CN108855173B - 一种光电催化分解水产氢的方法及其中使用的等离子体催化剂和制法 - Google Patents

一种光电催化分解水产氢的方法及其中使用的等离子体催化剂和制法 Download PDF

Info

Publication number
CN108855173B
CN108855173B CN201710335935.9A CN201710335935A CN108855173B CN 108855173 B CN108855173 B CN 108855173B CN 201710335935 A CN201710335935 A CN 201710335935A CN 108855173 B CN108855173 B CN 108855173B
Authority
CN
China
Prior art keywords
water
plasma
catalyst
plasma catalyst
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710335935.9A
Other languages
English (en)
Other versions
CN108855173A (zh
Inventor
张海霞
张华彬
康遥
张健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Institute of Research on the Structure of Matter of CAS
Original Assignee
Fujian Institute of Research on the Structure of Matter of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Institute of Research on the Structure of Matter of CAS filed Critical Fujian Institute of Research on the Structure of Matter of CAS
Priority to CN201710335935.9A priority Critical patent/CN108855173B/zh
Publication of CN108855173A publication Critical patent/CN108855173A/zh
Application granted granted Critical
Publication of CN108855173B publication Critical patent/CN108855173B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于纳米材料制备及制氢催化剂技术领域,具体涉及一种光电催化分解水产氢的方法、其中使用的等离子体催化剂以及该催化剂的制备方法和应用。本发明所述催化剂为金属纳米粒子负载于碳纳米材料上的复合材料。本发明所述等离子体催化剂可用于光电催化分解水产氢,该催化剂的光电催化产氢过电位(在电流密度达10mA cm‑2时)可达99mV,比不引入光源、没有等离子体效应下过电位降低了近100mV,光电流是没有等离子体效应的8倍,显著提高了催化剂的电催化分解水产氢效果,降低了能效。

Description

一种光电催化分解水产氢的方法及其中使用的等离子体催化 剂和制法
技术领域
本发明属于制氢催化剂技术领域,具体涉及一种光电催化分解水产氢的方法、其中使用的等离子体催化剂以及该催化剂的制备方法和应用。
背景技术
由于传统化石原料不断消耗造成了能源短缺和环境污染问题日益严重,因此,构建清洁、可再生新能源体系已经成为全球高度关注的焦点和重大战略。氢能因其高效、清洁、可再生等因素被认为是一种具有巨大潜力的未来能源载体,被看作最具有发展前景的“绿色能源”,引起了各国的广泛重视。
发展氢能,研究经济合理、低耗高效的新型制氢方法至关重要。以水为原料,通过电解、光解的方法制氢,因其原料来源经济、操作简单、产品纯度高等特点,被认为是最有前景的制氢方法。由于水的分解是热力学非自发过程,水电解需要理论电压1.23V,然而实际应用中使水分解的电压要高于该理论值,所需的额外过电位将导致实际耗能增大。研究和开发高催化活性的电极材料,降低过电位可以使水分解反应更加节能高效。迄今,工业上电解水产氢所使用的催化剂主要是以Pt为代表的贵金属材料,催化析氢活性最佳,但是因其资源匮乏价格昂贵,限制了其大规模应用。利用金属纳米颗粒、非贵金属材料制备低成本、高效能的电解水制氢催化剂,替代贵金属的应用,取得了重要进展。但是,研究探索如何降低贵金属使用量、提高其利用率从而降低过电位减少耗能是目前研究的难点。
发明内容
为了改善电催化分解水产氢的过电位能耗高、催化剂效率低的问题,本发明提供了一种碳材料负载金属纳米粒子催化剂,该催化剂的金属纳米粒子表面具有等离子体共振效应,有效降低了电催化分解水产氢的过电位,有效地减少能耗,实现催化效率的最大化;同时,该催化剂的材料成本低,制备方法简单,适用于大规模地工业化生产和使用。
本发明采用的技术方案如下:
一种光电催化分解水产氢的方法,其在电催化分解水制氢过程中采用一种等离子体催化剂,同时,在电催化分解水制氢过程中引入光源;
所述等离子体催化剂为金属纳米粒子负载于碳纳米材料上的复合材料,所述金属纳米粒子为具有等离子体共振特征吸收峰的金属纳米粒子;
所述光源是根据不同金属纳米粒子的等离子体共振特征吸收峰来进行选择的。
本发明还提供一种上述方法中使用的等离子体催化剂,所述催化剂为金属纳米粒子负载于碳纳米材料上的复合材料;所述金属纳米粒子为具有等离子体共振特征吸收峰的金属纳米粒子。
下文中,“等离子体共振特征吸收峰”也可以简记为“吸收峰”。
如上所述,本发明方法中使用的等离子体催化剂的金属纳米粒子具有等离子体共振效应,所述等离子体共振是指受共振光子诱发,在纳米粒子表面形成价电子的集体共振,利用其非辐射衰变过程中所产生活跃的热电子,通过热电子的注入参加电催化分解水反应。
根据本发明,影响所述金属纳米粒子的吸收峰的位置和强度等的主要因素包括金属元素种类、纳米粒子的尺寸与形貌,比如,银纳米粒子的吸收峰位于380nm-500nm,金纳米粒子的吸收峰位于400nm-800nm,铜纳米粒子的吸收峰位于550nm-800nm。
根据本发明,所述具有等离子体特征吸收峰的金属纳米粒子中的金属包括Au、Ag或Cu中的一种或多种;优选地,所述金属为Au。所述金属纳米粒子的形貌可以是纳米棒、纳米块、纳米球,优选地,为纳米球。所述金属纳米粒子以自组装形式负载于所述碳纳米材料上。
根据本发明,所述Au纳米粒子的吸收峰在400nm-800nm之间。优选地,Au纳米粒子的形貌为纳米球,该金纳米球的吸收峰在450nm-600nm之间;还优选地,在520nm-570nm之间。
根据本发明,所述碳纳米材料选自下述碳纳米材料中的一种或多种:石墨烯、碳纳米管、碳纳米纤维、掺杂类石墨烯等等。优选地,所述碳纳米材料为具有多孔性的纳米材料。还优选地,所述掺杂类石墨烯中的掺杂元素选自N、B、P中的一种或多种,更优选地,所述掺杂类石墨烯为N掺杂类石墨烯,进一步优选地,所述掺杂类石墨烯为具有多孔性的N掺杂类石墨烯。
根据本发明,所述金属纳米粒子在碳材料上的负载量为大于5wt%且小于等于20wt%,优选为8-17wt%,进一步优选为10-13wt%。
本发明还提供如上所述等离子体催化剂的制备方法,包括如下步骤:
(1)将金属有机框架材料高温煅烧制备碳纳米材料;
(2)制备金属纳米粒子溶胶;
(3)将步骤(1)制备的碳纳米材料引入到步骤(2)制备的溶胶中,金属纳米粒子自组装到碳纳米材料上,通过离心得到复合材料,即所述等离子体催化剂。
优选地,步骤(1)中的煅烧在惰性气体中进行,例如在氮气或/和氩气中进行,进一步优选,为在氮气中进行。
优选地,步骤(1)中的煅烧温度为800-900℃,进一步优选为900℃。
优选地,步骤(1)中的煅烧时间为1-4小时,进一步优选为2-4小时,例如为3小时。
优选地,步骤(1)中,还包括煅烧完成之后的降温步骤,所述降温步骤可以采取自然降温或程序降温。
根据本发明,步骤(1)所述金属有机框架材料包括ZIF-8([Zn(mim)2]n,其中,mim为2-甲基咪唑)、BIF-20(Zn2(BH(mim)3)2(obb),其中,mim为2-甲基咪唑,obb为4,4’-二苯醚二甲酸)、MIL-101(Cr3F(H2O)2O[(O2C)-C6H4-(CO2)]3·nH2O,其中,n为配位水的个数)和ZIF-67([Co(mim)2]n,其中,mim为2-甲基咪唑)中的一种或多种。优选地,所述金属有机框架材料为ZIF-8。
根据本发明,步骤(2)中,制备的金属纳米粒子溶胶浓度为0.15-0.45mM,优选地,为0.25mM;所用溶剂为水、乙二醇,优选地,为水。
根据本发明,步骤(3)中,所述碳纳米材料与所述金属纳米粒子溶胶的比例为10mg:10mL~10mg:100mL,优选为10mg:20mL~10mg:60mL,进一步优选为10mg:30mL~10mg:60mL。
根据本发明,步骤(3)中,自组装所用时间为12-48小时,优选地,为24-48小时。
本发明还提供如上所述等离子体催化剂的用途,可用于电解水产氢、CO2还原、NO还原与氧化或光催化CO氧化等,优选地,用于电解水产氢。
本发明提供一种光电催化分解水产氢的方法与在此方法中所使用的等离子体催化剂。此方法主要是在电催化分解水制氢过程中引入光源,使金属纳米粒子产生等离子体共振效应。等离子体共振效应是指受共振光激发在纳米粒子表面形成价电子的共振,这种利用等离子体效应应用于电催化分解水产氢的研究,文献中少有报道。并且目前等离子体在水分解催化方面应用主要是与半导体相结合,应用在光催化或电催化方面。而本发明是用导电性能良好的碳材料而不是半导体作为载体,负载金属纳米粒子,用光激发纳米粒子的等离子体效应应用于电催化分解水产氢,一方面利用的碳材料的良好的导电性增加电子的传输速率,另一方面用到了金属纳米的等离子体效应,用光激发产生共振电子,共振电子参与催化反应,大大提高了催化效率。
本发明的有益效果:
本发明提供一种等离子体催化剂,所述等离子体催化剂为金属纳米粒子负载于碳纳米材料上的复合材料,该催化剂的催化性能优于现有的金属纳米粒子催化剂。将其用于分解水产氢时,在加电的同时还引入光源,激发金属纳米粒子的等离子体效应,该催化剂的光电催化产氢过电位(在电流密度10mA cm-2时)可减少到99mV,比不加光、没有等离子体效应时的单纯碳材料负载金属纳米粒子催化剂的过电位减少了近100mV,光电流是没有等离子体效应的8倍,等离子体效应的利用显著提高了电催化产氢效果,降低了能耗。
本发明还提供所述等离子体催化剂的制备方法,所述方法可以采用不同类型的碳纳米材料和不同的金属纳米粒子,调节不同的原料比例、反应时间,从而制备得到不同金属纳米粒子负载量的等离子体催化剂。例如,本发明可以根据需要来调节反应中金属纳米粒子的用量来制备不同金属纳米粒子负载量的等离子体催化剂,所述催化剂中金属纳米粒子的最高负载量为20wt%。
更重要的,与现有技术相比,本发明还具有如下优点:
1.本发明利用金属纳米粒子等离子体的光子能量转化功能,提高传统电催化反应的效能,有效降低过电位,减少能耗。
2.本发明方法制备碳纳米材料,与现有技术中使用的碳材料相比,比表面积大,孔隙率高。
3.本发明制备的催化剂具有较高的金属纳米粒子负载量,不易发生团聚,稳定性好,改善了现有技术中金属纳米粒子负载量低,并且容易团聚失活的问题。
附图说明
图1 N掺杂类石墨烯负载金纳米粒子的等离子体催化剂PNC-Au的透射电镜图;
图2 N掺杂类石墨烯PNC与等离子体催化剂PNC-Au的X-射线粉末衍射图;
图3金纳米粒子与等离子体催化剂PNC-Au的紫外-可见吸收光谱图;
图4在有无532nm激光照射下,等离子体催化剂PNC-Au的电催化水分解制氢(HER)曲线图;
图5等离子体催化剂PNC-Au与N掺杂类石墨烯PNC的光电流响应曲线。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外,应理解,在阅读了本发明所记载的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本发明所限定的范围。
除另有说明,以下实施例中使用的原料和试剂均为市售商品,或者可以通过已知方法制备。
等离子体催化剂PNC-Au的透射电镜图是用FEI Tecnai F20型透射电镜进行表征。
等离子体催化剂PNC-Au和N掺杂类石墨烯碳材料的X-射线粉末衍射图是通过MiniFlex II型粉末衍射仪进行表征。
等离子体催化剂PNC-Au与金纳米粒子的紫外-可见吸收光谱图是用Lambda 950表征的。
等离子体催化剂PNC-Au的电催化水分解制氢(HER)曲线图,在有无532nm激光照射下,是通过CHi760E电化学工作站测试的。
等离子体催化剂PNC-Au与N掺杂类石墨烯碳材料PNC的光电流相应曲线是通过CHi760E电化学工作站测试的。
等离子体催化剂PNC-Au的电催化分解水制氢过程中使用的光源是DPSSL DRIVERFA(532nm)激光器。
实施例1制备N掺杂类石墨烯碳纳米材料(PNC)
取0.3g Zn(OAc)2·2H2O溶解在5mL水中,取1.12g 2-甲基咪唑溶解在5mL水中,然后将两种溶液混合并搅拌至均匀,将得到的均匀的混合溶液在室温静止24h后离心,60℃干燥,得ZIF-8晶体粉末。将所得100mg ZIF-8置于瓷舟内并放入管式炉内,在N2氛围下加热至900℃,保持3个小时,然后自然降温至室温,得到具有多孔性的N掺杂类石墨烯碳纳米材料(PNC)。
实施例2制备金纳米粒子溶胶
量取冰水制备3mL 0.1M NaBH4溶液,加入到100mL 0.25mM HAuCl4溶液中,迅速搅拌5分钟,然后室温、避光老化12小时,得酒红色金纳米粒子溶胶。
实施例3制备等离子体催化剂PNC-Au
取10mg实施例1制备的N掺杂类石墨烯碳纳米材料(PNC)分散在40mL实施例2制备的金纳米粒子溶胶中,室温搅拌反应24小时,使金纳米粒子通过静电相互作用自组装负载到PNC上,离心,干燥,得到等离子体催化剂,记为PNC-Au。从图1所示的PNC-Au的透射电镜图中可以看出,金纳米粒子在PNC上的分散很均匀。图2为PNC和PNC-Au的X-射线粉末衍射图,图中所示证明了负载后的材料中具有金纳米粒子产生的等离子体特征吸收峰。图3为金纳米粒子与PNC-Au的紫外-可见吸收光谱图,证明金纳米粒子成功负载到了PNC上,并且分散度较好。
实施例4等离子体催化剂PNC-Au电催化分解水产氢反应中,在加光与不加光条件下的测试对比
电催化测试使用标准三电极系统在氮气饱和的0.5M H2SO4溶液中、室温条件下进行,将等离子体催化剂PNC-Au涂覆在玻碳电极上作为工作电极。进行如下两个测试:(1)不加光条件下测试,检验N掺杂类石墨烯碳材料负载金纳米粒子催化剂的催化效果。(2)加光条件下测试,通过调节532nm激光器照射工作电极,控制光照条件。除(1)中催化剂所含材料的效果外,增加了金纳米粒子的等离子体的催化效果。如图4所示,为PNC-Au的电催化水分解制氢(HER)曲线图,将532nm激光照射引入等离子体的催化体系,发现等离子体效应明显提高了电解水制氢的催化效果。对比上述两个测试的实验结果,在电流密度为10mA cm-2时,过电位由(1)中的193mV减少到(2)中的99mV,说明等离子体效应明显提高了电催化分解水产氢的效率,减少了能耗。
另外,从图5所示的等离子体催化剂PNC-Au与单纯N掺杂类石墨烯碳材料PNC的光电流响应曲线图中可以看出,前者的光电流是后者的8倍,PNC-Au具有明显的光响应效果。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种光电催化分解水产氢的方法,其特征在于,在电催化分解水制氢过程中采用一种等离子体催化剂,同时,在电催化分解水制氢过程中引入光源;
所述等离子体催化剂为金属纳米粒子负载于碳纳米材料上的复合材料,所述金属纳米粒子为具有等离子体共振特征吸收峰的金属纳米粒子;
所述光源是根据不同金属纳米粒子的等离子体共振特征吸收峰来进行选择的;
所述等离子体催化剂是通过如下方法制备得到的:
取0.3g Zn(OAc)2·2H2O溶解在5mL水中,取1.12g 2-甲基咪唑溶解在5mL水中,然后将两种溶液混合并搅拌至均匀,将得到的均匀的混合溶液在室温静止24h后离心,60℃干燥,得ZIF-8晶体粉末;将所得100mg ZIF-8置于瓷舟内并放入管式炉内,在N2氛围下加热至900℃,保持3个小时,然后自然降温至室温,得到具有多孔性的N掺杂类石墨烯碳纳米材料;
量取冰水制备3mL 0.1M NaBH4溶液,加入到100mL 0.25mM HAuCl4溶液中,迅速搅拌5分钟,然后室温、避光老化12小时,得酒红色金纳米粒子溶胶;
取10mg制备的N掺杂类石墨烯碳纳米材料分散在40mL制备的金纳米粒子溶胶中,室温搅拌反应24小时,使金纳米粒子通过静电相互作用自组装负载到PNC上,离心,干燥,得到等离子体催化剂,记为PNC-Au。
2.一种等离子体催化剂的用途,其特征在于,所述等离子体催化剂用于电解水产氢、CO2还原、NO还原与氧化或光催化CO氧化;
所述等离子体催化剂是通过如下方法制备得到的:
取0.3g Zn(OAc)2·2H2O溶解在5mL水中,取1.12g 2-甲基咪唑溶解在5mL水中,然后将两种溶液混合并搅拌至均匀,将得到的均匀的混合溶液在室温静止24h后离心,60℃干燥,得ZIF-8晶体粉末;将所得100mg ZIF-8置于瓷舟内并放入管式炉内,在N2氛围下加热至900℃,保持3个小时,然后自然降温至室温,得到具有多孔性的N掺杂类石墨烯碳纳米材料;
量取冰水制备3mL 0.1M NaBH4溶液,加入到100mL 0.25mM HAuCl4溶液中,迅速搅拌5分钟,然后室温、避光老化12小时,得酒红色金纳米粒子溶胶;
取10mg制备的N掺杂类石墨烯碳纳米材料分散在40mL制备的金纳米粒子溶胶中,室温搅拌反应24小时,使金纳米粒子通过静电相互作用自组装负载到PNC上,离心,干燥,得到等离子体催化剂,记为PNC-Au。
3.如权利要求2所述的等离子体催化剂的用途,其特征在于,用于电解水产氢。
CN201710335935.9A 2017-05-12 2017-05-12 一种光电催化分解水产氢的方法及其中使用的等离子体催化剂和制法 Active CN108855173B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710335935.9A CN108855173B (zh) 2017-05-12 2017-05-12 一种光电催化分解水产氢的方法及其中使用的等离子体催化剂和制法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710335935.9A CN108855173B (zh) 2017-05-12 2017-05-12 一种光电催化分解水产氢的方法及其中使用的等离子体催化剂和制法

Publications (2)

Publication Number Publication Date
CN108855173A CN108855173A (zh) 2018-11-23
CN108855173B true CN108855173B (zh) 2020-10-30

Family

ID=64320109

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710335935.9A Active CN108855173B (zh) 2017-05-12 2017-05-12 一种光电催化分解水产氢的方法及其中使用的等离子体催化剂和制法

Country Status (1)

Country Link
CN (1) CN108855173B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110424022B (zh) * 2019-06-26 2021-05-18 武汉科技大学 纳米棒α-氧化铁复合MIL-101异质结光阳极及其制备方法
CN110835766B (zh) * 2019-11-19 2021-03-23 南京集芯光电技术研究院有限公司 表面等离激元增强型InGaN/GaN多量子阱光电极及其制备方法
CN113058603B (zh) * 2021-03-18 2023-01-10 内蒙古工业大学 一种二维全解水纳米碳纤材料及其制备方法
CN113308708B (zh) * 2021-04-15 2022-11-04 中国工程物理研究院材料研究所 一种金属钛活化方法、及活化金属钛及应用
CN114703497B (zh) * 2022-04-26 2024-06-18 中南大学 用于光辅助电催化分解水产氢的等离子体催化剂及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102266787A (zh) * 2010-06-07 2011-12-07 付文甫 一种新型不含贵金属光解水制氢催化剂的制备方法
CN103286308A (zh) * 2012-02-24 2013-09-11 中国科学院理化技术研究所 一种金属/石墨烯纳米复合材料及其制备方法
CN103920442A (zh) * 2014-04-23 2014-07-16 中国科学院上海硅酸盐研究所 一种光电催化装置及光电催化方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102266787A (zh) * 2010-06-07 2011-12-07 付文甫 一种新型不含贵金属光解水制氢催化剂的制备方法
CN103286308A (zh) * 2012-02-24 2013-09-11 中国科学院理化技术研究所 一种金属/石墨烯纳米复合材料及其制备方法
CN103920442A (zh) * 2014-04-23 2014-07-16 中国科学院上海硅酸盐研究所 一种光电催化装置及光电催化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
De Novo Synthesis of Gold-Nanoparticle-Embedded,Nitrogen-Doped Nanoporous Carbon Nanoparticles (Au@NC) with Enhanced Reduction Ability;Yu-Te Liao et al.;《ChemCatChem》;20151202;第8卷;第502-509页 *
石墨烯-Au、Pt纳米组装体的制备及其光电化学行为研究;王文久;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20170315(第3期);B020-843 *

Also Published As

Publication number Publication date
CN108855173A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
Yan et al. CeO2 particles anchored to Ni2P nanoplate for efficient photocatalytic hydrogen evolution
Tian et al. Enhanced charge transfer for efficient photocatalytic H2 evolution over UiO-66-NH2 with annealed Ti3C2Tx MXenes
CN108855173B (zh) 一种光电催化分解水产氢的方法及其中使用的等离子体催化剂和制法
Luo et al. Hybrid 0D/2D Ni2P quantum dot loaded TiO2 (B) nanosheet photothermal catalysts for enhanced hydrogen evolution
Ba et al. Alloyed PdNi hollow nanoparticles as cocatalyst of CdS for improved photocatalytic activity toward hydrogen production
Hao et al. Amorphous Co 3 O 4 quantum dots hybridizing with 3D hexagonal CdS single crystals to construct a 0D/3D p–n heterojunction for a highly efficient photocatalytic H 2 evolution
Hao et al. Photocatalytic overall water splitting hydrogen production over ZnCdS by spatially-separated WP and Co3O4 cocatalysts
CN112103520B (zh) 一种醇类燃料电池的阳极催化剂
Hao et al. Construction of CdS@ Cu2-xS core− shell pn heterojunction with enhanced charge separation for wide spectrum photocatalytic H2 evolution
Zhang et al. Nanoparticle metal Ni cocatalyst on NiTe2 microsphere for improved photocatalytic hydrogen evolution
Liu et al. Enhanced hydrogen evolution over sea-urchin-structure NiCoP decorated ZnCdS photocatalyst
Chen et al. Non-noble metal Co as active sites on TiO2 nanorod for promoting photocatalytic H2 production
Wang et al. The g-C3N4 nanosheets decorated by plasmonic Au nanoparticles: A heterogeneous electrocatalyst for oxygen evolution reaction enhanced by sunlight illumination
Li et al. Regulation on MoO2/Mn0· 2Cd0· 8S S-scheme heterojunction for efficient hydrogen evolution
CN113862693A (zh) 一种氮掺杂介孔碳负载高分散Ru纳米颗粒催化剂的制备方法及其应用
Feng et al. Constructing a 2D/2D heterojunction of MoSe 2/ZnIn 2 S 4 nanosheets for enhanced photocatalytic hydrogen evolution
Xiang et al. Co2P/CoP quantum dots surface heterojunction derived from amorphous Co3O4 quantum dots for efficient photocatalytic H2 production
Kim et al. Photo-assisted electrolysis of urea using Ni-modified WO3/g-C3N4 as a bifunctional catalyst
He et al. Porous CoxP nanosheets decorated Mn0. 35Cd0. 65S nanoparticles for highly enhanced noble-metal-free photocatalytic H2 generation
Liu et al. Enhanced Schottky effect in the Ni2P cocatalyst via work function up-shift induced by MoO2 for boosting photocatalytic hydrogen evolution
Tang et al. Carbon quantum dot/mixed crystal TiO 2 composites via a hydrogenation process: an efficient photocatalyst for the hydrogen evolution reaction
Xiao et al. Co-Mn-S nanosheets decorated with CeO2: a highly active electrocatalyst toward oxygen evolution reaction
Wang et al. Fabricating NixCo1− xO@ C cocatalysts sensitized by CdS through electrostatic interaction for efficient photocatalytic H2 evolution
Cai et al. Z-type heterojunction of Cu2O-modified layered BiOI composites with superior photocatalytic performance for CO2 reduction
Xu et al. Optimal preparation of molybdenum phosphide cocatalyst for efficient dye-sensitized photocatalytic hydrogen evolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant