CN110835766B - 表面等离激元增强型InGaN/GaN多量子阱光电极及其制备方法 - Google Patents

表面等离激元增强型InGaN/GaN多量子阱光电极及其制备方法 Download PDF

Info

Publication number
CN110835766B
CN110835766B CN201911133039.XA CN201911133039A CN110835766B CN 110835766 B CN110835766 B CN 110835766B CN 201911133039 A CN201911133039 A CN 201911133039A CN 110835766 B CN110835766 B CN 110835766B
Authority
CN
China
Prior art keywords
quantum well
gan
metal
electrode
ingan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911133039.XA
Other languages
English (en)
Other versions
CN110835766A (zh
Inventor
谢自力
桑艺萌
刘斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Jixin Optoelectronic Technology Research Institute Co ltd
Original Assignee
Nanjing Jixin Optoelectronic Technology Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Jixin Optoelectronic Technology Research Institute Co ltd filed Critical Nanjing Jixin Optoelectronic Technology Research Institute Co ltd
Priority to CN201911133039.XA priority Critical patent/CN110835766B/zh
Publication of CN110835766A publication Critical patent/CN110835766A/zh
Priority to PCT/CN2020/087443 priority patent/WO2021098149A1/zh
Application granted granted Critical
Publication of CN110835766B publication Critical patent/CN110835766B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thermal Sciences (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Photovoltaic Devices (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明公开了一种表面等离激元增强型InGaN/GaN多量子阱光电极,在基片中刻蚀形成贯穿p‑GaN层,深至多量子阱有源层的纳米柱结构,所述纳米柱之间在多量子阱有源层的位置填充有等离金属。并公开了其在作为太阳能光电化学电池的工作电极中的应用,制得的太阳能光电化学电池以及其制备方法。本发明采用自组装Ni掩模自上而下的刻蚀方法调控等离金属与多量子阱之间的距离,使之能产生近场耦合,在表面等离激元效应产生的电磁场与p‑n区高掺杂浓度形成的内建电场的共同作用下,多量子阱有源区表面的电子空穴对产生和输运的效率有效提高。该方法适用于InGaN类带隙可调并与太阳光谱匹配的光电极材料。

Description

表面等离激元增强型InGaN/GaN多量子阱光电极及其制备 方法
技术领域
本发明涉及一种表面等离激元增强型InGaN/GaN多量子阱光电极、用表面等离激元增强型InGaN/GaN多量子阱光电极制得的太阳能光电化学电池及其制备方法,属于太阳能电池技术领域。
背景技术
随着人口和经济的迅速增长,煤、石油、天然气等矿物燃料随着开发的加剧已日趋枯竭,长此以往,将无法满足人们生活所需的能源需求,因此,寻找新型的替代能源已成为人类未来发展的紧要任务。太阳能作为绿色、低碳环保的可再生能源,成为众多新兴能源中最有潜力的能源之一。但是到目前为止,太阳能的利用效率仍然很低,而且从太阳能转换而成的电能在存储方面存在一定的技术难度,而通过利用太阳能光电化学电池将太阳能转换成便于存储的氢气是有效利用太阳能的方式之一。太阳能光电化学电池的基本原理是光电极材料吸收一定波长的太阳光能量,在材料内部产生电子空穴对,在外加电压或者内电场的作用下相互分离,空穴向阳极表面移动进行电解液氧化反应,电子向阴极附近移动进行电解液还原反应,产生我们所需要的氢气能源。
对于太阳能光电化学电池,半导体光电极材料是其核心部件,可分为光阳极和光阴极两种,由于较低的太阳能转化效率,光阳极材料的选择成为太阳能光电池研究的热点问题。III族氮化物材料由于其物理、化学性质稳定,电子迁移率高且能带能够满足水氧化还原电势需求等优势被广泛关注,尤其是InGaN及其合金材料的带隙从0.7eV到3.4eV连续可调,能够按需求设计出符合要求的电极材料。而贵金属如Au、Ag、Cu等纳米颗粒在可见光区表现出很强的宽带光吸收特征,这是由于金属表面的电子在电磁场的驱动下发生振荡,产生表面等离激元。当金属与半导体耦合时,产生的表面等离激元效应会在半导体表面区域形成很强的电磁场,表面产生的电子空穴对会在电磁场的作用下快速分离,发生氧化还原反应,降低电子空穴对的复合效率,有效提高太阳能光电化学电池的效率。
关于表面等离激元增强太阳能光电化学电池效率的研究有很多,但对于InGaN基半导体材料与等离金属的耦合的研究却不多,如何利用等离激元效应增加InGaN/GaN多量子阱太阳能光电化学电池效率的同时利用p-n区高掺杂浓度形成的内建电场加速电子空穴对的分离成为一个难点。因此,我们采用自组装Ni掩模自上而下的刻蚀方法调控等离金属与InGaN/GaN多量子阱之间的距离,使之能产生近场耦合。而且这种自组装Ni掩模的刻蚀方法大大节约了成本,并且有效提高了太阳能光电化学电池的效率。
发明内容
本发明的目的在于提供一种表面等离激元增强型InGaN/GaN多量子阱光电极。
本发明采用的技术方案为:一种表面等离激元增强型InGaN/GaN多量子阱光电极,通过控制纳米柱刻蚀深度,露出InxGa1-xN/GaN多量子阱有源层,在InxGa1-xN/GaN纳米柱之间的多量子阱有源层的位置填充等离金属,其中0≤x≤1。
所述等离激元增强型InGaN/GaN多量子阱光电极,其衬底材料为一般蓝光/绿光LED外延片,所述基片刻蚀形成贯穿p-GaN层,深至InxGa1-xN/GaN多量子阱有源层的纳米柱结构,纳米柱直径为70~500nm,InxGa1-xN/GaN多量子阱有源层厚度150~250nm。
优选的,所述等离金属为球形或圆柱形,球型直径10~200nm,圆柱型直径10~50nm,高度50~200nm,等离金属从Au、Ag、Cu中选择。
上述的表面等离激元增强型InGaN/GaN多量子阱光电极在作为太阳能光电化学电池的工作电极中的应用。
本发明还公开了一种太阳能光电化学电池,包括工作电级、对电极、参考电极、电解池、外电路,所述外电路包括正负电极,负电极连接对电极,正电极并联工作电极和参考电极,所述电解池中填充电解液,工作电级、对电极、参考电极均插入电解液中,其特征在于:所述工作电极为权利要求1-3中任一项所述的表面等离激元增强型InGaN/GaN多量子阱光电极。
本发明还公开了一种表面等离激元增强型InGaN/GaN多量子阱光电极的制备方法,其步骤包括:
(1)、在InGaN/GaN多量子阱LED基片上采用PECVD技术生长一层SiO2绝缘层;
(2)、采用电子束蒸发技术,在绝缘层表面上蒸镀Ni金属膜层;
(3)、采用快速热退火技术,使绝缘层表面的Ni金属膜层在高温下退火形成Ni金属颗粒,作为纳米柱刻蚀掩模;
(4)、采用RIE技术,以Ni金属颗粒为掩模,通入CF4和O2的混合气体,各向异性刻蚀SiO2绝缘层,得到无序的SiO2纳米柱阵列结构;
(5)、采用ICP技术,以SiO2绝缘层为掩模,通入Cl2和CF4的混合气体,各向异性刻蚀p型氮化镓层、InxGa1-xN/GaN多量子阱有源层,形成贯穿p型氮化镓层,深至InxGa1-xN/GaN多量子阱有源层的InGaN/GaN多量子阱纳米柱阵列,将样品放置在无机酸、碱溶液水浴去除刻蚀损伤,然后去除残余的绝缘层;
(6)、采用ICP技术,以适当大小的硅片为掩模,通入Cl2和CF4的混合气体,各向异性刻蚀p-GaN层、InxGa1-xN/GaN量子阱有源层、n-GaN层,露出n型GaN,形成n型GaN台阶;
(7)、采用电子束蒸发技术,在n型台阶上蒸镀Ti/Al/Ni/Au金属电极;
(8)、采用快速热退火技术,在N2氛围下对步骤7中所得的样品进行快速热退火处理,形成欧姆接触;
(9)、将等离金属分散在乙醇溶剂中,超声,使等离金属在溶液中尽可能均匀分布,制得等离金属悬浊液,浓度为1×1010ml-1
(10)、将制备的InGaN/GaN多量子阱基片置于热台上,将等离金属悬浊液滴在样品表面,然后烘烤,将等离金属悬浊液蒸干,使得等离金属分散在InGaN/GaN多量子阱纳米柱之间。
本发明还公开了一种太阳能光电化学电池的制备方法,包括以下步骤:
A、在电解池中倒入电解液;
B、连接外电路,外电路的负电极连接对电极,正电极并联工作电极和参考电极,其中权利要求7制得的表面等离激元增强型InGaN/GaN多量子阱光电极作为工作电极,贵金属为对电极,Ag/AgCl为参考电极;
C、将对电极、工作电极和参考电极插入NaCl电解液中,形成太阳能光电化学电池。
优选的,所述电解液为水或酸碱盐溶液,包括NaCl、HBr、NaOH或KOH。
所述的对电极,可选用铂、金贵金属。选择贵金属的时候需要满足:一是提供很好的导电性;二是金属材料几乎不与任何酸碱盐溶液反应,具有较高的化学稳定性;三是金属的金属功函数与常用的电解液溶液费米能级接近,在金属与电解液界面不易形成能量势垒,故不会对光电化学反应造成阻碍。
所述的参考电极为Ag/AgCl,主要用于对半导体电极和Pt电极处的相对电势差进行测定。
所述的电解液,不仅要提供合适的氧化还原电位,还要避免与光电极材料产生光化学反应。可选用水或酸碱盐溶液,包括但不限于NaCl、HBr、NaOH、KOH。
所述的用于表面等离激元增强的等离金属,可选用Au、Ag、Cu这一类吸光波段在可见光波段的贵金属,通过控制纳米金属的尺寸、形状等调控金属的吸光范围,使之与半导体材料有更多的吸收光谱重叠,能更好的耦合达到增强太阳能光化学电池效率的目的。
所述外电路包括正负极,负电极连接对电极,电极并联工作电极和参考电极,偏压设置-5V~20V。
本发明通过自组装Ni掩模自上而下的刻蚀方法刻蚀出InGaN/GaN多量子阱纳米柱结构,露出InGaN/GaN多量子阱部分,铺上纳米金属使之能与InGaN/GaN多量子阱有源区相互耦合,使得太阳能光电化学电池效率得到有效的提升。
本发明是通过利用纳米金属表面等离激元效应增强InGaN/GaN多量子阱光电极来实现较高效率的光催化水分解制氢。通过刻蚀技术刻蚀出InGaN/GaN多量子阱纳米柱结构,使纳米金属能与InGaN/GaN多量子阱有源区相互耦合,在太阳光模拟器的照射下,由于等离金属的吸光波段与InGaN/GaN多量子阱有源区吸光波段有一定的重合,等离金属与多量子阱有源区产生近距电磁场耦合,InGaN/GaN多量子阱表面的电磁场将加速表面区产生的光生电子空穴对的分离,进一步促进多量子阱界面处电子空穴对的产生,将金属中的能量转移到半导体表面,增加量子阱表面电子空穴对产生的速率,提高光电极的吸光能力,进而提高光催化水分解的效率。本方法可以通过改变金属纳米颗粒的尺寸、形状合理调控其吸光范围,使之能与InGaN/GaN多量子阱有源区的吸光谱尽可能多的重合,这是一种能有效提升太阳能光电化学电池效率的方法。
附图说明
图1为本发明步骤A1中得到的InGaN/GaN多量子阱LED基片结构示意图。
图2为本发明步骤A1中得到的InGaN/GaN多量子阱LED基片表面沉积SiO2绝缘层的结构示意图。
图3为本发明步骤A2中得到的InGaN/GaN多量子阱LED上蒸镀Ni金属膜层的示意图。
图4为本发明步骤A3中得到的InGaN/GaN多量子阱LED表面形成的Ni颗粒掩模的结构示意图。
图5为本发明步骤A4中得到的SiO2绝缘层上无序纳米柱阵列的结构示意图。
图6为本发明步骤A5中得到的InGaN/GaN多量子阱纳米柱阵列的结构示意图(顶部有SiO2和金属)。
图7为本发明步骤A5中得到的InGaN/GaN多量子阱纳米柱阵列的结构示意图。
图8为本发明步骤A6中得到的具有n型GaN台阶的InGaN/GaN多量子阱纳米柱阵列的结构示意图。
图9为本发明步骤A7中得到的InGaN/GaN多量子阱纳米柱光电极的结构示意图。
图10为本发明步骤B中得到的纳米金属沉积的InGaN/GaN多量子阱纳米柱光电极的结构示意图。
图11为本发明步骤E中得到的太阳能光电化学电池工作状态示意图。
图12为含有等离金属的InGaN/GaN多量子阱纳米柱的光电转换效率。
图13为含有等离金属的InGaN/GaN多量子阱纳米柱的光电流。
上述图1-11中:1为蓝宝石衬底层,2为非掺杂u-GaN层,3为n型GaN层,4为InxGa1- xN/GaN量子阱有源层,5为p型GaN层,6为二氧化硅介质薄膜层,7为Ni金属薄膜层,8为Ti/Al/Ni/Au金属电极层,9为纳米结构的等离金属。
具体实施方式
以下是结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本太阳能光电化学电池的制备方法,其步骤包括:
A1、在In组分为0.3,发光波长为510nm,量子阱的周期数为10的InGaN/GaN多量子阱LED基片(如图1所示,包括厚度2μm的n型GaN层3,周期数为10、厚度为150nm的InxGa1-xN/GaN量子阱有源层4(InGaN阱层的厚度为3nm,GaN垒层的厚度为12nm)和厚度为500nm的p型GaN层5)上生长一层200nm厚的SiO2介质薄膜层6,如图2所示,将10nm厚的Ni金属膜层7蒸镀在SiO2层介质薄膜6的表面,如图3所示;
A2、利用快速热退火技术,在850℃、氮气氛围下将步骤A中所得样品退火3分钟,10nm厚的Ni金属膜层退火形成直径50-200nm不等的Ni金属颗粒7,如图4所示;
A3、利用RIE技术,以绝缘层表面的Ni金属颗粒为掩模,通入CF4和O2的混合气体,各向异性刻蚀SiO2绝缘层6,SiO2介质薄膜层形成大小各异的SiO2纳米柱阵列结构,如图5所示,刻蚀参数:CF4和O2的流量分别为30sccm和10sccm,功率为150W,压强为4Pa,刻蚀时间为3min40s;
A4、利用ICP技术,以SiO2纳米柱阵列为掩模,通入Cl2和BCl3的混合气体,各向异性刻蚀P型氮化镓层5以及部分InxGa1-xN/GaN量子阱有源层4,如图6所示,将样品放置在无机酸、无机碱溶液40摄氏度水浴加热5分钟去除刻蚀损伤,然后使用氢氟酸去除表面的SiO2绝缘层,如图所示,刻蚀参数:Cl2和BCl3的流量分别为24sccm和3sccm,腔体气压为6.5mTorr,RF功率为30W,ICP功率为100W,刻蚀时间为7min30s,刻蚀完成的纳米柱高度为550nm;
A5、利用ICP技术,以合适大小的Si片作为掩模,遮挡部分纳米柱阵列,通入Cl2和BCl3的混合气体,各向异性刻蚀p型氮化镓层、InxGa1-xN/GaN量子阱有源层、n型氮化镓层,露出n型GaN,形成n型GaN台阶,如图8所示,刻蚀参数:Cl2和BCl3的流量分别为48sccm和6sccm,腔体气压为10mTorr,RF功率为100W,ICP功率为300W,刻蚀时间为4min;
A6、利用电子束蒸发技术,在n型GaN台阶上蒸镀Ti/Al/Ni/Au金属膜层,厚度分别为30nm/150nm/50nm/100nm,如图9所示;
A7、利用快速热退火技术,在N2环境氛围下进行热退火处理从而形成n型欧姆接触,退火温度750℃,退火时间30s;
A8、将金包银等离金属纳米线分散在溶剂中,超声40-70分钟,使等离金属在溶液中尽可能均匀分布,制得等离金属悬浊液;
B、将制备的InGaN/GaN多量子阱光电极置于热台上,将等离金属悬浊液滴在样品表面,然后烘烤,将等离金属悬浊液蒸干,使得纳米金属分散在InGaN/GaN多量子阱纳米柱之间,如图10所示,金属纳米线长度为100nm,直径50nm;
C、在电解池中倒入50mlNaCl配比溶液,浓度约0.5M;
D、在外电路连解中,步骤B制备的表面等离激元增强的InGaN/GaN多量子阱对应为工作电极,Pt为对电极,Ag/AgCl为参考电极;
E、将外电路及三个电极插入制得的NaCl电解液中,如图11所示;
从图12和图13中可以看出,含有等离金属的InGaN/GaN多量子阱纳米柱的光电转换效和光电流显著增强。
电解液也可选用水或HBr、NaOH、KOH。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

1.一种表面等离激元增强型InGaN/GaN多量子阱光电极在作为太阳能光电化学电池的工作电极中的应用,其特征在于:所述表面等离激元增强型InGaN/GaN多量子阱光电极为通过控制纳米柱刻蚀深度,露出InxGa1-xN/GaN多量子阱有源层,在InxGa1-xN/GaN纳米柱之间的多量子阱有源层的位置填充等离金属,其中0≤x≤1。
2.根据权利要求1所述的应用,其特征在于:其衬底材料为蓝光/绿光LED外延片,基片刻蚀形成贯穿p-GaN层,深至InxGa1-xN/GaN多量子阱有源层的纳米柱结构,纳米柱直径为70~500nm,InxGa1-xN/GaN多量子阱有源层厚度150~250nm。
3.根据权利要求1或2所述的应用,其特征在于:所述等离金属为球形或圆柱形,球型直径10~200nm,圆柱型直径10~50nm,高度50~200nm,等离金属从Au、Ag、Cu中选择。
4.一种太阳能光电化学电池,包括工作电极、对电极、参考电极、电解池、外电路,所述外电路包括正负电极,负电极连接对电极,正电极并联工作电极和参考电极,所述电解池中填充电解液,工作电极、对电极、参考电极均插入电解液中,其特征在于:所述工作电极为权利要求1-3中任一项所述的表面等离激元增强型InGaN/GaN多量子阱光电极在作为太阳能光电化学电池的工作电极中的应用中的光电极。
5.根据权利要求4所述的太阳能光电化学电池,其特征在于:所述电池的偏压设置-5V~20V,所述电解液为水或酸碱盐溶液,包括NaCl、HBr、NaOH或KOH。
6.一种如权利要求1所述的表面等离激元增强型InGaN/GaN多量子阱光电极在作为太阳能光电化学电池的工作电极中的应用中的光电极的制备方法,其步骤包括:
(1)、在InGaN/GaN多量子阱LED基片上采用PECVD技术生长一层SiO2绝缘层;
(2)、采用电子束蒸发技术,在绝缘层表面上蒸镀Ni金属膜层;
(3)、采用快速热退火技术,使绝缘层表面的Ni金属膜层在高温下退火形成Ni金属颗粒,作为纳米柱刻蚀掩模;
(4)、采用RIE技术,以Ni金属颗粒为掩模,通入CF4和O2的混合气体,各向异性刻蚀SiO2绝缘层,得到无序的SiO2纳米柱阵列结构;
(5)、采用ICP技术,以SiO2绝缘层为掩模,通入Cl2和CF4的混合气体,各向异性刻蚀p型氮化镓层、InxGa1-xN/GaN多量子阱有源层,形成贯穿p型氮化镓层,深至InxGa1-xN/GaN多量子阱有源层的InGaN/GaN多量子阱纳米柱阵列,将样品放置在无机酸、碱溶液水浴去除刻蚀损伤,然后去除残余的绝缘层;
(6)、采用ICP技术,以适当大小的硅片为掩模,通入Cl2和CF4的混合气体,各向异性刻蚀p-GaN层、InxGa1-xN/GaN量子阱有源层、n-GaN层,露出n型GaN,形成n型GaN台阶;
(7)、采用电子束蒸发技术,在n型台阶上蒸镀Ti/Al/Ni/Au金属电极;
(8)、采用快速热退火技术,在N2氛围下对步骤(7)中所得的样品进行快速热退火处理,形成欧姆接触;
(9)、将等离金属分散在乙醇溶剂中,超声,使等离金属在溶液中尽可能均匀分布,制得等离金属悬浊液;
(10)、将制备的InGaN/GaN多量子阱基片置于热台上,将等离金属悬浊液滴在样品表面,然后烘烤,将等离金属悬浊液蒸干,使得等离金属分散在InGaN/GaN多量子阱纳米柱之间。
7.一种太阳能光电化学电池的制备方法,包括以下步骤:
A、在电解池中倒入电解液;
B、连接外电路,外电路的负电极连接对电极,正电极并联工作电极和参考电极,其中权利要求6制得的表面等离激元增强型InGaN/GaN多量子阱光电极作为工作电极,贵金属为对电极,Ag/AgCl为参考电极;
C、将对电极、工作电极和参考电极插入NaCl电解液中,形成太阳能光电化学电池。
8.根据权利要求7所述的太阳能光电化学电池的制备方法,其特征在于:所述电解液为水或酸碱盐溶液,包括NaCl、HBr、NaOH或KOH。
CN201911133039.XA 2019-11-19 2019-11-19 表面等离激元增强型InGaN/GaN多量子阱光电极及其制备方法 Active CN110835766B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201911133039.XA CN110835766B (zh) 2019-11-19 2019-11-19 表面等离激元增强型InGaN/GaN多量子阱光电极及其制备方法
PCT/CN2020/087443 WO2021098149A1 (zh) 2019-11-19 2020-04-28 表面等离激元增强型InGaN/GaN多量子阱光电极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911133039.XA CN110835766B (zh) 2019-11-19 2019-11-19 表面等离激元增强型InGaN/GaN多量子阱光电极及其制备方法

Publications (2)

Publication Number Publication Date
CN110835766A CN110835766A (zh) 2020-02-25
CN110835766B true CN110835766B (zh) 2021-03-23

Family

ID=69576598

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911133039.XA Active CN110835766B (zh) 2019-11-19 2019-11-19 表面等离激元增强型InGaN/GaN多量子阱光电极及其制备方法

Country Status (2)

Country Link
CN (1) CN110835766B (zh)
WO (1) WO2021098149A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110835766B (zh) * 2019-11-19 2021-03-23 南京集芯光电技术研究院有限公司 表面等离激元增强型InGaN/GaN多量子阱光电极及其制备方法
CN114530759B (zh) * 2020-11-02 2023-04-07 中国科学院苏州纳米技术与纳米仿生研究所 一种表面等离激元激光器的制作方法
CN113192998A (zh) * 2021-04-29 2021-07-30 京东方科技集团股份有限公司 一种显示装置及其制备方法
CN113279008B (zh) * 2021-05-18 2022-03-22 河北工业大学 一种用于人工光合作用氮化镓串联cigs的器件及其制备方法
CN113451881B (zh) * 2021-06-29 2022-07-12 南京大学 栅状电极增强表面等离激元激光器及其制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1758456A (zh) * 2005-10-18 2006-04-12 南京大学 在β三氧化二镓衬底上生长InGaN/GaN量子阱L ED器件结构的方法
CN101922015A (zh) * 2010-08-25 2010-12-22 中国科学院半导体研究所 一种InGaN半导体光电极的制作方法
CN102304738A (zh) * 2011-07-22 2012-01-04 南京大学 铟镓氮基光电极的表面处理方法
CN103094434A (zh) * 2012-11-27 2013-05-08 南京大学 ICP刻蚀GaN基多量子阱制备纳米阵列图形的方法
CN103966621A (zh) * 2014-01-21 2014-08-06 南京大学 一种布拉格反射镜增强InGaN电极、制备与利用
CN105405938A (zh) * 2015-12-29 2016-03-16 中国科学院半导体研究所 可见光通信用单芯片白光led及其制备方法
CN106129204A (zh) * 2016-08-02 2016-11-16 南京大学 表面等离激元增强InGaN/GaN偏振出光LED及其制备方法
CN106785913A (zh) * 2017-01-04 2017-05-31 南京大学 GaN基金属‑超薄氧化物‑半导体的复合结构纳米激光器及其制备方法
CN108193230A (zh) * 2017-12-29 2018-06-22 厦门理工学院 一种钽衬底上生长InxGa1-xN纳米线的光电极及其制备方法
CN108550963A (zh) * 2018-05-03 2018-09-18 南京大学 一种利用极化调控提高InGaN/GaN材料多量子阱太阳能光电化学电池效率的方法
CN108615797A (zh) * 2018-04-28 2018-10-02 南京大学 具有表面等离激元圆台纳米阵列的AlGaN基紫外LED器件及其制备方法
CN109825843A (zh) * 2019-01-28 2019-05-31 北京工业大学 一种基于多晶GaN纳米线的自支撑电催化制氢电极
CN110112172A (zh) * 2019-05-22 2019-08-09 南京大学 基于氮化镓纳米孔阵列/量子点混合结构的全色微米led显示芯片及其制备方法
CN110311023A (zh) * 2019-06-24 2019-10-08 南京大学 利用表面等离激元增强led光通信器件及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7847280B2 (en) * 2007-08-08 2010-12-07 The Regents Of The University Of California Nonpolar III-nitride light emitting diodes with long wavelength emission
CN101364482B (zh) * 2008-09-19 2010-12-08 南京大学 一种可见光铟镓氮基光电化学电池制备方法
WO2013147946A1 (en) * 2012-03-30 2013-10-03 The Regents Of The University Of Michigan Gan-based quantum dot visible laser
CN103325900B (zh) * 2013-05-22 2015-11-11 中国科学院半导体研究所 表面等离激元增强GaN基纳米柱LED及制备方法
CN103325901B (zh) * 2013-05-22 2016-03-09 中国科学院半导体研究所 垂直结构表面等离激元增强GaN基纳米柱LED及制备方法
CN104868023B (zh) * 2015-05-11 2018-02-16 南京大学 Iii族氮化物半导体/量子点混合白光led器件及其制备方法
CN105552149B (zh) * 2015-11-16 2017-09-29 华南师范大学 基于自支撑GaN衬底的高In组分InGaN/GaN量子阱结构太阳能电池及其制法
WO2018136323A1 (en) * 2017-01-23 2018-07-26 Sabic Global Technologies B.V. Electrochemical apparatus and its use for screening of nanostructure catalysts
US20210086170A1 (en) * 2017-05-03 2021-03-25 Sabic Global Technologies B.V. Indium gallium nitride nanostructure systems and uses thereof
CN108855173B (zh) * 2017-05-12 2020-10-30 中国科学院福建物质结构研究所 一种光电催化分解水产氢的方法及其中使用的等离子体催化剂和制法
CN109402653B (zh) * 2018-09-29 2023-04-25 华南理工大学 一种Si衬底上InGaN纳米柱@Au纳米粒子复合结构及其制备方法与应用
CN110835766B (zh) * 2019-11-19 2021-03-23 南京集芯光电技术研究院有限公司 表面等离激元增强型InGaN/GaN多量子阱光电极及其制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1758456A (zh) * 2005-10-18 2006-04-12 南京大学 在β三氧化二镓衬底上生长InGaN/GaN量子阱L ED器件结构的方法
CN101922015A (zh) * 2010-08-25 2010-12-22 中国科学院半导体研究所 一种InGaN半导体光电极的制作方法
CN102304738A (zh) * 2011-07-22 2012-01-04 南京大学 铟镓氮基光电极的表面处理方法
CN103094434A (zh) * 2012-11-27 2013-05-08 南京大学 ICP刻蚀GaN基多量子阱制备纳米阵列图形的方法
CN103966621A (zh) * 2014-01-21 2014-08-06 南京大学 一种布拉格反射镜增强InGaN电极、制备与利用
CN105405938A (zh) * 2015-12-29 2016-03-16 中国科学院半导体研究所 可见光通信用单芯片白光led及其制备方法
CN106129204A (zh) * 2016-08-02 2016-11-16 南京大学 表面等离激元增强InGaN/GaN偏振出光LED及其制备方法
CN106785913A (zh) * 2017-01-04 2017-05-31 南京大学 GaN基金属‑超薄氧化物‑半导体的复合结构纳米激光器及其制备方法
CN108193230A (zh) * 2017-12-29 2018-06-22 厦门理工学院 一种钽衬底上生长InxGa1-xN纳米线的光电极及其制备方法
CN108615797A (zh) * 2018-04-28 2018-10-02 南京大学 具有表面等离激元圆台纳米阵列的AlGaN基紫外LED器件及其制备方法
CN108550963A (zh) * 2018-05-03 2018-09-18 南京大学 一种利用极化调控提高InGaN/GaN材料多量子阱太阳能光电化学电池效率的方法
CN109825843A (zh) * 2019-01-28 2019-05-31 北京工业大学 一种基于多晶GaN纳米线的自支撑电催化制氢电极
CN110112172A (zh) * 2019-05-22 2019-08-09 南京大学 基于氮化镓纳米孔阵列/量子点混合结构的全色微米led显示芯片及其制备方法
CN110311023A (zh) * 2019-06-24 2019-10-08 南京大学 利用表面等离激元增强led光通信器件及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Enhanced InGaN/GaN photoelectrodes for visible-light-driven hydrogen generation by surface roughening";Zhi T 等;《Physica Status Solidi》;20161231;第1-5页 *
"局域表面等离激元对InGaN/GaN多量子阱发光效率的影响";许恒 等;《发光学报》;20170331;第38卷(第3期);第324-330页 *
"氮化物半导体光生载流子有效分离及其光电化学分解水制氢研究";李明雪;《中国博士学位论文全文数据库 工程科技I辑》;20190515;第B015-11页 *
"表面纳米结构制备及LED表面等离激元耦合增强发光机制研究";于治国;《中国博士学位论文全文数据库 信息科技辑》;20131015;第I135-48页 *

Also Published As

Publication number Publication date
CN110835766A (zh) 2020-02-25
WO2021098149A1 (zh) 2021-05-27

Similar Documents

Publication Publication Date Title
CN110835766B (zh) 表面等离激元增强型InGaN/GaN多量子阱光电极及其制备方法
Chu et al. Solar water oxidation by an InGaN nanowire photoanode with a bandgap of 1.7 eV
Liu et al. Silicon nanostructures for solar-driven catalytic applications
Hayashi et al. High stability and efficiency of GaN photocatalyst for hydrogen generation from water
Chandrasekaran et al. Nanostructured silicon photoelectrodes for solar water electrolysis
US20180219115A1 (en) Semiconductor structures for fuel generation
JP5743039B2 (ja) 光半導体電極、およびそれを具備する光電気化学セルを用いて水を光分解する方法
Qu et al. One-dimensional homogeneous and heterogeneous nanowires for solar energy conversion
JP5636139B2 (ja) 二酸化炭素還元用光化学電極、および該光化学電極を用いて二酸化炭素を還元する方法
CN103348039A (zh) 还原二氧化碳的方法
CN108550963A (zh) 一种利用极化调控提高InGaN/GaN材料多量子阱太阳能光电化学电池效率的方法
Chen et al. 3D InGaN nanowire arrays on oblique pyramid-textured Si (311) for light trapping and solar water splitting enhancement
US20150218719A1 (en) Carbon dioxide reduction device and method for reducing carbon dioxide
Narangari et al. Improved photoelectrochemical performance of GaN nanopillar photoanodes
JP5641489B2 (ja) アルコールを生成する方法
Zhao et al. InGaN/Cu2O heterostructure core-shell nanowire photoanode for efficient solar water splitting
KR101666378B1 (ko) GaN 기반 다공성 피라미드 광전극 및 그 제조방법
JP2014227563A (ja) 二酸化炭素還元用光化学電極、二酸化炭素還元装置、及び二酸化炭素の還元方法
Rashed et al. Synthesis and characterization of Au: CuO nanocomposite by laser soldering on porous silicon for photodetector
Kumar Photoelectrochemical splitting of water to produce a power appetizer Hydrogen: A green system for future–(A short review)
Ganguly et al. Production and storage of energy with one-dimensional semiconductor nanostructures
KR102155363B1 (ko) 광전기화학전지용 광전극 및 그 제조방법과 광전극을 포함하는 광전기화학전지
CN102569474A (zh) 硅纳米线阵列或硅纳米孔阵列肖特基结型太阳能电池及其制备方法
JP2016098419A (ja) 水素の生成方法、水素生成装置および水素生成用のアノード電極
JP2019205970A (ja) 半導体光電極

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant