CN105552149A - 基于自支撑GaN衬底的高In组分InGaN/GaN量子阱结构太阳能电池及其制法 - Google Patents

基于自支撑GaN衬底的高In组分InGaN/GaN量子阱结构太阳能电池及其制法 Download PDF

Info

Publication number
CN105552149A
CN105552149A CN201510788788.1A CN201510788788A CN105552149A CN 105552149 A CN105552149 A CN 105552149A CN 201510788788 A CN201510788788 A CN 201510788788A CN 105552149 A CN105552149 A CN 105552149A
Authority
CN
China
Prior art keywords
gan
ingan
layer
quantum well
free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510788788.1A
Other languages
English (en)
Other versions
CN105552149B (zh
Inventor
尹以安
刘力
章勇
张琪伦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Third Generation Semiconductor Research Institute Co Ltd
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN201510788788.1A priority Critical patent/CN105552149B/zh
Publication of CN105552149A publication Critical patent/CN105552149A/zh
Application granted granted Critical
Publication of CN105552149B publication Critical patent/CN105552149B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供了基于自支撑GaN衬底的高In组分InGaN/GaN量子阱结构太阳能电池及其制法,太阳能电池由自支撑GaN衬底、GaN缓冲层、n型掺杂GaN层、高In组分的InGaN/GaN量子阱层、p型掺杂GaN层和P型电极依次层叠构成。采用自支撑GaN衬底来生长外延层,并在量子阱层中采用高In组分;采用干法刻蚀的方法制作n型掺杂GaN?层台面,在台面上形成N型电极;采用光刻、镀膜等方法制作在p型掺杂GaN层之上形成P型电极。本发明可大幅提高所述太阳能电池的性能;采用自支撑GaN衬底,有效减少晶格失配,采用RF-MBE技术生长高质量的高In组分InGaN,大大提高太阳能电池的吸光范围。

Description

基于自支撑GaN衬底的高In组分InGaN/GaN量子阱结构太阳能电池及其制法
技术领域
本发明涉及半导体器件技术和光电器件领域,特别是基于自支撑GaN衬底的高In组分InGaN/GaN量子阱结构太阳能电池。
背景技术
太阳能是一种清洁、无污染、取之不竭用之不尽的新能源,具有其它新能源所不可比拟的优点。当今世界一项重要的利用太阳能应用的研究就是太阳能电池。太阳能电池是通过光电转换原理把太阳能直接转化为电能的一种半导体器件。目前,世界上最成熟的同时转换效率最高的是硅基太阳能电池,但由于其存在成本高和寿命短的缺点,人们开始高度关注III族氮化物的太阳能电池。III族氮化物带隙可以从0.7eV到6.2eV连续变化,所对应的波长覆盖了从近红外到紫外极为宽广的光谱范围,并且拥有优良的物理、化学性质,被认为是制作全光谱高效太阳能电池的理想材料。其中,InGaN材料以其吸收系数高、抗辐射能力强、禁带宽度可调等优点,备受各国研究者的重视。
InGaN是直接带隙材料,其吸收系数可达到10-5cm-1,因此,不需生长太厚的InGaN材料便可以实现足够高的内量子效率,从而可以使用InGaN来做更薄、更轻的太阳能电池,特别是应用于航天的太阳能电池,减轻重量非常重要,即达到节约成本的目的。此外,InGaN的抗辐射能力比Si,GaAs等太阳能电池材料强,其更适用于辐射强的环境中。又由于调节In组份可连续改变InGaN的禁带宽度,InxGa1-xN可适合用于制作多结串联太阳能电池,则可采用单一外延生长方法来实现超高效叠层式InGaN太阳能电池。
InGaN材料是利用薄膜外延生长技术,在合适的衬底上生长获得的。目前最常用的衬底是蓝宝石衬底。虽然在蓝宝石衬底上生长外延层具有低成本、技术成熟等优点,但其与氮化镓缓冲层之间存在严重的晶格失配和热失配问题,使得在蓝宝石在生长的GaN位错密度很高,此外,蓝宝石的导热性差,也降低了器件的性能,所以,为了进一步提高器件的性能,在本发明中采用自支撑GaN衬底,再在衬底上生长GaN缓冲层,这样就避免了因蓝宝石晶格大于GaN晶格而产生的界面裂纹,从而有效的解决了失配问题,改善了晶体的质量。此外,改变In组分也对太阳能电池的性能起着至关重要的作用。高组分的In能够扩大InGaN的带隙范围,可使其禁带宽度从3.4eV(GaN)到0.7eV(InN)连续可调,其对应的吸收光谱的波长从紫外部分(365nm)可以一直延伸到近红外部分(1770nm),几乎完整地覆盖了整个太阳光谱,能大大提高InGaN/GaN量子阱太阳能电池吸光范围。但是,目前InGaN材料存在缺陷密度大和高In组分高质量的难题,不易获得高质量的高In组分InGaN薄膜。在本发明中提供了一种新方法来获得高质量的高In组分InGaN薄膜--射频等离子体辅助分子束外延技术(RF-MBE)。在合成InGaN薄膜过程中,InGaN的成分和质量主要依赖于In和Ga的比例。起初,在低N成分的环境中时,由于Ga比In的金属性活泼,Ga组分优先结合到当InGaN中,当几乎所有Ga成分被优先结合到InGaN固态薄膜中时,只有少部分的In组分结合到InGaN固态薄膜中,此时,有很多In液滴保留在生长层的表面。随着N成分的逐渐增加,有更多的In成分被结合到InGaN中,这样就逐渐生长出高质量的高In组分InGaN薄膜。此外,在生长InGaN过程中,通过控制RF的频率也可以控制InGaN的成分和质量。实验中,从100W到1000W之间,随着RF的频率增大,InGaN的成分和质量得到明显改善,最终能获得In/Ga比例为3/7的In0.3Ga0.7N高In组分薄膜。
发明内容
本发明主要目的是提供基于自支撑GaN衬底的高In组分InGaN/GaN量子阱结构太阳能电池及其制法,其重点一是采用自支撑GaN衬底,有效的解决了衬底与外延层之间的失陪问题;重点二是采用射频等离子体辅助分子束外延技术(RF-MBE)法来合成高质量的高In
组分InGaN薄膜,扩大了太阳能电池吸光范围,大大提高了太阳能电池的转换效率。
本发明提供一种基于自支撑GaN衬底的高In组分InGaN/GaN量子阱结构太阳能电池,其包括:
一自支撑GaN衬底;
一GaN缓冲层,该GaN缓冲层制作在自支撑GaN衬底上;
一n型掺杂GaN层,该n型掺杂GaN层制作在GaN缓冲层上面,该n型掺杂GaN层的上部一侧为台面结构,台面高度低于n型掺杂GaN层顶部的表面;
一高In组分的InGaN/GaN量子阱层,该高In组分的InGaN/GaN量子阱层制作在n型掺杂GaN层顶部上;
一p型掺杂GaN层,其制作在高In组分的InGaN/GaN量子阱层上面;
一N型欧姆接触电极,其制作在n型掺杂GaN层所述台面上;
一P型欧姆接触电极,其制作在p型掺杂GaN层上面。
进一步地,所述GaN缓冲层制作时的生长温度为800-1000℃,厚度为10nm~20nm。
进一步地,n型掺杂GaN层中的自由电子浓度为1×1018cm-3~1×1019cm-3,厚度为1um~2um。
进一步地,所述高In组分的InGaN/GaN量子阱层中In组分所占摩尔比例为35%-70%。
进一步地,所述p型掺杂GaN层中的自由空穴浓度为1×1017cm-3~1×1018cm-3,厚度为100nm~300nm。
进一步地,所述N型欧姆接触电极的形状是点状结构或者环形结构。
进一步地,P型欧姆接触电极的形状是点状结构或者环形结构。
本发明还提供制作所述基于自支撑GaN衬底的高In组分InGaN/GaN量子阱结构太阳能电池的方法,包括如下步骤:
采用的氮化镓自支撑晶片作为自支撑GaN衬底,氮化镓自支撑晶片的晶体取向是C-plane(0001)±10,TTV≤15μm,弯曲度BOW≤20μm,导电类型是N型,电阻率<0.5Ω·cm,位错密度<5×105cm-2,有效面积>90%;
自支撑GaN衬底之上,采用射频等离子体辅助分子束外延技术(RF-MBE)生长该GaN缓冲层,其生长温度为450-550℃,厚度为10nm~20nm;
在氮化镓缓冲层之上制作n型掺杂GaN层,采用射频等离子体辅助分子束外延技术(RF-MBE)生长该掺杂GaN缓冲层,其生长温度为700℃~900℃,该n型掺杂GaN层的生长厚度为1um~2um,自由电子浓度为1×1018cm-3~1×1019cm-3;用干法刻蚀的方法在该n型掺杂GaN层上面的一侧制作出一台面,台面低于n型掺杂GaN层的顶部上表面;
在n型掺杂GaN层顶部上制作高In组分的InGaN/GaN量子阱层,采用射频等离子体辅助分子束外延技术(RF-MBE)来生长高质量的高In组分InGaN层,其生长温度为450-700℃,其中In组分所占比例为35%-70%,InGaN厚度为1nm~3nm,GaN厚度为12nm;在高In组分的InGaN/GaN量子阱层之上p型掺杂GaN层,采用射频等离子体辅助分子束外延技术(RF-MBE)生长该p型掺杂GaN层,其生长温度为700℃-800℃,其生长厚度为100nm~300nm,自由空穴浓度为1×1017cm-3~1×1018cm-3
在n型掺杂GaN层一侧的台面上制作N型欧姆电极;用电子束蒸发沉积Ti(20nm)/Al(150nm)/Ni(20nm)/Au(100nm),然后在氮气氛围下合金退火,退火温度控制在600℃-800℃,退火时间控制在10-20分钟,电极结构为环形结构。
用光刻、镀膜等方法制作在p型掺杂GaN层5之上制作P型欧姆电极;用电子束蒸发沉积Ni(20nm)/Au(20nm)。然后在氧气氛围下合金退火,退火温度控制在500℃-700℃,退火时间控制在5-15分钟。电极结构为环形结构。
与现有技术相比,本发明的有益效果是:采用自支撑GaN衬底,在自支撑GaN衬底上生长GaN缓冲层和外延层,有效解决了目前大多数采用蓝宝石作为衬底而存在的失配问题,同时,所限定的高In组分的InGaN减小了InGaN的带隙宽度,扩大了InGaN的吸光范围,这有利于产生更多的载流子运动到电极,从而提高太阳能电池的效率。
附图说明
图1是实例中的InGaN/GaN太阳能电池的结构示意图。
图中:1、自支撑GaN衬底;2、GaN缓冲层;3、n型掺杂GaN层;4、高In组分InGaN/GaN量子阱层;5、p型掺杂GaN层;6、N型欧姆电极;7、P型欧姆电极。
具体实施方式
以下结合附图和实例对本发明的具体实施作进一步说明,但本发明的实施和保护不限于此。
请参阅图1所示,本实例提供一种基于自支撑GaN衬底的高In组分InGaN/GaN量子阱结构太阳能电池,由自支撑GaN衬底、GaN缓冲层、n型掺杂GaN层、高In组分的InGaN/GaN量子阱层、p型掺杂GaN层和P型电极依次层叠构成。
实施例1
一自支撑GaN衬底1,所述的衬底为氮化镓材料,采用的氮化镓自支撑晶片的尺寸是20.0mm×20.5mm(±0.2mm),,厚度是350±25μm,晶体取向是C-plane(0001)±10,TTV≤15μm,弯曲度BOW≤20μm,导电类型是N型,电阻率<0.5Ω·cm,位错密度<5×105cm-2,有效面积>90%。采用氮化镓衬底可以减少衬底与外延层之间的晶格失配和热失配。
一GaN缓冲层2,该氮化镓缓冲层制作在自支撑GaN衬底1之上,采用RF-MBE法生长该GaN缓冲层,其生长温度为500℃,厚度为20nm,该氮化镓缓冲层2为后续生长n型掺杂GaN层材料提供成核中心。
一n型掺杂GaN层3,该n型掺杂GaN层3制作在氮化镓缓冲层2之上,采用RF-MBE法生长该掺杂GaN缓冲层,其生长温度为800℃,该n型掺杂GaN层3的生长厚度为1.5μm,自由电子浓度为1×1018cm-3;用干法刻蚀的方法在该n型掺杂GaN层3上面的一侧制作出一台面31,该台面31低于n型掺杂GaN层3的上表面,其与金属电极形成欧姆接触。
一高In组分的InGaN/GaN量子阱结构4,其制作在n型掺杂GaN层3之上,采用RF-MBE来生长高质量的高In组分InGaN层,其生长温度为500℃,其中In组分所占比例为70%,InGaN厚度为2nm,GaN厚度为12nm。在合成InGaN薄膜过程中,InGaN的成分和质量主要依赖于In和Ga的比例。起初,在低N成分的环境中时,由于Ga比In的金属性活泼,Ga组分优先结合到当InGaN中,当所有Ga成分被优先结合到InGaN固态薄膜中时,只有少部分的In组分结合到InGaN固态薄膜中,此时,有很多In液滴保留在生长层的表面。随着N成分的逐渐增加,有更多的In成分被结合到InGaN中,这样就逐渐生长出高质量的高In组分InGaN薄膜。此外,在生长InGaN过程中,通过控制RF的频率也可以控制InGaN的成分和质量。实例中,从100W到1000W之间,随着RF的频率增大,InGaN的成分和质量得到明显改善,最终能获得In/Ga比例为3/7的In0.3Ga0.7N高In组分薄膜。
一p型掺杂GaN层5,其制作在高In组分的InGaN/GaN量子阱结构4之上,采用RF-MBE法生长该p型掺杂GaN层,其生长温度为750℃,其生长厚度为150nm,自由空穴浓度为8×1017cm-3
一N型欧姆电极6,其是用光刻、镀膜等方法制作在n型掺杂GaN层3一侧的台面31上;用电子束蒸发沉积Ti(20nm)/Al(150nm)/Ni(20nm)/Au(100nm),然后在氮气氛围下合金退火,退火温度控制在600℃且为环形结构。
一P型欧姆电极7,其是用光刻、镀膜等方法制作在p型掺杂GaN层5之上;用电子束蒸发沉积Ni(20nm)/Au(20nm)。然后在氧气氛围下合金退火,退火温度控制在550℃。
上述实例中,采用自支撑GaN衬底,有效减少晶格失配。另外,研究表明,采用所述高In组分的InGaN,减小了InGaN的带隙宽度,扩大了InGaN的吸光范围,因而有利于产生更多的载流子运动到电极,从而提高太阳能电池的效率。
实施例2
一自支撑GaN衬底1,所述的衬底为氮化镓材料,采用的氮化镓自支撑晶片的尺寸是20.0mm×20.5mm(±0.2mm),厚度是350±25μm,晶体取向是C-plane(0001)±10,TTV≤15μm,弯曲度BOW≤20μm,导电类型是N型,电阻率<0.5Ω·cm,位错密度<5×105cm-2,有效面积>90%。采用氮化镓衬底可以减少衬底与外延层之间的晶格失配和热失配。
一GaN缓冲层2,该氮化镓缓冲层制作在自支撑GaN衬底1之上,采用RF-MBE法生长该GaN缓冲层,其生长温度为500℃,厚度为15nm,该氮化镓缓冲层2为后续生长n型掺杂GaN层材料提供成核中心。
一n型掺杂GaN层3,该n型掺杂GaN层3制作在氮化镓缓冲层2之上,采用MOCVD法生长该掺杂GaN缓冲层,其生长温度为900℃,该n型掺杂GaN层3的生长厚度为1um~2um,自由电子浓度为3×1018cm-3;用干法刻蚀的方法在该n型掺杂GaN层3上面的一侧制作出一台面31,该台面31低于n型掺杂GaN层3的上表面,其与金属电极形成欧姆接触。
一高In组分的InGaN/GaN量子阱结构4,其制作在n型掺杂GaN层3之上,采用RF-MBE来生长高质量的高In组分InGaN层,其生长温度为610℃,其中In组分所占比例为50%,InGaN厚度为2nm,GaN厚度为10nm。在合成InGaN薄膜过程中,InGaN的成分和质量主要依赖于In和Ga的比例。起初,在低N成分的环境中时,由于Ga比In的金属性活泼,Ga组分优先结合到当InGaN中,当所有Ga成分被优先结合到InGaN固态薄膜中时,只有少部分的In组分结合到InGaN固态薄膜中,此时,有很多In液滴保留在生长层的表面。随着N成分的逐渐增加,有更多的In成分被结合到InGaN中,这样就逐渐生长出高质量的高In组分InGaN薄膜。此外,在生长InGaN过程中,通过控制RF的频率也可以控制InGaN的成分和质量。实例中,从100W到1000W之间,随着RF的频率增大,InGaN的成分和质量得到明显改善,最终能获得In/Ga比例为3/7的In0.3Ga0.7N高In组分薄膜。
一p型掺杂GaN层5,其制作在高In组分的InGaN/GaN量子阱结构4之上,采用RF-MBE法生长该p型掺杂GaN层,其生长温度为800℃,其生长厚度为200nm,自由空穴浓度为8×1017cm-3
一N型欧姆电极6,其是用光刻、镀膜等方法制作在n型掺杂GaN层3一侧的台面31上;用电子束蒸发沉积Ti(20nm)/Al(150nm)/Ni(20nm)/Au(100nm),然后在氮气氛围下合金退火,退火温度控制在700℃,退火时间控制在15分钟。
一P型欧姆电极7,其是用光刻、镀膜等方法制作在p型掺杂GaN层5之上;用电子束蒸发沉积Ni(20nm)/Au(20nm)。然后在氧气氛围下合金退火,退火温度控制在550℃,退火时间10分钟。
上述实例中,采用自支撑GaN衬底,有效减少晶格失配。另外,研究表明,采用所述高In组分的InGaN,减小了InGaN的带隙宽度,扩大了InGaN的吸光范围,因而有利于产生更多的载流子运动到电极,从而提高太阳能电池的效率。

Claims (8)

1.基于自支撑GaN衬底的高In组分InGaN/GaN量子阱结构太阳能电池,其特征在于包括:
一自支撑GaN衬底;
一GaN缓冲层,该GaN缓冲层制作在自支撑GaN衬底上;
一n型掺杂GaN层,该n型掺杂GaN层制作在GaN缓冲层上面,该n型掺杂GaN层的上部一侧为台面结构,台面高度低于n型掺杂GaN层顶部的表面;
一高In组分的InGaN/GaN量子阱层,该高In组分的InGaN/GaN量子阱层制作在n型掺杂GaN层顶部上;
一p型掺杂GaN层,其制作在高In组分的InGaN/GaN量子阱层上面;
一N型欧姆接触电极,其制作在n型掺杂GaN层所述台面上;
一P型欧姆接触电极,其制作在p型掺杂GaN层上面。
2.根据权利要求1所述的基于自支撑GaN衬底的高In组分InGaN/GaN量子阱结构太阳能电池,其特征在于所述GaN缓冲层制作时的生长温度为800-1000℃,厚度为10nm~20nm。
3.根据权利要求1所述的基于自支撑GaN衬底的高In组分InGaN/GaN量子阱结构太阳能电池,其特征在于n型掺杂GaN层中的自由电子浓度为1×1018cm-3~1×1019cm-3,厚度为1um~2um。
4.根据权利要求1所述的基于自支撑GaN衬底的高In组分InGaN/GaN量子阱结构太阳能电池,其特征在于所述高In组分的InGaN/GaN量子阱层中In组分所占摩尔比例为35%-70%。
5.根据权利要求1所述的基于自支撑GaN衬底的高In组分InGaN/GaN量子阱结构太阳能电池,其特征在于所述p型掺杂GaN层中的自由空穴浓度为1×1017cm-3~1×1018cm-3,厚度为100nm~300nm。
6.根据权利要求1所述的基于自支撑GaN衬底的高In组分InGaN/GaN量子阱结构太阳能电池,其特征在于所述N型欧姆接触电极的形状是点状结构或者环形结构。
7.根据权利要求1所述的基于自支撑GaN衬底的高In组分InGaN/GaN量子阱结构太阳能电池,其特征在于P型欧姆接触电极的形状是点状结构或者环形结构。
8.制作权利要求1所述基于自支撑GaN衬底的高In组分InGaN/GaN量子阱结构太阳能电池的方法,其特征在于包括如下步骤:
采用的氮化镓自支撑晶片作为自支撑GaN衬底,氮化镓自支撑晶片的晶体取向是C-plane(0001)±10,TTV≤15μm,弯曲度BOW≤20μm,导电类型是N型,电阻率<0.5Ω·cm,位错密度<5×105cm-2,有效面积>90%;
自支撑GaN衬底之上,采用射频等离子体辅助分子束外延技术(RF-MBE)生长该GaN缓冲层,其生长温度为450-550℃,厚度为10nm~20nm;
在氮化镓缓冲层之上制作n型掺杂GaN层,采用射频等离子体辅助分子束外延技术(RF-MBE)生长该掺杂GaN缓冲层,其生长温度为700℃~900℃,该n型掺杂GaN层的生长厚度为1um~2um,自由电子浓度为1×1018cm-3~1×1019cm-3;用干法刻蚀的方法在该n型掺杂GaN层上面的一侧制作出一台面,台面低于n型掺杂GaN层的顶部上表面;
在n型掺杂GaN层顶部上制作高In组分的InGaN/GaN量子阱层,采用射频等离子体辅助分子束外延技术来生长高质量的高In组分InGaN层,其生长温度为450-700℃,其中In组分所占比例为35%-70%,InGaN厚度为1nm~3nm,GaN厚度为12nm;在高In组分的InGaN/GaN量子阱层之上p型掺杂GaN层,采用射频等离子体辅助分子束外延技术(RF-MBE)生长该p型掺杂GaN层,其生长温度为700℃-800℃,其生长厚度为100nm~300nm,自由空穴浓度为1×1017cm-3~1×1018cm-3
在n型掺杂GaN层一侧的台面上制作N型欧姆电极;用电子束蒸发沉积Ti/Al/Ni/Au,厚度相应为20nm/150nm/20nm/100nm,然后在氮气氛围下合金退火,退火温度控制在600℃-800℃,退火时间控制在10-20分钟,电极结构为环形结构;
用光刻、镀膜等方法制作在p型掺杂GaN层之上制作P型欧姆电极;用电子束蒸发沉积Ni/Au,厚度相应为20nm/20nm,然后在氧气氛围下合金退火,退火温度控制在500℃-700℃,退火时间控制在5-15分钟,电极结构为环形结构。
CN201510788788.1A 2015-11-16 2015-11-16 基于自支撑GaN衬底的高In组分InGaN/GaN量子阱结构太阳能电池及其制法 Active CN105552149B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510788788.1A CN105552149B (zh) 2015-11-16 2015-11-16 基于自支撑GaN衬底的高In组分InGaN/GaN量子阱结构太阳能电池及其制法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510788788.1A CN105552149B (zh) 2015-11-16 2015-11-16 基于自支撑GaN衬底的高In组分InGaN/GaN量子阱结构太阳能电池及其制法

Publications (2)

Publication Number Publication Date
CN105552149A true CN105552149A (zh) 2016-05-04
CN105552149B CN105552149B (zh) 2017-09-29

Family

ID=55831228

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510788788.1A Active CN105552149B (zh) 2015-11-16 2015-11-16 基于自支撑GaN衬底的高In组分InGaN/GaN量子阱结构太阳能电池及其制法

Country Status (1)

Country Link
CN (1) CN105552149B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109216493A (zh) * 2018-08-09 2019-01-15 镇江镓芯光电科技有限公司 一种基于GaN材料的p-i-n结构紫外探测器及其制备方法
CN109671794A (zh) * 2018-12-20 2019-04-23 深圳市科创数字显示技术有限公司 一种基于多量子阱结构的太阳能电池及其制备方法
WO2021098149A1 (zh) * 2019-11-19 2021-05-27 南京集芯光电技术研究院有限公司 表面等离激元增强型InGaN/GaN多量子阱光电极及其制备方法
CN114203327A (zh) * 2021-12-13 2022-03-18 中国核动力研究设计院 一种p-i-n结及制备方法、二极管和β核电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070202621A1 (en) * 2006-02-27 2007-08-30 Sharp Kabushiki Kaisha Method of manufacturing nitride semiconductor light emitting device
CN102290493A (zh) * 2011-09-05 2011-12-21 中国电子科技集团公司第十八研究所 一种p-i-n型单结InGaN太阳能电池的制备方法
CN102832272A (zh) * 2012-08-31 2012-12-19 中国科学院半导体研究所 InGaN太阳能电池及其制作方法
CN103094378A (zh) * 2013-01-28 2013-05-08 中国科学院半导体研究所 含有变In组分InGaN/GaN多层量子阱结构的太阳能电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070202621A1 (en) * 2006-02-27 2007-08-30 Sharp Kabushiki Kaisha Method of manufacturing nitride semiconductor light emitting device
CN102290493A (zh) * 2011-09-05 2011-12-21 中国电子科技集团公司第十八研究所 一种p-i-n型单结InGaN太阳能电池的制备方法
CN102832272A (zh) * 2012-08-31 2012-12-19 中国科学院半导体研究所 InGaN太阳能电池及其制作方法
CN103094378A (zh) * 2013-01-28 2013-05-08 中国科学院半导体研究所 含有变In组分InGaN/GaN多层量子阱结构的太阳能电池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109216493A (zh) * 2018-08-09 2019-01-15 镇江镓芯光电科技有限公司 一种基于GaN材料的p-i-n结构紫外探测器及其制备方法
CN109671794A (zh) * 2018-12-20 2019-04-23 深圳市科创数字显示技术有限公司 一种基于多量子阱结构的太阳能电池及其制备方法
WO2021098149A1 (zh) * 2019-11-19 2021-05-27 南京集芯光电技术研究院有限公司 表面等离激元增强型InGaN/GaN多量子阱光电极及其制备方法
CN114203327A (zh) * 2021-12-13 2022-03-18 中国核动力研究设计院 一种p-i-n结及制备方法、二极管和β核电池

Also Published As

Publication number Publication date
CN105552149B (zh) 2017-09-29

Similar Documents

Publication Publication Date Title
CN105428482B (zh) 一种led外延结构及制作方法
CN102522502B (zh) 基于SiC衬底的太赫兹GaN耿氏二极管及其制作方法
CN105552149B (zh) 基于自支撑GaN衬底的高In组分InGaN/GaN量子阱结构太阳能电池及其制法
JP2013021330A (ja) 窒化物系半導体素子
CN104465913A (zh) 具有双InGaN子量子阱的共振隧穿二极管及其制作方法
CN108417627A (zh) 一种用于制备GaN基高频微波器件的方法
US8420431B2 (en) Solar cell
CN103077964A (zh) 改进p-GaN薄膜欧姆接触的材料结构及其制备方法
CN103441197B (zh) 一种GaN基发光二极管外延片及其制作方法
CN111463326B (zh) 半导体器件及其制备方法
CN109786484A (zh) 一种双异质结和复合钝化层的impatt二极管及其制作方法
CN110137244B (zh) GaN基自支撑衬底的垂直结构HEMT器件及制备方法
CN109659363A (zh) 一种氮化镓hemt结构低欧姆接触结构的制备方法
CN109659362A (zh) 一种基于氮化镓功率hemt结构低欧姆接触电阻的结构及其制作方法
CN102738311B (zh) 一种InGaN/Si双结太阳能电池的制备方法
CN102263166B (zh) 采用纳米粒子提高AlGaN基探测器性能的方法
CN105514176B (zh) 一种太赫兹GaN耿氏二极管及其制作方法
CN102751368B (zh) InGaN/Si双结太阳能电池
CN104201220A (zh) 含有低温插入层的铟镓氮/氮化镓多量子阱太阳能电池
CN212991102U (zh) 一种复合衬底结构
CN111490453B (zh) 含有分步掺杂下波导层的GaN基激光器及其制备方法
CN1971949A (zh) 新型半导体材料铟镓氮表面势垒型太阳电池及其制备方法
CN110718591B (zh) 基于凹槽型保护环结构的AlGaN/GaN肖特基势垒二极管及制作方法
CN210837767U (zh) 一种GaN基HEMT器件
CN108269866B (zh) 一种混合极性InGaN太阳能电池结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220111

Address after: 215000 Room 214, 23 Blocks, Zhongbei District, No. 99 Jinjihu Avenue, Suzhou Industrial Park, Jiangsu Province

Patentee after: Jiangsu third generation semiconductor Research Institute Co.,Ltd.

Address before: 510631 No. 55, Zhongshan Avenue, Tianhe District, Guangdong, Guangzhou

Patentee before: SOUTH CHINA NORMAL University

TR01 Transfer of patent right