CN110364584A - 基于局域表面等离激元效应的深紫外msm探测器及制备方法 - Google Patents

基于局域表面等离激元效应的深紫外msm探测器及制备方法 Download PDF

Info

Publication number
CN110364584A
CN110364584A CN201910577036.9A CN201910577036A CN110364584A CN 110364584 A CN110364584 A CN 110364584A CN 201910577036 A CN201910577036 A CN 201910577036A CN 110364584 A CN110364584 A CN 110364584A
Authority
CN
China
Prior art keywords
short period
deep ultraviolet
super short
local surface
surface phasmon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910577036.9A
Other languages
English (en)
Inventor
高娜
朱啟芬
冯向
黄凯
康俊勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201910577036.9A priority Critical patent/CN110364584A/zh
Publication of CN110364584A publication Critical patent/CN110364584A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/008Surface plasmon devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明提供基于局域表面等离激元效应的深紫外MSM探测器及制备方法,其结构从下至上包括:衬底、缓冲层、超短周期超晶格及金属电极;超短周期超晶格包括设置在超短周期超晶格的纳米孔阵,以及金属纳米颗粒;金属纳米颗粒注入在纳米孔阵空隙或沉积于超短周期超晶格上表面,颗粒尺寸可调控;金属电极设置在超短周期超晶格上,形成肖特基接触。本发明通过在有序分布的纳米孔阵中形成金属纳米颗粒再在其上设置金属电极,避免了超短周期超晶格吸收层载流子隧穿能力较弱问题,又利用产生的局域表面等离激元效应,增强深紫外光的吸收,最终提高深紫外MSM探测器的量子效率。

Description

基于局域表面等离激元效应的深紫外MSM探测器及制备方法
技术领域
本发明涉及半导体光电子器件制造领域,特别是一种基于局域表面等离激元效应的深紫外MSM探测器及制备方法。
背景技术
随着19世纪末紫外光被人们的认知,紫外探测技术迅速崛起,在军事和民用领域得到广泛地应用,已成为国内外关注的热点。MSM探测器作为紫外探测器家族的重要成员之一,相较于其它结构的探测器,具有响应度大、紫外/可见光抑制比高、响应速度快、暗电流低等得天独厚的优势。
由于AlGaN半导体材料的带隙宽、热导率和电子迁移率较高,因此AlGaN材料被公认是制作紫外和深紫外探测器的首选材料。然而,通常AlGaN材料的位错密度较高,在外延过程中降低AlGaN体材料的位错密度仍然有难度,也对探测器的性能提出挑战。近年来,利用金属纳米颗粒产生的局域表面等离激元效应来提高探测器的光吸收效率已成为一个有效途径。这是因为,金属纳米颗粒在特定波长的光照下会发生能量共振,产生电荷集聚和振荡效应,形成的局域表面等离极化激元在远场表现出的散射增强特性具有增加光吸收率的显著优势,因此将最终提高探测器的外量子效率。
中国发明申请201810708469.9提出了一种纳米孔阵贯穿超短周期超晶格的深紫外MSM探测器结构,通过将金属电极设置在纳米孔阵贯穿型超短周期超晶格上,同时将金属注入到纳米孔阵列的空隙,金属电极能收集到较深处超晶格产生的载流子,提高了金属电极的收集效率和器件的响应光电流。然而,该探测结构的量子效率仍不能满足实际需求,亟待进一步提高该结构深紫外MSM探测器的量子效率。
发明内容
本发明的基于局域表面等离激元效应的深紫外MSM探测器及制备方法,在已有有序分布于超短周期超晶格的纳米孔阵结构基础之上,引入金属纳米颗粒产生局域表面等离激元效应,利用局域表面等离激元效应有效增强光吸收,进一步提升该结构深紫外MSM探测器的响应度和量子效率。
本发明采用如下技术方案:
基于局域表面等离激元效应的深紫外MSM探测器,其特征在于:包括由下至上衬底、缓冲层、超短周期超晶格以及金属电极;该超短周期超晶格设有纳米孔阵和金属纳米颗粒,该纳米孔阵有序分布于超短周期超晶格,该金属纳米颗粒注入纳米孔阵空隙或沉积于超短周期超晶格上表面,颗粒尺寸可调控;金属电极设置在超短周期超晶格上,形成肖特基接触。
所述衬底为同质衬底,该同质衬底为氮化镓或氮化铝单晶。
所述衬底为异质衬底,该异质衬底为蓝宝石或碳化硅或单晶硅。
所述超短周期超晶格采用两种禁带宽度不同的半导体材料交替生长而成。
所述两种禁带宽度不同的半导体材料为氮化镓单晶或氮化铝单晶或铝镓氮混晶中的任意两种。
所述金属纳米颗粒为铑颗粒或银颗粒或铝颗粒中的任意一种。
所述金属纳米颗粒直径范围为20nm-70nm。
所述纳米孔阵周期范围为200nm-600nm。
所述金属电极为金、铬/金、镍/金、钛/金组合中的任意一种。
基于局域表面等离激元效应的深紫外MSM探测器制备方法,其特征在于:
1)制作衬底;
2)在衬底上生长缓冲层;
3)在缓冲层生长超短周期超晶格;
4)利用纳米压印、感应耦合等离子体刻蚀技术形成有序分布于超短周期超晶格的纳米孔阵;
5)采用高真空热蒸发技术沉积金属铝薄膜;
6)制备金属电极;
7)在氮气氛围下,400℃低温退火60s,金属铝薄膜形成铝纳米颗粒结构,且形成金属电极与铝纳米颗粒嵌入的纳米孔阵式超短周期超晶格的肖特基接触。
由上述对本发明的描述可知,与现有技术相比,本发明具有如下有益效果:本发明提供的基于局域表面等离激元效应的深紫外MSM探测器及制备方法,通过在有序分布在超短周期超晶格的纳米孔阵中形成金属纳米颗粒,产生局域表面等离激元效应,从而有效增强对深紫外光子的吸收,进一步提高深紫外MSM探测器的响应度和量子效率。
附图说明
图1为本发明基于局域表面等离激元效应的深紫外MSM探测器的结构图。其中1表示衬底,2表示缓冲层,3表示超短周期超晶格,4表示金属纳米颗粒,5表示金属电极,6表示纳米孔阵。
具体实施方式
以下通过具体实施方式对本发明作进一步的描述。本发明的各附图仅为示意以更容易了解本发明,其具体比例可依照设计需求进行调整。文中所描述的图形中相对元件的上下关系,在本领域技术人员应能理解是指构件的相对位置而言,对应的,以元件在上一面为正面、在下一面为背面以便于理解,因此皆可以翻转而呈现相同的构件,此皆应同属本说明书所揭露的范围。
本发明的基于局域表面等离激元效应的深紫外MSM探测器,其器件结构从下到上依次包括:衬底1,缓冲层2,超短周期超晶格3,分布于超短周期超晶格的金属纳米颗粒4和金属电极5。
本发明所述的衬底1为同质衬底或异质衬底。当衬底1为同质衬底时,为氮化镓或氮化铝单晶;当衬底1为异质衬底时,为蓝宝石或碳化硅或单晶硅。在本实施例中,如衬底1为蓝宝石衬底,由于蓝宝石衬底与氮化镓单晶存在较大的晶格失配,可外延生长厚度约为1微米的氮化铝缓冲层2。
本发明所述的超短周期超晶格3为氮化镓/铝镓氮组合或铝镓氮/氮化铝组合或氮化镓/氮化铝组合中的任意一个,经纳米压印、感应耦合等离子体刻蚀等技术形成周期性有序的纳米孔阵结构;设置在超短周期超晶格的纳米孔阵周期和尺寸可调,周期范围为200nm-600nm,尺寸(直径)范围为70nm-130nm。
本发明的分布于超短周期超晶格的金属纳米颗粒4通过高真空热蒸发和快速热退火工艺制备而成,可改变高真空热蒸发时间、退火温度和时间来调控金属纳米颗粒的尺寸。作为优选,本实施例选用铝金属纳米颗粒,该铝金属纳米颗粒直径大小可调范围为20nm-70nm。
本发明所述的金属电极5利用标准光刻工艺制备,可以为金、铬/金、镍/金、钛/金组合中的任意一种。作为优选,本实施例选用镍/金作为金属电极。
本发明基于局域表面等离激元效应的深紫外MSM探测器及制备方法,具体制备如下:
1)采用金属有机物气相外延技术在蓝宝石衬底c面上进行外延生长。三甲基镓(TMGa)和三甲基铝(TMAl)分别作为镓源和铝源,高纯度的氨气(NH3)作为氮源,氢气作为载气。
2)在步骤1)的基础上,将蓝宝石衬底1置于H2气氛中,在1100℃高温和100Torr反应室压强下,去除表面的沾污;随后降低温度至800℃,在500Torr反应室压强下,通入TMAl和NH3,在衬底1上生长约1微米厚的氮化铝缓冲层2。
3)在步骤2)的氮化铝缓冲层2上交替生长300个周期左右的氮化镓和氮化铝,形成超短周期超晶格。通过改变TMGa、TMAl和NH3的流量及生长时间来控制氮化镓和氮化铝的生长厚度。
4)在步骤3)的超短周期超晶格上利用纳米压印、感应耦合等离子体刻蚀等技术,形成周期为460nm,孔径为120nm,孔径深度为300nm的有序分布的纳米孔阵。
5)在步骤4)有序分布于超短周期超晶格的纳米孔阵结构上,采用高真空热蒸发技术沉积厚度为10nm的金属铝薄膜。
6)制备金属电极,具体步骤如下:
6.1)对外延片进行标准清洗,依次在丙酮、乙醇及高纯度去离子水中各自超声清洗10分钟;然后用去离子水加强冲洗,去除有机物;再使用氮气吹干表面;之后,使用AZ5214E光刻胶进行涂胶、甩胶和前烘工艺,再通过德国Karl Suss MA6/BA6型双面对准光刻机进行对准和曝光,后利用反转烘、泛曝光、显影等方法形成叉指电极图形。
6.2)在室温下真空度为10-6Torr的Temescal FC2000高真空热蒸发系统中,基于6.1)步骤所获得的基底,沉积厚度为10nm和200nm的镍/金复合金属层。
6.3)使用丙酮溶液浸泡并剥离光刻胶,只保留沉积在叉指电极上的金属。
7)将上述步骤得到的样品在在氮气氛围下,400℃低温退火60s,形成铝纳米颗粒结构,同时形成镍/金电极与铝纳米颗粒嵌入的纳米孔阵式超短周期超晶格的肖特基接触。至此,完成本发明所述深紫外MSM探测器的制备。
上述仅为本发明的具体实施方式,但本发明的设计构思并不局限于此,凡利用此构思对本发明进行非实质性的改动,均应属于侵犯本发明保护范围的行为。

Claims (10)

1.基于局域表面等离激元效应的深紫外MSM探测器,其特征在于:包括由下至上衬底、缓冲层、超短周期超晶格,以及金属电极;该超短周期超晶格设有纳米孔阵和金属纳米颗粒,该纳米孔阵有序分布于超短周期超晶格,该金属纳米颗粒注入纳米孔阵空隙或沉积于超短周期超晶格上表面,颗粒尺寸可调控;金属电极设置在超短周期超晶格上,形成肖特基接触。
2.如权利要求1所述的基于局域表面等离激元效应的深紫外MSM探测器,其特征在于:所述衬底为同质衬底,该同质衬底为氮化镓或氮化铝单晶。
3.如权利要求1所述的基于局域表面等离激元效应的深紫外MSM探测器,其特征在于:所述衬底为异质衬底,该异质衬底为蓝宝石或碳化硅或单晶硅。
4.如权利要求1所述的基于局域表面等离激元效应的深紫外MSM探测器,其特征在于:所述超短周期超晶格采用两种禁带宽度不同的半导体材料交替生长而成。
5.如权利要求4所述的基于局域表面等离激元效应的深紫外MSM探测器,其特征在于:所述两种禁带宽度不同的半导体材料为氮化镓单晶或氮化铝单晶或铝镓氮混晶中的任意两种。
6.如权利要求1所述的基于局域表面等离激元效应的深紫外MSM探测器,其特征在于:所述金属纳米颗粒为铑颗粒或银颗粒或铝颗粒中的任意一种。
7.如权利要求1所述的基于局域表面等离激元效应的深紫外MSM探测器,其特征在于:所述金属纳米颗粒直径范围为20nm-70nm。
8.如权利要求1所述的基于局域表面等离激元效应的深紫外MSM探测器,其特征在于:所述纳米孔阵周期范围为200nm-600nm。
9.如权利要求1所述的基于局域表面等离激元效应的深紫外MSM探测器,其特征在于:所述金属电极为金、铬/金、镍/金、钛/金组合中的任意一种。
10.基于局域表面等离激元效应的深紫外MSM探测器制备方法,其特征在于:
1)制作衬底;
2)在衬底上生长缓冲层;
3)在缓冲层生长超短周期超晶格;
4)利用纳米压印、感应耦合等离子体刻蚀技术形成有序分布于超短周期超晶格的纳米孔阵;
5)采用高真空热蒸发技术沉积金属铝薄膜;
6)制备金属电极;
7)在氮气氛围下,400℃低温退火60s,金属铝薄膜形成铝纳米颗粒结构,且形成金属电极与超短周期超晶格的肖特基接触。
CN201910577036.9A 2019-06-28 2019-06-28 基于局域表面等离激元效应的深紫外msm探测器及制备方法 Pending CN110364584A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910577036.9A CN110364584A (zh) 2019-06-28 2019-06-28 基于局域表面等离激元效应的深紫外msm探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910577036.9A CN110364584A (zh) 2019-06-28 2019-06-28 基于局域表面等离激元效应的深紫外msm探测器及制备方法

Publications (1)

Publication Number Publication Date
CN110364584A true CN110364584A (zh) 2019-10-22

Family

ID=68217301

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910577036.9A Pending CN110364584A (zh) 2019-06-28 2019-06-28 基于局域表面等离激元效应的深紫外msm探测器及制备方法

Country Status (1)

Country Link
CN (1) CN110364584A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112880821A (zh) * 2019-11-29 2021-06-01 中国科学技术大学 日盲紫外光电化学光探测器及其制备方法
CN112945377A (zh) * 2021-02-01 2021-06-11 河北工业大学 一种基于等离子激元的深紫外光电探测器
CN114551626A (zh) * 2022-02-22 2022-05-27 吉林大学 一种深紫外光电探测器及其制备方法和应用
CN114583031A (zh) * 2022-01-27 2022-06-03 南京邮电大学 一种基于LSPs耦合增强的紫外Micro-LED
CN115000238A (zh) * 2022-05-09 2022-09-02 厦门大学 一种等离激元增强局域雪崩的紫外光电探测器及制备方法
US11710801B2 (en) 2021-03-12 2023-07-25 Taiyuan University Of Technology Silicon carbide-based full-spectrum-responsive photodetector and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103247709A (zh) * 2013-05-23 2013-08-14 中国科学院长春光学精密机械与物理研究所 增强AlGaN基深紫外探测器响应度的方法
CN108878547A (zh) * 2018-07-02 2018-11-23 厦门大学 一种高外量子效率的深紫外msm光电探测器
CN109768114A (zh) * 2018-12-04 2019-05-17 东南大学 一种基于石墨烯-半导体异质结的位敏感光电探测器
CN210245515U (zh) * 2019-06-28 2020-04-03 厦门大学 一种基于局域表面等离激元效应的深紫外msm探测器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103247709A (zh) * 2013-05-23 2013-08-14 中国科学院长春光学精密机械与物理研究所 增强AlGaN基深紫外探测器响应度的方法
CN108878547A (zh) * 2018-07-02 2018-11-23 厦门大学 一种高外量子效率的深紫外msm光电探测器
CN109768114A (zh) * 2018-12-04 2019-05-17 东南大学 一种基于石墨烯-半导体异质结的位敏感光电探测器
CN210245515U (zh) * 2019-06-28 2020-04-03 厦门大学 一种基于局域表面等离激元效应的深紫外msm探测器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112880821A (zh) * 2019-11-29 2021-06-01 中国科学技术大学 日盲紫外光电化学光探测器及其制备方法
CN112945377A (zh) * 2021-02-01 2021-06-11 河北工业大学 一种基于等离子激元的深紫外光电探测器
US11710801B2 (en) 2021-03-12 2023-07-25 Taiyuan University Of Technology Silicon carbide-based full-spectrum-responsive photodetector and method for producing same
CN114583031A (zh) * 2022-01-27 2022-06-03 南京邮电大学 一种基于LSPs耦合增强的紫外Micro-LED
CN114551626A (zh) * 2022-02-22 2022-05-27 吉林大学 一种深紫外光电探测器及其制备方法和应用
CN114551626B (zh) * 2022-02-22 2024-01-26 吉林大学 一种深紫外光电探测器及其制备方法和应用
CN115000238A (zh) * 2022-05-09 2022-09-02 厦门大学 一种等离激元增强局域雪崩的紫外光电探测器及制备方法

Similar Documents

Publication Publication Date Title
CN110364584A (zh) 基于局域表面等离激元效应的深紫外msm探测器及制备方法
CN106960887B (zh) 一种铝镓氮基日盲紫外探测器及其制备方法
CN103247709B (zh) 增强AlGaN基深紫外探测器响应度的方法
JP2006261666A (ja) 高効率無機ナノロッド強化光起電素子
CN103378234B (zh) 发光二极管
CN106783948B (zh) 生长在Si衬底上的InN纳米柱外延片及其制备方法
CN108878547B (zh) 基于纳米孔阵式超短周期超晶格的深紫外msm光电探测器
CN113224198B (zh) 一种2DWS2/InGaN II型异质结自驱动蓝光探测器及其制备方法与应用
Prete et al. Dilute nitride III-V nanowires for high-efficiency intermediate-band photovoltaic cells: Materials requirements, self-assembly methods and properties
WO2021018307A1 (zh) 一种多量子阱蓝光探测器及制备方法与应用
Park et al. A III-nitride nanowire solar cell fabricated using a hybrid coaxial and uniaxial InGaN/GaN multi quantum well nanostructure
CN103378235A (zh) 发光二极管
Gao et al. Recent advances in Sb-based III–V nanowires
CN110364582A (zh) 一种基于石墨烯模板上AlGaN纳米柱基MSM型紫外探测器及其制备方法
US20100043873A1 (en) Semiconducting devices and methods of making the same
CN102263166B (zh) 采用纳米粒子提高AlGaN基探测器性能的方法
CN211295123U (zh) 一种基于核壳结构GaN-MoO3纳米柱的自供电紫外探测器
CN108231545A (zh) 生长在铜箔衬底上的InN纳米柱外延片及其制备方法
CN210245515U (zh) 一种基于局域表面等离激元效应的深紫外msm探测器
Chen et al. Improved performance of a back-illuminated GaN-based metal-semiconductor-metal ultraviolet photodetector by in-situ modification of one-dimensional ZnO nanorods on its screw dislocations
CN106486560B (zh) 等离子体液滴外延砷化镓量子点太阳电池及其制造方法
Kang et al. InGaN-based photoanode with ZnO nanowires for water splitting
Cai et al. Favourable photovoltaic effects in InGaN pin homojunction solar cell
Nguyen et al. Impact of Ge deposition temperature on parameters of c-Si solar cells with surface texture formed by etching of Si using SiGe islands as a mask
CN219800871U (zh) 一种2D h-BN/AlGaNⅡ型异质结自驱动紫外光探测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination