-10-02 西安电子科技大学 基于石墨烯的相位调制器、调制方法及制备方法
CN111736367B (zh) * 2020-06-01 2024-02-09 西安电子科技大学 基于石墨烯的相位调制器、调制方法及制备方法
CN112304905A (zh) * 2020-10-22 2021-02-02 济南橘子智能科技有限公司 一种高性能波导传感系统及其制备方法
CN112304905B (zh) * 2020-10-22 2022-11-04 吉林省兜率龙源实业集团有限公司 一种高性能波导传感系统及其制备方法

Similar Documents

Publication Publication Date Title
Zeng et al. Fabrication of pn heterostructure ZnO/Si moth-eye structures: Antireflection, enhanced charge separation and photocatalytic properties
CN110246913A (zh) 一种InGaN纳米柱阵列基GSG型可调谐光电探测器及其制备方法
CN104157721B (zh) 基于石墨烯/硅/石墨烯的雪崩光电探测器及其制备方法
CN108630510A (zh) 变掺杂GaN纳米线阵列光电阴极及其制备方法
CN104505445B (zh) 一种复合透明导电电极的led芯片制作方法
US20200220033A1 (en) Metal-assisted etch combined with regularizing etch
CN106229382B (zh) 一种硅掺杂氮化镓纳米带紫外光探测器及其制备方法
US11605743B2 (en) Photodetector based on PtSe2 and silicon nanopillar array and preparation method thereof
KR20120051047A (ko) 실리콘 기판의 표면을 텍스처링하는 방법 및 태양 전지용 텍스처화된 실리콘 기판
KR101086074B1 (ko) 실리콘 나노 와이어 제조 방법, 실리콘 나노 와이어를 포함하는 태양전지 및 태양전지의 제조 방법
WO2018172285A1 (en) Method for producing improved optoelectronic surface on a semiconductor substrate
US20230098095A1 (en) PHOTODIODE BASED ON STANNOUS SELENIDE SULFIDE NANOSHEET/GaAs HETEROJUNCTION AND PREPARATION METHOD AND USE THEREOF
CN110690312A (zh) 生长在石墨烯基板上GaN纳米柱阵列的无损伤转移工艺获得柔性紫外探测器及方法
CN103594302A (zh) 一种GaAs纳米线阵列光阴极及其制备方法
CN110364582A (zh) 一种基于石墨烯模板上AlGaN纳米柱基MSM型紫外探测器及其制备方法
CN105702774A (zh) 一种基于硅纳米线阵列的自驱动肖特基结近红外光电探测器及其制备方法
CN109161850A (zh) 一种生长在Si衬底上的(In)GaN纳米管及其制备方法与应用
KR101301443B1 (ko) 가시광 발광특성을 갖는 그래핀 및 그 제조방법
CN105304737A (zh) 一种可控阵列纳米线太阳能电池及其制备方法
CN110165028B (zh) 基于局域表面等离激元增强的mis结构紫外led及其制备方法
CN110223897B (zh) 基于场助指数掺杂结构的GaN纳米线阵列光电阴极
CN210092100U (zh) 一种基于石墨烯模板上AlGaN纳米柱基MSM型紫外探测器
CN210607281U (zh) 一种InGaN纳米柱阵列基GSG型可调谐光电探测器
CN209508387U (zh) 一种生长在Si衬底上的(In)GaN纳米管
CN116190497B (zh) 一种基于强耦合MoS2/MoO3异质结光电探测器的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination