CN110364420A - 一种插入InGaN/GaN超晶格结构改善非极性GaN材料质量的外延生长方法 - Google Patents

一种插入InGaN/GaN超晶格结构改善非极性GaN材料质量的外延生长方法 Download PDF

Info

Publication number
CN110364420A
CN110364420A CN201910639441.9A CN201910639441A CN110364420A CN 110364420 A CN110364420 A CN 110364420A CN 201910639441 A CN201910639441 A CN 201910639441A CN 110364420 A CN110364420 A CN 110364420A
Authority
CN
China
Prior art keywords
gan
layer
growth
ingan
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910639441.9A
Other languages
English (en)
Other versions
CN110364420B (zh
Inventor
韩军
赵佳豪
邢艳辉
崔博垚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201910639441.9A priority Critical patent/CN110364420B/zh
Publication of CN110364420A publication Critical patent/CN110364420A/zh
Application granted granted Critical
Publication of CN110364420B publication Critical patent/CN110364420B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02414Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Led Devices (AREA)

Abstract

本发明提供一种插入InGaN/GaN超晶格结构改善非极性GaN材料外延质量的方法,是一种减小非极性GaN材料位错密度,改善外延片表面形貌,从而提高材料质量的外延生长方法。利用金属有机物化学气相沉积(MOCVD)技术,外延结构从下向上依次为,r面蓝宝石衬底,低温GaN成核层;高压、高V/III比(V族与III族源摩尔流量比)生长条件生长的高温三维GaN层;第一次低压、低V/III比生长条件生长的高温二维GaN层;InGaN/GaN超晶格结构插入层;第二次低压、低V/III比生长条件生长的高温二维GaN层。本发明的特点是在二维GaN层中插入InGaN/GaN超晶格结构插入层,其能够缓解应力,并且阻挡部分蓝宝石衬底与外延生长的GaN材料失配产生的穿透位错传递。本发明能够减小非极性GaN材料位错密度,改善表明形貌,提高外延片的质量。

Description

一种插入InGaN/GaN超晶格结构改善非极性GaN材料质量的外 延生长方法
技术领域:
本发明属于GaN材料外延技术领域,涉及一种提高非极性GaN材料质量,减少位错的技术。
背景技术:
氮化镓(GaN)是直接带隙材料,具有禁带宽,化学性质稳定,耐高温的特点,广泛应用于发光器件、光电探测器、太阳能电池等器件。目前商业化生产的GaN器件,都是在c面蓝宝石衬底上制备的GaN器件,它们都是沿极性轴c轴生长的,材料存在极化效应,其器件有源区内会出现很强的极化电场,致使电子空穴对分离,出现量子限制斯塔克效应,导致发光效率的降低。为了避免发生极化效应,可以生长非极性GaN材料和器件,非极性GaN材料是指生长方向垂直于极性轴[0001]方向,如沿[1120]方向生长,非极性GaN薄膜可以消除极化电场,有利于提高器件的量子效率。但是由于沿[1120]方向生长的a面非极性GaN材料,位于生长面内的c轴[0001]和m轴[1100]方向,晶格常数不同,会带来不同的失配,沿c轴的失配是1.2%,而沿m轴的失配是16%,所以非极性外延材料存在各向异性,位错密度高的问题,结果造成外延非极性GaN材料质量距离实际应用有较大差距。目前非极性GaN薄膜存在两个主要问题,粗糙的表面形貌,较高的位错层错密度。这是限制非极性GaN基器件性能参数的主要因素,使非极性GaN基器件的优势不能明显的表现出来。
许多在位减少缺陷技术被应用于非极性GaN材料的生长,如衬底氮化、各种生长条件的优化,两步生长法,SiN插入层技术和图形衬底技术,其中两步生长法(控制生长条件,第一步生长三维GaN层减小位错,然后第二步转换为两维GaN生长改善表面形貌)是一种简单有效的减少位错的方法,但是也存在问题,如要想有效减少位错,三维GaN层要长的尽可能厚,但是过厚的三维GaN层,会使表面非常粗糙,后面的两维GaN层即使很厚,无法完全改善表面形貌,给后续的器件生长带来负面影响。
所以,有必要提供一种基于蓝宝石衬底获得位错密度小、表面形貌好、能够改善非极性GaN薄膜质量的方法,用以解决上述问题。本发明采用插入InGaN/GaN超晶格结构改善非极性GaN材料质量的外延生长方法,可以改进目前两步生长法存在的问题,进一步提高材料质量。
发明内容:
本发明的目的在于改善现有技术的不足,通过金属有机物化学气相沉积(MOCVD)方法,提高在蓝宝石衬底上生长的非极性a面GaN薄膜材料质量,减少位错密度,改善表面形貌。其生长步骤如下:
步骤一:将r面蓝宝石衬底放入MOCVD反应室中的衬底托上,在温度1000℃—1100℃,烘烤3-10分钟
步骤二:在温度1000℃—1100℃,氮气和氨气体积比例为2比1的混合气氛中,氮化2-10分钟。
步骤三:降低温度到500℃—600℃,压力500-600mbar,生长一层厚度20-40nm的低温成核层。
步骤四:升温到1000℃—1100℃,压力300-600mbar,V/III比1000-3000,生长高压、高V/III比三维GaN层,厚度1μm-2μm。
步骤五:在温度1000℃—1100℃,压力,50-200mbar,V/III比50-300,第一次生长低压、低V/III比二维GaN层,厚度1μm-2μm。
步骤六:降低温度到700℃—800℃,生长InGaN/GaN超晶格结构,其中InGaN层的In组分为5%-20%。厚度5-20nm,GaN层厚度5-10nm,先生长一层上述的GaN层,然后生长上述组分和厚度的InGaN层,交替生长上述GaN层和InGaN层共3-20周期,最后生长一层5-20nm的GaN层;
步骤七:升温到1000℃—1100℃,压力50-200mbar,V/III比50-300,第二次生长低压、低V/III比二维GaN层,厚度2μm-5μm。
其特征是生长方法是金属有机物化学气相沉积方法,三甲基镓或三乙基镓为镓源,三甲基铟为铟源,氨气为氮源,载气为氢气及氮气。
本发明的机理特点在于:利用MOCVD生长技术,在r面蓝宝石衬底上,通过两步生长法(先生长三维GaN层,再在此基础上生长二维GaN层)并引入InGaN/GaN超晶格插入层,将InGaN/GaN超晶格层插入到二维GaN层中间。目前常用的方法是两步生长法,在高压,高V/III比条件下生长三维非极性GaN薄膜,但是表面形貌较为粗糙,在此基础上低压,低V/III比条件下生长二维非极性GaN薄膜,可以改善表面形貌,减少位错密度。但是通过两步生长法生长的非极性GaN薄膜位错密度仍然较高,不利于半导体器件的工作。于是本发明,在两步生长法的基础上,在两维GaN层中间,引入InGaN/GaN超晶格结构插入层,InGaN/GaN超晶格插入层具有缓解因晶格常数不同而产生的应力,改变位错传递方向从而截断部分位错的能力,阻挡了大部分蓝宝石衬底与GaN外延层失配产生的穿透位错的传递。因此生长的非极性GaN薄膜位错密度较低,表面形貌较好。可以在原来两步生长法基础上,进一步减少位错,改善非极性GaN材料的质量。
附图说明
图1是本发明将InGaN/GaN超晶格结构插入层插入至二维GaN层之间的生长结构示意图
图2是未插入InGaN层样品的(1120)面沿c轴x射线衍射ω扫描图
图3是插入InGaN/GaN超晶格结构插入层的样品(具体实施案例1)的(1120)面沿c轴x射线衍射ω扫描图
图4是未插入InGaN层样品的原子力显微镜表面形貌图
图5是插入InGaN/GaN超晶格结构插入层的样品(具体实施案例1)的原子力显微镜表面形貌图
具体实施方式
下面结合具体实施案例1,并附图,对本发明作进一步地说明:
本案例是通过金属有机物化学气相沉积(MOCVD)方法在r面蓝宝石衬底上插入InGaN/GaN超晶格结构插入层改善非极性a面GaN薄膜的质量,减少位错密度,改善表面形貌。如图1所示,将InGaN/GaN超晶格结构插入层插入至二维GaN层之间,具体实验步骤如下:
其生长步骤如下:
步骤一:将r面蓝宝石衬底放入MOCVD反应室中的衬底托上,在温度1050℃,烘烤3分钟
步骤二:在温度1050℃,氮气和氨气体积比例为2比1的混合气氛中,氮化10分钟。
步骤三:降低温度到550℃,压力500mbar,生长一层厚度40nm的低温成核GaN层。
步骤四:升温到1050℃,压力500mbar,V/III比3000,生长高压、高V/III比三维GaN层,厚度2μm。
步骤五:在温度1050℃,压力,50mbar,V/III比100,第一次生长低压、低V/III比二维GaN层,厚度2μm。
步骤六:降低温度到750℃,生长InGaN/GaN超晶格结构插入层,其中InGaN层的In组分10%。厚度10nm,GaN层厚度5nm,先生长一层上述GaN层,然后生长一层InGaN层,交替生长GaN层和InGaN层共20周期,最后生长一层5nm的GaN层;
步骤七:升温到1050℃,压力50mbar,V/III比100,第二次生长低压、低V/III比二维GaN层,厚度5μm。
生长方法是金属有机物化学气相沉积方法,三甲基镓为镓源,三甲基铟为铟源,氨气为氮源,载气为氢气及氮气。
测试结果,图2是未插入InGaN层样品的(1120)面沿c轴x射线衍射ω扫描图,半宽为1148arcsec;图3是插入InGaN/GaN超晶格结构插入层的样品(具体实施案例1)的(1120)面沿c轴x射线衍射ω扫描图,半宽为1012arcsec,比未插入InGaN层样品半宽减少了136arcsec;说明插入InGaN/GaN超晶格结构改善了材料质量。
图4是未插入InGaN层样品的原子力显微镜表面形貌图,表面均方根粗糙度为1.01nm;图5是插入InGaN/GaN超晶格结构插入层的样品(具体实施案例1)的原子力显微镜表面形貌图,表面均方根粗糙度为0.88nm;插入InGaN/GaN超晶格结构插入层后的具体实施案例1样品,减小了粗糙度,表面更加平坦。
实施案例1制作的非极性GaN薄膜位错密度较低,表面形貌较好。提高了非极性GaN材料质量,改善了现有技术的不足。
最后应说明的是:以上事实案例为本发明的通常实施方案,而非对其限制;任何对前述各实施案例的技术方案进行的简单变化或修饰,或对其中部分或者全部技术进行等同替换,都应包括在本发明的保护范围内。

Claims (1)

1.一种插入InGaN/GaN超晶格结构改善非极性GaN材料外延质量的方法,其特征在于,外延片结构从下向上依次为;r面蓝宝石衬底生长GaN成核层后,生长高压、高V/III比生长条件生长的高温三维GaN层;第一次低压、低V/III比生长条件生长的高温二维GaN层;InGaN/GaN超晶格结构插入层;第二次低压、低V/III比生长条件生长的高温二维GaN层;
所述的高压、高V/III比生长条件生长的高温三维GaN层,生长温度1000℃—1100℃,压力300-600mbar,V/III比即V族与III族源摩尔流量比为1000-3000,厚度1μm-2μm;
所述的第一次低压、低V/III比生长条件生长的高温二维GaN层,生长温度1000℃—1100℃,压力,50-200mbar,V/III比50-300,厚度1μm-2μm;
所述的InGaN/GaN超晶格结构插入层,生长温度700℃—800℃,其中InGaN层中的In组分的摩尔百分比在5%-20%,先生长一层厚度5-20nm GaN层,然后生长上述In组分的厚度5-20nm的InGaN层,交替生长上述GaN层和InGaN层3-20周期,最后生长一层5-20nm的GaN层;
所述的第二次低压、低V/III比生长条件生长的高温二维GaN层,生长温度1000℃—1100℃,压力,50-200mbar,V/III比50-300,厚度2μm-5μm。
CN201910639441.9A 2019-07-16 2019-07-16 一种插入InGaN/GaN超晶格结构改善非极性GaN材料质量的外延生长方法 Active CN110364420B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910639441.9A CN110364420B (zh) 2019-07-16 2019-07-16 一种插入InGaN/GaN超晶格结构改善非极性GaN材料质量的外延生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910639441.9A CN110364420B (zh) 2019-07-16 2019-07-16 一种插入InGaN/GaN超晶格结构改善非极性GaN材料质量的外延生长方法

Publications (2)

Publication Number Publication Date
CN110364420A true CN110364420A (zh) 2019-10-22
CN110364420B CN110364420B (zh) 2021-10-26

Family

ID=68219498

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910639441.9A Active CN110364420B (zh) 2019-07-16 2019-07-16 一种插入InGaN/GaN超晶格结构改善非极性GaN材料质量的外延生长方法

Country Status (1)

Country Link
CN (1) CN110364420B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114899263A (zh) * 2022-05-25 2022-08-12 陕西科技大学 一种InGaN/GaN超晶格结构太阳能电池外延结构及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102820211A (zh) * 2012-08-29 2012-12-12 中国科学院半导体研究所 制备非极性A面GaN薄膜的方法
CN104362233A (zh) * 2014-10-29 2015-02-18 华灿光电(苏州)有限公司 一种GaN基发光二极管的外延片及其制备方法
CN105845798A (zh) * 2015-01-16 2016-08-10 北京大学 无翘曲ⅲ族氮化物复合衬底的制备方法和衬底放置装置
CN109326695A (zh) * 2018-09-03 2019-02-12 淮安澳洋顺昌光电技术有限公司 一种提高氮化镓基led发光二极管亮度的外延片及生长方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102820211A (zh) * 2012-08-29 2012-12-12 中国科学院半导体研究所 制备非极性A面GaN薄膜的方法
CN104362233A (zh) * 2014-10-29 2015-02-18 华灿光电(苏州)有限公司 一种GaN基发光二极管的外延片及其制备方法
CN105845798A (zh) * 2015-01-16 2016-08-10 北京大学 无翘曲ⅲ族氮化物复合衬底的制备方法和衬底放置装置
CN109326695A (zh) * 2018-09-03 2019-02-12 淮安澳洋顺昌光电技术有限公司 一种提高氮化镓基led发光二极管亮度的外延片及生长方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHI-FENG HUANG ET AL.: "Reduced injection current induced blueshift in an InGaN/GaN quantum-well light-emitting diode of prestrained growth", 《APPLIED PHYSICS LETTERS》 *
H.-C, HSU ET AL.: "Direct Growth of a-Plane GaN on r-Plane Sapphire by Metal Organic Chemical Vapor Deposition", 《JAPANESE JOURNAL OF APPLIED PHYSICS》 *
LING, SHIH-CHUN ET AL.: "Performance Enhancement of a-Plane Light-Emitting Diodes Using InGaN/GaN Superlattices", 《JAPANESE JOURNAL OF APPLIED PHYSICS》 *
NIU NANHUI ET AL.: "Enhanced luminescence of InGaN/GaN multiple quantum wells by strain reduction", 《SOLID-STATE ELECTRONICS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114899263A (zh) * 2022-05-25 2022-08-12 陕西科技大学 一种InGaN/GaN超晶格结构太阳能电池外延结构及其制备方法
CN114899263B (zh) * 2022-05-25 2024-01-30 陕西科技大学 一种InGaN/GaN超晶格结构太阳能电池外延结构及其制备方法

Also Published As

Publication number Publication date
CN110364420B (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
US8525230B2 (en) Field-effect transistor with compositionally graded nitride layer on a silicaon substrate
CN107275187B (zh) 自支撑氮化镓层及其制备方法、退火方法
CN108987538B (zh) Led外延结构及其制备方法和半导体器件
CN104091868B (zh) 一种发光二极管外延片及其制造方法
US20090291523A1 (en) Method of Manufacturing High Quality ZnO Monocrystal Film on Silicon(111) Substrate
CN106480498B (zh) 一种纳米图形衬底侧向外延硅基量子点激光器材料及其制备方法
CN105489714A (zh) 一种多孔氮化铝复合衬底及其在外延生长高质量氮化镓薄膜中的应用
CN105448675B (zh) 一种GaAs/Si外延材料的MOCVD制备方法
CN103730554A (zh) 一种氮化镓基led外延片的生长方法
WO2018040123A1 (zh) 生长在铝酸镁钪衬底上的led外延片及其制备方法
CN108767055A (zh) 一种p型AlGaN外延薄膜及其制备方法和应用
CN107195736A (zh) 一种氮化镓基发光二极管外延片及其生长方法
Horikawa et al. Heteroepitaxial growth of InP on a GaAs substrate by low‐pressure metalorganic vapor phase epitaxy
CN110364420A (zh) 一种插入InGaN/GaN超晶格结构改善非极性GaN材料质量的外延生长方法
CN111354629B (zh) 一种用于紫外LED的AlN缓冲层结构及其制作方法
CN112501689A (zh) 一种氮化镓pin结构的外延生长方法
Sharma et al. Controlling epitaxial GaAsxP1-x/Si1-yGey heterovalent interfaces
Lee et al. Epitaxial growth of crack-free GaN on patterned Si (111) substrate
CN100546017C (zh) 一种用于氧化锌外延薄膜生长的硅基可协变衬底材料
CN110429019B (zh) 一种插入InGaN层改善非极性GaN材料质量的外延生长方法
CN103151247B (zh) 一种在r面蓝宝石衬底上制备非极性GaN薄膜方法
CN206225325U (zh) 生长在铝酸镁钪衬底上的GaN薄膜
CN1328762C (zh) 在铝酸镁衬底上高质量锌极性ZnO单晶薄膜的制备方法
CN217507372U (zh) 一种Si基外延片及Si基芯片
CN117096229A (zh) 一种用于深紫外发光二极管的AlN本征层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant