WO2021098149A1 - 表面等离激元增强型InGaN/GaN多量子阱光电极及其制备方法 - Google Patents

表面等离激元增强型InGaN/GaN多量子阱光电极及其制备方法 Download PDF

Info

Publication number
WO2021098149A1
WO2021098149A1 PCT/CN2020/087443 CN2020087443W WO2021098149A1 WO 2021098149 A1 WO2021098149 A1 WO 2021098149A1 CN 2020087443 W CN2020087443 W CN 2020087443W WO 2021098149 A1 WO2021098149 A1 WO 2021098149A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum well
gan
ingan
multiple quantum
metal
Prior art date
Application number
PCT/CN2020/087443
Other languages
English (en)
French (fr)
Inventor
谢自力
桑艺萌
刘斌
Original Assignee
南京集芯光电技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京集芯光电技术研究院有限公司 filed Critical 南京集芯光电技术研究院有限公司
Publication of WO2021098149A1 publication Critical patent/WO2021098149A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the invention relates to a surface plasmon-enhanced InGaN/GaN multiple quantum well photoelectrode, a solar photoelectrochemical cell prepared by using the surface plasmon-enhanced InGaN/GaN multiple quantum well photoelectrode, and a preparation method thereof, belonging to Solar cell technology field.
  • the basic principle of the solar photoelectrochemical cell is that the photoelectrode material absorbs the energy of a certain wavelength of sunlight, generates electron-hole pairs inside the material, and separates each other under the action of an external voltage or internal electric field, and the holes move to the anode surface for electrolyte oxidation In the reaction, the electrons move to the vicinity of the cathode to carry out the electrolyte reduction reaction and generate the hydrogen energy that we need.
  • the semiconductor photoelectrode material is its core component, which can be divided into two types: photoanode and photocathode. Due to the lower solar energy conversion efficiency, the choice of photoanode material has become a hot issue in solar photocell research.
  • Group III nitride materials have attracted wide attention due to their stable physical and chemical properties, high electron mobility and energy bands that can meet the requirements of water redox potential, especially the band gap of InGaN and its alloy materials is continuous from 0.7eV to 3.4eV Adjustable, can design electrode materials that meet the requirements according to requirements.
  • noble metals such as Au, Ag, Cu and other nanoparticles exhibit strong broadband light absorption characteristics in the visible light region.
  • the purpose of the present invention is to provide a surface plasmon enhanced InGaN/GaN multiple quantum well photoelectrode.
  • the technical scheme adopted by the present invention is: a surface plasmon-enhanced InGaN/GaN multiple quantum well photoelectrode, which exposes the In x Ga 1-x N/GaN multiple quantum well active layer by controlling the etching depth of the nano-column , The position of the active layer of the multiple quantum well between the In x Ga 1-x N/GaN nano-pillars is filled with plasmon metal, where 0 ⁇ x ⁇ 1.
  • the substrate material of the plasmon-enhanced InGaN/GaN multiple quantum well photoelectrode is a general blue/green LED epitaxial wafer, and the substrate is etched to form a penetrating p-GaN layer, as deep as In x Ga 1- x N/GaN multiple quantum well active layer nano-column structure, the diameter of the nano-column is 70-500 nm, and the thickness of the In x Ga 1-x N/GaN multiple quantum well active layer is 150-250 nm.
  • the plasmonic metal is spherical or cylindrical, with a spherical diameter of 10 to 200 nm, a cylindrical diameter of 10 to 50 nm, and a height of 50 to 200 nm.
  • the plasmonic metal is selected from Au, Ag, and Cu.
  • the invention also discloses a solar photoelectrochemical cell, which includes a working level, a counter electrode, a reference electrode, an electrolytic cell, and an external circuit.
  • the external circuit includes a positive and negative electrode, the negative electrode is connected to the counter electrode, and the positive electrode is connected in parallel with the working electrode and
  • the reference electrode, the electrolytic cell is filled with electrolyte, the working level, the counter electrode, and the reference electrode are all inserted into the electrolyte, characterized in that: the working electrode is the surface according to any one of claims 1 to 3, etc. Ion-enhanced InGaN/GaN multiple quantum well photoelectrode.
  • the invention also discloses a method for preparing a surface plasmon-enhanced InGaN/GaN multiple quantum well photoelectrode, the steps of which include:
  • the Ni metal film on the surface of the insulating layer is annealed at a high temperature to form Ni metal particles, which serve as a nano-pillar etching mask;
  • step 7 Using rapid thermal annealing technology, the sample obtained in step 7 is subjected to rapid thermal annealing under N 2 atmosphere to form an ohmic contact;
  • the invention also discloses a preparation method of the solar photoelectrochemical cell, which comprises the following steps:
  • the electrolyte is water or acid-base salt solution, including NaCl, HBr, NaOH or KOH.
  • the counter electrode can be platinum or gold precious metals.
  • precious metals you need to meet: one is to provide good conductivity; the other is that the metal material hardly reacts with any acid-base salt solution, and has high chemical stability; the third is the metal work function of the metal and the commonly used electrolyte The fermi level of the solution is close, and it is not easy to form an energy barrier at the interface between the metal and the electrolyte, so it will not hinder the photoelectrochemical reaction.
  • the reference electrode is Ag/AgCl, which is mainly used to measure the relative potential difference between the semiconductor electrode and the Pt electrode.
  • the electrolyte should not only provide a suitable oxidation-reduction potential, but also avoid photochemical reactions with the photoelectrode material.
  • Water or acid-base salt solutions can be selected, including but not limited to NaCl, HBr, NaOH, KOH.
  • the plasmonic metal used for surface plasmon enhancement can be selected from Au, Ag, Cu and other noble metals whose light absorption band is in the visible light band.
  • the light absorption range of the metal can be adjusted to make It has more absorption spectrum overlap with semiconductor materials, and can better couple to achieve the purpose of enhancing the efficiency of solar photochemical cells.
  • the external circuit includes positive and negative electrodes, the negative electrode is connected to the counter electrode, the working electrode and the reference electrode are connected in parallel, and the bias voltage is set from -5V to 20V.
  • the present invention etches the InGaN/GaN multi-quantum well nano-column structure through the self-assembled Ni mask top-down etching method, exposing the InGaN/GaN multi-quantum well part, and lays the nano metal so that it can be more than InGaN/GaN.
  • the active regions of the quantum wells are coupled with each other, so that the efficiency of the solar photoelectrochemical cell is effectively improved.
  • the invention uses the nano-metal surface plasmon effect to enhance the InGaN/GaN multi-quantum well photoelectrode to realize high-efficiency photocatalytic water splitting and hydrogen production.
  • the InGaN/GaN multiple quantum well nanocolumn structure is etched by etching technology, so that the nano metal can be coupled with the InGaN/GaN multiple quantum well active area.
  • the solar simulator Due to the light absorption band of the plasma metal There is a certain overlap with the absorption band of the InGaN/GaN multiple quantum well active region. Plasma metal and the multiple quantum well active region produce close electromagnetic field coupling.
  • the electromagnetic field on the surface of the InGaN/GaN multiple quantum well will accelerate the photogenerated electrons generated in the surface region.
  • the separation of hole pairs further promotes the generation of electron-hole pairs at the interface of multiple quantum wells, transfers the energy in the metal to the semiconductor surface, increases the rate of electron-hole pair generation on the surface of the quantum well, and improves the light absorption capacity of the photoelectrode.
  • This method can reasonably adjust the light absorption range of metal nanoparticles by changing the size and shape of the metal nanoparticle, so that it can overlap as much as possible with the absorption spectrum of the InGaN/GaN multiple quantum well active region. This is an effective way to improve solar photoelectrochemistry.
  • the method of battery efficiency is an effective way to improve solar photoelectrochemistry.
  • FIG. 1 is a schematic diagram of the structure of the InGaN/GaN multiple quantum well LED substrate obtained in step A1 of the present invention.
  • FIG. 3 is a schematic diagram of the deposition of a Ni metal film layer on the InGaN/GaN multiple quantum well LED obtained in step A2 of the present invention.
  • FIG. 4 is a schematic diagram of the structure of the Ni particle mask formed on the surface of the InGaN/GaN multiple quantum well LED obtained in step A3 of the present invention.
  • FIG. 5 is a schematic diagram of the structure of the disordered nano-pillar array on the SiO 2 insulating layer obtained in step A4 of the present invention.
  • Fig. 6 is a schematic structural diagram of the InGaN/GaN multiple quantum well nanopillar array obtained in step A5 of the present invention (with SiO 2 and metal on the top).
  • FIG. 7 is a schematic structural diagram of the InGaN/GaN multiple quantum well nanopillar array obtained in step A5 of the present invention.
  • FIG. 8 is a schematic structural diagram of an InGaN/GaN multiple quantum well nanopillar array with n-type GaN steps obtained in step A6 of the present invention.
  • FIG. 9 is a schematic diagram of the structure of the InGaN/GaN multiple quantum well nano-column photoelectrode obtained in step A7 of the present invention.
  • step B of the present invention is a schematic diagram of the structure of the InGaN/GaN multi-quantum well nano-column photoelectrode deposited with nano-metal obtained in step B of the present invention.
  • step E of the present invention is a schematic diagram of the working state of the solar photoelectrochemical cell obtained in step E of the present invention.
  • Figure 12 shows the photoelectric conversion efficiency of InGaN/GaN multiple quantum well nanopillars containing plasmonic metals.
  • Figure 13 shows the photocurrent of InGaN/GaN multiple quantum well nanopillars containing plasmonic metals.
  • 1 is the sapphire substrate layer
  • 2 is the undoped u-GaN layer
  • 3 is the n-type GaN layer
  • 4 is the In x Ga 1-x N/GaN quantum well active layer
  • 5 is the p Type GaN layer
  • 6 is a silicon dioxide dielectric film layer
  • 7 is a Ni metal film layer
  • 8 is a Ti/Al/Ni/Au metal electrode layer
  • 9 is a nano-structured plasma metal.
  • the preparation method of the solar photoelectrochemical cell includes the following steps:
  • A1 In the InGaN/GaN multi-quantum well LED substrate with an In composition of 0.3, an emission wavelength of 510nm, and a quantum well period of 10 (as shown in Figure 1, it includes an n-type GaN layer 3 with a thickness of 2 ⁇ m, and the period is In x Ga 1-x N/GaN quantum well active layer 4 with a thickness of 10 and 150 nm (the thickness of the InGaN well layer is 3 nm, the thickness of the GaN barrier layer is 12 nm) and the p-type GaN layer 5 with a thickness of 500 nm)
  • a 200nm thick SiO 2 dielectric film layer 6 is grown on top, as shown in FIG. 2, a 10nm thick Ni metal film 7 is vapor-deposited on the surface of the SiO 2 dielectric film 6, as shown in FIG. 3;
  • step A2 Using rapid thermal annealing technology, the sample obtained in step A is annealed for 3 minutes at 850°C in a nitrogen atmosphere, and a 10nm-thick Ni metal film is annealed to form Ni metal particles 7 with diameters ranging from 50-200nm, as shown in Figure 4. Shown
  • etching parameters CF 4 and O 2 flow rates are 30sccm and 10sccm, power is 150W, pressure is 4Pa, and etching time is 3min40s;
  • A6 Using electron beam evaporation technology, evaporate a Ti/Al/Ni/Au metal film layer on the n-type GaN step with a thickness of 30nm/150nm/50nm/100nm, as shown in Figure 9;
  • thermal annealing is performed in N 2 atmosphere to form n-type ohmic contacts, annealing temperature is 750°C, annealing time is 30s;
  • A8 Disperse the gold-coated silver plasmonic metal nanowires in a solvent, and sonicate them for 40-70 minutes to make the plasmonic metal distribute as evenly as possible in the solution to obtain a plasmonic metal suspension;
  • the plasmon-enhanced InGaN/GaN multiple quantum well prepared in step B corresponds to the working electrode, Pt is the counter electrode, and Ag/AgCl is the reference electrode;
  • the electrolyte can also be water or HBr, NaOH, KOH.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Photovoltaic Devices (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明公开了一种表面等离激元增强型InGaN/GaN多量子阱光电极,在基片中刻蚀形成贯穿p-GaN层,深至多量子阱有源层的纳米柱结构,所述纳米柱之间在多量子阱有源层的位置填充有等离金属。并公开了其在作为太阳能光电化学电池的工作电极中的应用,制得的太阳能光电化学电池以及其制备方法。本发明采用自组装Ni掩模自上而下的刻蚀方法调控等离金属与多量子阱之间的距离,使之能产生近场耦合,在表面等离激元效应产生的电磁场与p-n区高掺杂浓度形成的内建电场的共同作用下,多量子阱有源区表面的电子空穴对产生和输运的效率有效提高。该方法适用于InGaN类带隙可调并与太阳光谱匹配的光电极材料。

Description

表面等离激元增强型InGaN/GaN多量子阱光电极及其制备方法 技术领域
本发明涉及一种表面等离激元增强型InGaN/GaN多量子阱光电极、用表面等离激元增强型InGaN/GaN多量子阱光电极制得的太阳能光电化学电池及其制备方法,属于太阳能电池技术领域。
背景技术
随着人口和经济的迅速增长,煤、石油、天然气等矿物燃料随着开发的加剧已日趋枯竭,长此以往,将无法满足人们生活所需的能源需求,因此,寻找新型的替代能源已成为人类未来发展的紧要任务。太阳能作为绿色、低碳环保的可再生能源,成为众多新兴能源中最有潜力的能源之一。但是到目前为止,太阳能的利用效率仍然很低,而且从太阳能转换而成的电能在存储方面存在一定的技术难度,而通过利用太阳能光电化学电池将太阳能转换成便于存储的氢气是有效利用太阳能的方式之一。太阳能光电化学电池的基本原理是光电极材料吸收一定波长的太阳光能量,在材料内部产生电子空穴对,在外加电压或者内电场的作用下相互分离,空穴向阳极表面移动进行电解液氧化反应,电子向阴极附近移动进行电解液还原反应,产生我们所需要的氢气能源。
对于太阳能光电化学电池,半导体光电极材料是其核心部件,可分为光阳极和光阴极两种,由于较低的太阳能转化效率,光阳极材料的选择成为太阳能光电池研究的热点问题。III族氮化物材料由于其物理、化学性质稳定,电子迁移率高且能带能够满足水氧化还原电势需求等优势被广泛关注,尤其是InGaN及其合金材料的带隙从0.7eV到3.4eV连续可调,能够按需求设计出符合要求的电极材料。而贵金属如Au、Ag、Cu等纳米颗粒在可见光区表现出很强的宽带光吸收特征,这是由于金属表面的电子在电磁场的驱动下发生振荡,产生表面等离激元。当金属与半导体耦合时,产生的表面等离激元效应会在半导体表面区域形成很强的电磁场,表面产生的电子空穴对会在电磁场的作用下快速分离,发生氧化还原反应,降低电子空穴对的复合效率,有效提高太阳能光电化学电池的效率。
关于表面等离激元增强太阳能光电化学电池效率的研究有很多,但对于InGaN基半导体材料与等离金属的耦合的研究却不多,如何利用等离激元效应增 加InGaN/GaN多量子阱太阳能光电化学电池效率的同时利用p-n区高掺杂浓度形成的内建电场加速电子空穴对的分离成为一个难点。因此,我们采用自组装Ni掩模自上而下的刻蚀方法调控等离金属与InGaN/GaN多量子阱之间的距离,使之能产生近场耦合。而且这种自组装Ni掩模的刻蚀方法大大节约了成本,并且有效提高了太阳能光电化学电池的效率。
发明内容
本发明的目的在于提供一种表面等离激元增强型InGaN/GaN多量子阱光电极。
本发明采用的技术方案为:一种表面等离激元增强型InGaN/GaN多量子阱光电极,通过控制纳米柱刻蚀深度,露出In xGa 1-xN/GaN多量子阱有源层,在In xGa 1-xN/GaN纳米柱之间的多量子阱有源层的位置填充等离金属,其中0≤x≤1。
所述等离激元增强型InGaN/GaN多量子阱光电极,其衬底材料为一般蓝光/绿光LED外延片,所述基片刻蚀形成贯穿p-GaN层,深至In xGa 1-xN/GaN多量子阱有源层的纳米柱结构,纳米柱直径为70~500nm,In xGa 1-xN/GaN多量子阱有源层厚度150~250nm。
优选的,所述等离金属为球形或圆柱形,球型直径10~200nm,圆柱型直径10~50nm,高度50~200nm,等离金属从Au、Ag、Cu中选择。
上述的表面等离激元增强型InGaN/GaN多量子阱光电极在作为太阳能光电化学电池的工作电极中的应用。
本发明还公开了一种太阳能光电化学电池,包括工作电级、对电极、参考电极、电解池、外电路,所述外电路包括正负电极,负电极连接对电极,正电极并联工作电极和参考电极,所述电解池中填充电解液,工作电级、对电极、参考电极均插入电解液中,其特征在于:所述工作电极为权利要求1-3中任一项所述的表面等离激元增强型InGaN/GaN多量子阱光电极。
本发明还公开了一种表面等离激元增强型InGaN/GaN多量子阱光电极的制备方法,其步骤包括:
(1)、在InGaN/GaN多量子阱LED基片上采用PECVD技术生长一层SiO 2绝缘层;
(2)、采用电子束蒸发技术,在绝缘层表面上蒸镀Ni金属膜层;
(3)、采用快速热退火技术,使绝缘层表面的Ni金属膜层在高温下退火形成Ni金属颗粒,作为纳米柱刻蚀掩模;
(4)、采用RIE技术,以Ni金属颗粒为掩模,通入CF 4和O 2的混合气体,各向异性刻蚀SiO 2绝缘层,得到无序的SiO 2纳米柱阵列结构;
(5)、采用ICP技术,以SiO 2绝缘层为掩模,通入Cl 2和CF 4的混合气体,各向异性刻蚀p型氮化镓层、In xGa 1-xN/GaN多量子阱有源层,形成贯穿p型氮化镓层,深至In xGa 1-xN/GaN多量子阱有源层的InGaN/GaN多量子阱纳米柱阵列,将样品放置在无机酸、碱溶液水浴去除刻蚀损伤,然后去除残余的绝缘层;
(6)、采用ICP技术,以适当大小的硅片为掩模,通入Cl 2和CF 4的混合气体,各向异性刻蚀p-GaN层、In xGa 1-xN/GaN量子阱有源层、n-GaN层,露出n型GaN,形成n型GaN台阶;
(7)、采用电子束蒸发技术,在n型台阶上蒸镀Ti/Al/Ni/Au金属电极;
(8)、采用快速热退火技术,在N 2氛围下对步骤7中所得的样品进行快速热退火处理,形成欧姆接触;
(9)、将等离金属分散在乙醇溶剂中,超声,使等离金属在溶液中尽可能均匀分布,制得等离金属悬浊液,浓度为1×10 10ml -1
(10)、将制备的InGaN/GaN多量子阱基片置于热台上,将等离金属悬浊液滴在样品表面,然后烘烤,将等离金属悬浊液蒸干,使得等离金属分散在InGaN/GaN多量子阱纳米柱之间。
本发明还公开了一种太阳能光电化学电池的制备方法,包括以下步骤:
A、在电解池中倒入电解液;
B、连接外电路,外电路的负电极连接对电极,正电极并联工作电极和参考电极,其中权利要求7制得的表面等离激元增强型InGaN/GaN多量子阱光电极作为工作电极,贵金属为对电极,Ag/AgCl为参考电极;
C、将对电极、工作电极和参考电极插入NaCl电解液中,形成太阳能光电化学电池。
优选的,所述电解液为水或酸碱盐溶液,包括NaCl、HBr、NaOH或KOH。
所述的对电极,可选用铂、金贵金属。选择贵金属的时候需要满足:一是提 供很好的导电性;二是金属材料几乎不与任何酸碱盐溶液反应,具有较高的化学稳定性;三是金属的金属功函数与常用的电解液溶液费米能级接近,在金属与电解液界面不易形成能量势垒,故不会对光电化学反应造成阻碍。
所述的参考电极为Ag/AgCl,主要用于对半导体电极和Pt电极处的相对电势差进行测定。
所述的电解液,不仅要提供合适的氧化还原电位,还要避免与光电极材料产生光化学反应。可选用水或酸碱盐溶液,包括但不限于NaCl、HBr、NaOH、KOH。
所述的用于表面等离激元增强的等离金属,可选用Au、Ag、Cu这一类吸光波段在可见光波段的贵金属,通过控制纳米金属的尺寸、形状等调控金属的吸光范围,使之与半导体材料有更多的吸收光谱重叠,能更好的耦合达到增强太阳能光化学电池效率的目的。
所述外电路包括正负极,负电极连接对电极,电极并联工作电极和参考电极,偏压设置-5V~20V。
本发明通过自组装Ni掩模自上而下的刻蚀方法刻蚀出InGaN/GaN多量子阱纳米柱结构,露出InGaN/GaN多量子阱部分,铺上纳米金属使之能与InGaN/GaN多量子阱有源区相互耦合,使得太阳能光电化学电池效率得到有效的提升。
本发明是通过利用纳米金属表面等离激元效应增强InGaN/GaN多量子阱光电极来实现较高效率的光催化水分解制氢。通过刻蚀技术刻蚀出InGaN/GaN多量子阱纳米柱结构,使纳米金属能与InGaN/GaN多量子阱有源区相互耦合,在太阳光模拟器的照射下,由于等离金属的吸光波段与InGaN/GaN多量子阱有源区吸光波段有一定的重合,等离金属与多量子阱有源区产生近距电磁场耦合,InGaN/GaN多量子阱表面的电磁场将加速表面区产生的光生电子空穴对的分离,进一步促进多量子阱界面处电子空穴对的产生,将金属中的能量转移到半导体表面,增加量子阱表面电子空穴对产生的速率,提高光电极的吸光能力,进而提高光催化水分解的效率。本方法可以通过改变金属纳米颗粒的尺寸、形状合理调控其吸光范围,使之能与InGaN/GaN多量子阱有源区的吸光谱尽可能多的重合,这是一种能有效提升太阳能光电化学电池效率的方法。
附图说明
图1为本发明步骤A1中得到的InGaN/GaN多量子阱LED基片结构示意图。
图2为本发明步骤A1中得到的InGaN/GaN多量子阱LED基片表面沉积SiO 2绝缘层的结构示意图。
图3为本发明步骤A2中得到的InGaN/GaN多量子阱LED上蒸镀Ni金属膜层的示意图。
图4为本发明步骤A3中得到的InGaN/GaN多量子阱LED表面形成的Ni颗粒掩模的结构示意图。
图5为本发明步骤A4中得到的SiO 2绝缘层上无序纳米柱阵列的结构示意图。
图6为本发明步骤A5中得到的InGaN/GaN多量子阱纳米柱阵列的结构示意图(顶部有SiO 2和金属)。
图7为本发明步骤A5中得到的InGaN/GaN多量子阱纳米柱阵列的结构示意图。
图8为本发明步骤A6中得到的具有n型GaN台阶的InGaN/GaN多量子阱纳米柱阵列的结构示意图。
图9为本发明步骤A7中得到的InGaN/GaN多量子阱纳米柱光电极的结构示意图。
图10为本发明步骤B中得到的纳米金属沉积的InGaN/GaN多量子阱纳米柱光电极的结构示意图。
图11为本发明步骤E中得到的太阳能光电化学电池工作状态示意图。
图12为含有等离金属的InGaN/GaN多量子阱纳米柱的光电转换效率。
图13为含有等离金属的InGaN/GaN多量子阱纳米柱的光电流。
上述图1-11中:1为蓝宝石衬底层,2为非掺杂u-GaN层,3为n型GaN层,4为In xGa 1-xN/GaN量子阱有源层,5为p型GaN层,6为二氧化硅介质薄膜层,7为Ni金属薄膜层,8为Ti/Al/Ni/Au金属电极层,9为纳米结构的等离金属。
具体实施方式
以下是结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本太阳能光电化学电池的制备方法,其步骤包括:
A1、在In组分为0.3,发光波长为510nm,量子阱的周期数为10的InGaN/GaN多量子阱LED基片(如图1所示,包括厚度2μm的n型GaN层3,周期数为10、厚度为150nm的In xGa 1-xN/GaN量子阱有源层4(InGaN阱层的厚度为3nm,GaN垒层的厚度为12nm)和厚度为500nm的p型GaN层5)上生长一层200nm厚的SiO 2介质薄膜层6,如图2所示,将10nm厚的Ni金属膜层7蒸镀在SiO 2层介质薄膜6的表面,如图3所示;
A2、利用快速热退火技术,在850℃、氮气氛围下将步骤A中所得样品退火3分钟,10nm厚的Ni金属膜层退火形成直径50-200nm不等的Ni金属颗粒7,如图4所示;
A3、利用RIE技术,以绝缘层表面的Ni金属颗粒为掩模,通入CF 4和O 2的混合气体,各向异性刻蚀SiO 2绝缘层6,SiO 2介质薄膜层形成大小各异的SiO 2纳米柱阵列结构,如图5所示,刻蚀参数:CF 4和O 2的流量分别为30sccm和10sccm,功率为150W,压强为4Pa,刻蚀时间为3min40s;
A4、利用ICP技术,以SiO 2纳米柱阵列为掩模,通入Cl 2和BCl 3的混合气体,各向异性刻蚀P型氮化镓层5以及部分In xGa 1-xN/GaN量子阱有源层4,如图6所示,将样品放置在无机酸、无机碱溶液40摄氏度水浴加热5分钟去除刻蚀损伤,然后使用氢氟酸去除表面的SiO 2绝缘层,如图所示,刻蚀参数:Cl 2和BCl 3的流量分别为24sccm和3sccm,腔体气压为6.5mTorr,RF功率为30W,ICP功率为100W,刻蚀时间为7min30s,刻蚀完成的纳米柱高度为550nm;
A5、利用ICP技术,以合适大小的Si片作为掩模,遮挡部分纳米柱阵列,通入Cl 2和BCl 3的混合气体,各向异性刻蚀p型氮化镓层、In xGa 1-xN/GaN量子阱有源层、n型氮化镓层,露出n型GaN,形成n型GaN台阶,如图8所示,刻蚀参数:Cl 2和BCl 3的流量分别为48sccm和6sccm,腔体气压为10mTorr,RF功率为100W,ICP功率为300W,刻蚀时间为4min;
A6、利用电子束蒸发技术,在n型GaN台阶上蒸镀Ti/Al/Ni/Au金属膜层,厚度分别为30nm/150nm/50nm/100nm,如图9所示;
A7、利用快速热退火技术,在N 2环境氛围下进行热退火处理从而形成n型欧姆接触,退火温度750℃,退火时间30s;
A8、将金包银等离金属纳米线分散在溶剂中,超声40-70分钟,使等离金属在溶液中尽可能均匀分布,制得等离金属悬浊液;
B、将制备的InGaN/GaN多量子阱光电极置于热台上,将等离金属悬浊液滴在样品表面,然后烘烤,将等离金属悬浊液蒸干,使得纳米金属分散在InGaN/GaN多量子阱纳米柱之间,如图10所示,金属纳米线长度为100nm,直径50nm;
C、在电解池中倒入50mlNaCl配比溶液,浓度约0.5M;
D、在外电路连解中,步骤B制备的表面等离激元增强的InGaN/GaN多量子阱对应为工作电极,Pt为对电极,Ag/AgCl为参考电极;
E、将外电路及三个电极插入制得的NaCl电解液中,如图11所示;
从图12和图13中可以看出,含有等离金属的InGaN/GaN多量子阱纳米柱的光电转换效和光电流显著增强。
电解液也可选用水或HBr、NaOH、KOH。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

  1. 一种表面等离激元增强型InGaN/GaN多量子阱光电极,其特征在于:通过控制纳米柱刻蚀深度,露出In xGa 1-xN/GaN多量子阱有源层,在In xGa 1-xN/GaN纳米柱之间的多量子阱有源层的位置填充等离金属,其中0≤x≤1。
  2. 根据权利要求1所述的表面等离激元增强型InGaN/GaN多量子阱光电极,其特征在于:其衬底材料为蓝光/绿光LED外延片,基片刻蚀形成贯穿p-GaN层,深至In xGa 1-xN/GaN多量子阱有源层的纳米柱结构,纳米柱直径为70~500nm,In xGa 1-xN/GaN多量子阱有源层厚度150~250nm。
  3. 根据权利要求1或2所述的表面等离激元增强型InGaN/GaN多量子阱光电极,其特征在于:所述等离金属为球形或圆柱形,球型直径10~200nm,圆柱型直径10~50nm,高度50~200nm,等离金属从Au、Ag、Cu中选择。
  4. 权利要求1-3中任一项所述的表面等离激元增强型InGaN/GaN多量子阱光电极在作为太阳能光电化学电池的工作电极中的应用。
  5. 一种太阳能光电化学电池,包括工作电级、对电极、参考电极、电解池、外电路,所述外电路包括正负电极,负电极连接对电极,正电极并联工作电极和参考电极,所述电解池中填充电解液,工作电级、对电极、参考电极均插入电解液中,其特征在于:所述工作电极为权利要求1-3中任一项所述的表面等离激元增强型InGaN/GaN多量子阱光电极。
  6. 根据权利要求5所述的太阳能光电化学电池,其特征在于:所述电池的偏压设置-5V~20V,所述电解液为水或酸碱盐溶液,包括NaCl、HBr、NaOH或KOH。
  7. 一种表面等离激元增强型InGaN/GaN多量子阱光电极的制备方法,其步骤包括:
    (1)、在InGaN/GaN多量子阱LED基片上采用PECVD技术生长一层SiO 2绝缘层;
    (2)、采用电子束蒸发技术,在绝缘层表面上蒸镀Ni金属膜层;
    (3)、采用快速热退火技术,使绝缘层表面的Ni金属膜层在高温下退火形成Ni金属颗粒,作为纳米柱刻蚀掩模;
    (4)、采用RIE技术,以Ni金属颗粒为掩模,通入CF 4和O 2的混合气体,各向异性刻蚀SiO 2绝缘层,得到无序的SiO 2纳米柱阵列结构;
    (5)、采用ICP技术,以SiO 2绝缘层为掩模,通入Cl 2和CF 4的混合气体,各向异性刻蚀p型氮化镓层、In xGa 1-xN/GaN多量子阱有源层,形成贯穿p型氮化镓层,深至In xGa 1-xN/GaN多量子阱有源层的InGaN/GaN多量子阱纳米柱阵列,将样品放置在无机酸、碱溶液水浴去除刻蚀损伤,然后去除残余的绝缘层;
    (6)、采用ICP技术,以适当大小的硅片为掩模,通入Cl 2和CF 4的混合气体,各向异性刻蚀p-GaN层、In xGa 1-xN/GaN量子阱有源层、n-GaN层,露出n型GaN,形成n型GaN台阶;
    (7)、采用电子束蒸发技术,在n型台阶上蒸镀Ti/Al/Ni/Au金属电极;
    (8)、采用快速热退火技术,在N 2氛围下对步骤7中所得的样品进行快速热退火处理,形成欧姆接触;
    (9)、将等离金属分散在乙醇溶剂中,超声,使等离金属在溶液中尽可能均匀分布,制得等离金属悬浊液;
    (10)、将制备的InGaN/GaN多量子阱基片置于热台上,将等离金属悬浊液滴在样品表面,然后烘烤,将等离金属悬浊液蒸干,使得等离金属分散在InGaN/GaN多量子阱纳米柱之间。
  8. 一种太阳能光电化学电池的制备方法,包括以下步骤:
    A、在电解池中倒入电解液;
    B、连接外电路,外电路的负电极连接对电极,正电极并联工作电极和参考电极,其中权利要求7制得的表面等离激元增强型InGaN/GaN多量子阱光电极作为工作电极,贵金属为对电极,Ag/AgCl为参考电极;
    C、将对电极、工作电极和参考电极插入NaCl电解液中,形成太阳能光电化学电池。
  9. 根据权利要求8所述的太阳能光电化学电池的制备方法,其特征在于:所述电解液为水或酸碱盐溶液,包括NaCl、HBr、NaOH或KOH。
PCT/CN2020/087443 2019-11-19 2020-04-28 表面等离激元增强型InGaN/GaN多量子阱光电极及其制备方法 WO2021098149A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911133039.X 2019-11-19
CN201911133039.XA CN110835766B (zh) 2019-11-19 2019-11-19 表面等离激元增强型InGaN/GaN多量子阱光电极及其制备方法

Publications (1)

Publication Number Publication Date
WO2021098149A1 true WO2021098149A1 (zh) 2021-05-27

Family

ID=69576598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087443 WO2021098149A1 (zh) 2019-11-19 2020-04-28 表面等离激元增强型InGaN/GaN多量子阱光电极及其制备方法

Country Status (2)

Country Link
CN (1) CN110835766B (zh)
WO (1) WO2021098149A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110835766B (zh) * 2019-11-19 2021-03-23 南京集芯光电技术研究院有限公司 表面等离激元增强型InGaN/GaN多量子阱光电极及其制备方法
CN114530759B (zh) * 2020-11-02 2023-04-07 中国科学院苏州纳米技术与纳米仿生研究所 一种表面等离激元激光器的制作方法
CN113192998A (zh) * 2021-04-29 2021-07-30 京东方科技集团股份有限公司 一种显示装置及其制备方法
CN113279008B (zh) * 2021-05-18 2022-03-22 河北工业大学 一种用于人工光合作用氮化镓串联cigs的器件及其制备方法
CN113451881B (zh) * 2021-06-29 2022-07-12 南京大学 栅状电极增强表面等离激元激光器及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101364482A (zh) * 2008-09-19 2009-02-11 南京大学 一种可见光铟镓氮基光电化学电池及制备方法
CN103094434A (zh) * 2012-11-27 2013-05-08 南京大学 ICP刻蚀GaN基多量子阱制备纳米阵列图形的方法
CN103325901A (zh) * 2013-05-22 2013-09-25 中国科学院半导体研究所 垂直结构表面等离激元增强GaN基纳米柱LED及制备方法
CN103325900A (zh) * 2013-05-22 2013-09-25 中国科学院半导体研究所 表面等离激元增强GaN基纳米柱LED及制备方法
CN104868023A (zh) * 2015-05-11 2015-08-26 南京大学 Iii族氮化物半导体/量子点混合白光led器件及其制备方法
CN105552149A (zh) * 2015-11-16 2016-05-04 华南师范大学 基于自支撑GaN衬底的高In组分InGaN/GaN量子阱结构太阳能电池及其制法
WO2018136323A1 (en) * 2017-01-23 2018-07-26 Sabic Global Technologies B.V. Electrochemical apparatus and its use for screening of nanostructure catalysts
CN108550963A (zh) * 2018-05-03 2018-09-18 南京大学 一种利用极化调控提高InGaN/GaN材料多量子阱太阳能光电化学电池效率的方法
WO2018203274A1 (en) * 2017-05-03 2018-11-08 Sabic Global Technologies B.V. Indium gallium nitride nanostructure systems and uses thereof
CN108855173A (zh) * 2017-05-12 2018-11-23 中国科学院福建物质结构研究所 一种光电催化分解水产氢的方法及其中使用的等离子体催化剂和制法
CN109402653A (zh) * 2018-09-29 2019-03-01 华南理工大学 一种Si衬底上InGaN纳米柱@Au纳米粒子复合结构及其制备方法与应用
CN110835766A (zh) * 2019-11-19 2020-02-25 南京集芯光电技术研究院有限公司 表面等离激元增强型InGaN/GaN多量子阱光电极及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100418240C (zh) * 2005-10-18 2008-09-10 南京大学 在β三氧化二镓衬底上生长InGaN/GaN量子阱LED器件结构的方法
WO2009021206A1 (en) * 2007-08-08 2009-02-12 The Regents Of The University Of California Nonpolar iii-nitride light emitting diodes with long wavelength emission
CN101922015B (zh) * 2010-08-25 2012-07-04 中国科学院半导体研究所 一种InGaN半导体光电极的制作方法
CN102304738B (zh) * 2011-07-22 2013-07-31 南京大学 铟镓氮基光电极的表面处理方法
WO2013147946A1 (en) * 2012-03-30 2013-10-03 The Regents Of The University Of Michigan Gan-based quantum dot visible laser
CN103966621B (zh) * 2014-01-21 2016-07-13 南京大学 一种布拉格反射镜增强InGaN电极、制备与利用
CN105405938B (zh) * 2015-12-29 2018-06-19 中国科学院半导体研究所 可见光通信用单芯片白光led及其制备方法
CN106129204B (zh) * 2016-08-02 2018-09-14 南京大学 表面等离激元增强InGaN/GaN偏振出光LED及其制备方法
CN106785913A (zh) * 2017-01-04 2017-05-31 南京大学 GaN基金属‑超薄氧化物‑半导体的复合结构纳米激光器及其制备方法
CN108193230B (zh) * 2017-12-29 2019-07-30 厦门理工学院 一种钽衬底上生长InxGa1-xN纳米线的光电极及其制备方法
CN108615797B (zh) * 2018-04-28 2019-07-02 南京大学 具有表面等离激元圆台纳米阵列的AlGaN基紫外LED器件及其制备方法
CN109825843B (zh) * 2019-01-28 2021-02-05 北京工业大学 一种基于多晶GaN纳米线的自支撑电催化制氢电极
CN110112172B (zh) * 2019-05-22 2021-06-22 南京大学 基于氮化镓纳米孔阵列/量子点混合结构的全色微米led显示芯片及其制备方法
CN110311023A (zh) * 2019-06-24 2019-10-08 南京大学 利用表面等离激元增强led光通信器件及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101364482A (zh) * 2008-09-19 2009-02-11 南京大学 一种可见光铟镓氮基光电化学电池及制备方法
CN103094434A (zh) * 2012-11-27 2013-05-08 南京大学 ICP刻蚀GaN基多量子阱制备纳米阵列图形的方法
CN103325901A (zh) * 2013-05-22 2013-09-25 中国科学院半导体研究所 垂直结构表面等离激元增强GaN基纳米柱LED及制备方法
CN103325900A (zh) * 2013-05-22 2013-09-25 中国科学院半导体研究所 表面等离激元增强GaN基纳米柱LED及制备方法
CN104868023A (zh) * 2015-05-11 2015-08-26 南京大学 Iii族氮化物半导体/量子点混合白光led器件及其制备方法
CN105552149A (zh) * 2015-11-16 2016-05-04 华南师范大学 基于自支撑GaN衬底的高In组分InGaN/GaN量子阱结构太阳能电池及其制法
WO2018136323A1 (en) * 2017-01-23 2018-07-26 Sabic Global Technologies B.V. Electrochemical apparatus and its use for screening of nanostructure catalysts
WO2018203274A1 (en) * 2017-05-03 2018-11-08 Sabic Global Technologies B.V. Indium gallium nitride nanostructure systems and uses thereof
CN108855173A (zh) * 2017-05-12 2018-11-23 中国科学院福建物质结构研究所 一种光电催化分解水产氢的方法及其中使用的等离子体催化剂和制法
CN108550963A (zh) * 2018-05-03 2018-09-18 南京大学 一种利用极化调控提高InGaN/GaN材料多量子阱太阳能光电化学电池效率的方法
CN109402653A (zh) * 2018-09-29 2019-03-01 华南理工大学 一种Si衬底上InGaN纳米柱@Au纳米粒子复合结构及其制备方法与应用
CN110835766A (zh) * 2019-11-19 2020-02-25 南京集芯光电技术研究院有限公司 表面等离激元增强型InGaN/GaN多量子阱光电极及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
TAO TAO ET AL.: ""Significant improvements in InGaN/GaN nano-photoelectrodes for hydrogen generation by structure and polarization optimization"", SCIENTIFIC REPORTS, vol. 6, 8 February 2016 (2016-02-08), XP055814197, ISSN: 2045-2322 *
YIMENG SANG; BIN LIU; TAO TAO; DI JIANG; YAOZHENG WU; XIANGTIAN CHEN; WENJUN LUO; JIANDONG YE; RONG ZHANG: "Plasmon-enhanced photoelectrochemical water splitting by InGaN/GaN nano-photoanodes", SEMICONDUCTOR SCIENCE TECHNOLOGY, IOP PUBLISHING LTD, GB, vol. 35, no. 2, 17 January 2020 (2020-01-17), GB, pages 025017, XP020350756, ISSN: 0268-1242, DOI: 10.1088/1361-6641/ab615a *
YUN JIN-HYEON, CHO HAN-SU, BAE KANG-BIN, SUDHAKAR SELVAKUMAR, KANG YEON SU, LEE JONG-SOO, POLYAKOV ALEXANDER Y., LEE IN-HWAN: "Enhanced optical properties of nanopillar light-emitting diodes by coupling localized surface plasmon of Ag/SiO 2 nanoparticles", APPLIED PHYSICS EXPRESS, JAPAN SOCIETY OF APPLIED PHYSICS; JP, JP, vol. 8, no. 9, 1 September 2015 (2015-09-01), JP, pages 092002, XP055814191, ISSN: 1882-0778, DOI: 10.7567/APEX.8.092002 *

Also Published As

Publication number Publication date
CN110835766A (zh) 2020-02-25
CN110835766B (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
WO2021098149A1 (zh) 表面等离激元增强型InGaN/GaN多量子阱光电极及其制备方法
Yuan et al. Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production
Rosman et al. Photocatalytic properties of two-dimensional graphene and layered transition-metal dichalcogenides based photocatalyst for photoelectrochemical hydrogen generation: an overview
Chu et al. Solar water oxidation by an InGaN nanowire photoanode with a bandgap of 1.7 eV
AlOtaibi et al. High efficiency photoelectrochemical water splitting and hydrogen generation using GaN nanowire photoelectrode
JP5743039B2 (ja) 光半導体電極、およびそれを具備する光電気化学セルを用いて水を光分解する方法
Chandrasekaran et al. Nanostructured silicon photoelectrodes for solar water electrolysis
Dahal et al. Realizing InGaN monolithic solar-photoelectrochemical cells for artificial photosynthesis
Atabaev Plasmon-enhanced solar water splitting with metal oxide nanostructures: a brief overview of recent trends
Narangari et al. Improved photoelectrochemical performance of GaN nanopillar photoanodes
Hong et al. Preparation and enhanced photoelectrochemical performance of selenite-sensitized zinc oxide core/shell composite structure
CN108550963A (zh) 一种利用极化调控提高InGaN/GaN材料多量子阱太阳能光电化学电池效率的方法
WO2014034004A1 (ja) 二酸化炭素還元用光化学電極、および該光化学電極を用いて二酸化炭素を還元する方法
Liu et al. Near-infrared CdSexTe1-x@ CdS “giant” quantum dots for efficient photoelectrochemical hydrogen generation
Zou et al. Fabrication, optoelectronic and photocatalytic properties of some composite oxide nanostructures
Xu et al. Correlations among morphology, composition, and photoelectrochemical water splitting properties of InGaN nanorods grown by molecular beam epitaxy
Butson et al. Photoelectrochemical studies of InGaN/GaN MQW photoanodes
Tijent et al. Recent advances in InGaN nanowires for hydrogen production using photoelectrochemical water splitting
Rashed et al. Synthesis and characterization of Au: CuO nanocomposite by laser soldering on porous silicon for photodetector
KR101639616B1 (ko) 금속 초박층을 포함하는 탠덤 구조의 광전기화학전지용 광전극 및 이를 포함하는 광전기화학전지
Ganguly et al. Production and storage of energy with one-dimensional semiconductor nanostructures
Khalid et al. Metal oxide semiconductors for photoelectrochemical water splitting
Kumar Photoelectrochemical splitting of water to produce a power appetizer Hydrogen: A green system for future–(A short review)
KR102155363B1 (ko) 광전기화학전지용 광전극 및 그 제조방법과 광전극을 포함하는 광전기화학전지
Sharma et al. MoSe2 nanosheets/SiNWs heterojunction-based photocathode for efficient photoelectrochemical water splitting applications

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889760

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20889760

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/06/2023)

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889760

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20889760

Country of ref document: EP

Kind code of ref document: A1