CN106960887B - 一种铝镓氮基日盲紫外探测器及其制备方法 - Google Patents

一种铝镓氮基日盲紫外探测器及其制备方法 Download PDF

Info

Publication number
CN106960887B
CN106960887B CN201710301067.2A CN201710301067A CN106960887B CN 106960887 B CN106960887 B CN 106960887B CN 201710301067 A CN201710301067 A CN 201710301067A CN 106960887 B CN106960887 B CN 106960887B
Authority
CN
China
Prior art keywords
layer
type
shaped
undoped
gallium nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710301067.2A
Other languages
English (en)
Other versions
CN106960887A (zh
Inventor
王书昶
张惠国
况亚伟
郭文华
冯金福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changshu Institute of Technology
Original Assignee
Changshu Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changshu Institute of Technology filed Critical Changshu Institute of Technology
Priority to CN201710301067.2A priority Critical patent/CN106960887B/zh
Publication of CN106960887A publication Critical patent/CN106960887A/zh
Application granted granted Critical
Publication of CN106960887B publication Critical patent/CN106960887B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • H01L31/035263Doping superlattices, e.g. nipi superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种铝镓氮基日盲紫外探测器,包括由下至上依次设置的蓝宝石衬底、AlN成核层、Alx1Ga1‑x1N缓冲层、n型Alx2Ga1‑x2N层、非掺杂i型Zny1Mg1‑y1O吸收层、n型ZnO/Zny2Mg1‑y2O超晶格分离层、非掺杂i型Zny3Mg1‑y3O倍增层、p型Alx3Ga1‑x3N层、p型GaN层,在n型Alx2Ga1‑x2N层上引出的n型欧姆电极,在p型GaN层上引出的p型欧姆电极。本发明还公开了铝镓氮基日盲紫外探测器的制备方法。该铝镓氮基日盲紫外探测器可提高日盲紫外探测器雪崩倍增因子与探测器的响应度。

Description

一种铝镓氮基日盲紫外探测器及其制备方法
技术领域
本发明涉及一种日盲紫外探测器及其制备方法,尤其是涉及一种铝镓氮基日盲紫外探测器及其制备方法,属于半导体光电子器件领域。
背景技术
紫外光电探测器在军用和民用方面都具有重要的应用价值和发展前景,如紫外告警与制导、碳氢化合物燃烧火焰的探测、生化基因的检测、紫外天文学的研究、短距离的通信以及皮肤病的治疗等。氮化镓基半导体三元化合物AlxGa1-xN材料的能带隙可以通过改变Al组分x进行调节,使其对应的吸收光波长在200~365nm之间,恰好覆盖由于臭氧层吸收紫外光而产生的太阳光谱盲区(220~290nm)。ZnO是一种直接带隙宽禁带半导体材料。ZnO无论在晶格结构、晶胞参数还是在禁带宽度上都与GaN材料相似,且具有比GaN更高的熔点和更大的激子束缚能,又具有较低的光致发光和受激辐射的阈值以及良好的机电耦合特性、热稳定性和化学稳定性。ZnMgO合金的禁带宽度可以随着Mg组分的不同得到调节,以形成量子阱或者超晶格结构,增强器件量子效率。
氮化镓基紫外雪崩光电探测器具有体积小、重量轻、寿命长、抗震性好、工作电压低、耐高温、耐腐蚀、抗辐照、量子效率高和无需滤光片等优点,最近已然成为光电探测领域的研究热点。AlGaN在制备紫外雪崩光电探测器方面具有显著的优势,如AlGaN紫外雪崩光电探测器可以省去昂贵的滤波片,并且AlGaN比SiC具有更高的光吸收效率。在GaN衬底上制备的同质外延GaN紫外雪崩光电探测器,其暗电流密度在10-6A/cm2量级,线性模式内部增益>104,单光子探测效率~24%;而在蓝宝石衬底上外延制备的GaN紫外雪崩光电探测器,其暗电流密度在10-4A/cm2量级,线性模式内部增益接近1000,单光子探测效率~30%[参考文献K.Minder,J.L.Pau,R.McClintock,P.Kung,C.Bayram,and M.Razeghi,Appl.Phys.Lett.,91,073513,(2007).]。利用吸收区和倍增区分离的技术,GaN紫外雪崩光电探测器的雪崩增益因子可高达4.12×104[参考文献J.L.Pau,C.Bayram,R.McClintock,M.Razeghi,and D.Silversmith,Appl.Phys.Lett.,92,101120(2008).]。
近年来,GaN基紫外探测器的研究取到了一些显著的进展。2012年,江灏等公开了一种PIN结构紫外雪崩光电探测器及其制备方法的专利[申请号:CN201210314750.7]和一种基于异质结构吸收、倍增层分离GaN基雪崩光电探测器的专利[申请号:CN201210333832.6],其倍增区和吸收区分离的特点使载流子雪崩倍增距离提高,从而能够使灵敏度大大增加。2013年,陈敦军等公开了一种高增益的AlGaN紫外雪崩光电探测器及其制备方法的专利[申请号:CN201310367175.1],同样也是采用倍增区和吸收区分离的方法使载流子雪崩倍增距离提高,可明显降低紫外雪崩光电探测器雪崩击穿时的外加电压和暗电流,有助于提高紫外雪崩光电探测器雪崩倍增因子。
但是,由于现有技术制备的AlGaN材料薄膜质量不高,AlGaN材料在与表面淀积的金属形成肖特基结时界面存在大量的缺陷,使得有源区变薄,遂穿机制明显,导致暗电流很大,因而严重制约了此类结构探测器的探测性能的提高。因此,如何获得高增益的AlGaN基雪崩光电探测器目前仍是一大难题。
发明内容
针对现有技术的缺陷,本发明提供了一种铝镓氮基日盲紫外探测器,通过多周期超晶格结构分离日盲紫外探测器的吸收区和倍增区,增加倍增层的电场,使得其在高电场作用下可以产生均匀的雪崩倍增,以提高日盲紫外探测器的雪崩倍增因子和响应度。本发明还提供了一种铝镓氮基日盲紫外探测器的制备方法。
本发明技术方案如下:一种铝镓氮基日盲紫外探测器,包括由下至上依次设置的蓝宝石衬底、AlN成核层、Alx1Ga1-x1N缓冲层、n型Alx2Ga1-x2N层、非掺杂i型Zny1Mg1-y1O吸收层、n型ZnO/Zny2Mg1-y2O超晶格分离层、非掺杂i型Zny3Mg1-y3O倍增层、p型Alx3Ga1-x3N层、p型GaN层,在n型Alx2Ga1-x2N层上引出的n型欧姆电极,在p型GaN层上引出的p型欧姆电极。
优选地,所述非掺杂i型Zny1Mg1-y1O吸收层与非掺杂i型Zny3Mg1-y3O倍增层被多周期的n型ZnO/Zny2Mg1-y2O超晶格分离层所分离。
优选地,所述n型ZnO/Zny2Mg1-y2O超晶格分离层的重复周期数为1~20个。
优选地,所述AlN成核层厚度为20~50nm,所述Alx1Ga1-x1N缓冲层厚度为200~500nm,所述n型Alx2Ga1-x2N层厚度为500~1000nm,所述非掺杂i型Zny1Mg1-y1O吸收层厚度为100~300nm,所述n型ZnO/Zny2Mg1-y2O超晶格分离层厚度为10~200nm,所述非掺杂i型Zny3Mg1-y3O倍增层厚度为100~150nm,所述p型Alx3Ga1-x3N层厚度为50~200nm,所述p型GaN层厚度为100~200nm。
优选地,所述n型欧姆电极为Ti/Al/Ti/Au合金电极,p型欧姆电极为Ni/Au合金电极。
优选地,所述蓝宝石衬底101为C面取向、R面取向、M面取向中的任意一种蓝宝石衬底。
优选地,所述n型ZnO/Zny2Mg1-y2O超晶格分离层中,下标y2满足如下要求:0≤y2≤1。
优选地,所述n型ZnO/Zny2Mg1-y2O超晶格分离层利用Al进行掺杂,其中Al的掺杂浓度介于1×1017至1×1020cm-3之间。
优选地,所述非掺杂i型Zny3Mg1-y3O倍增层的禁带宽度大于非掺杂i型Zny1Mg1-y1O吸收层的禁带宽度,即下标y1,y3满足如下要求:0<y3<y1<1。
一种铝镓氮基日盲紫外探测器的制备方法,依次包括以下步骤:
(1)在图形化蓝宝石衬底上生长AlN成核层;
(2)在AlN成核层上生长一层Alx1Ga1-x1N缓冲层;
(3)在Alx1Ga1-x1N缓冲层上生长一层n型Alx2Ga1-x2N层;
(4)在n型Alx2Ga1-x2N层上生长一层非掺杂i型Zny1Mg1-y1O吸收层;
(5)在非掺杂i型Zny1Mg1-y1O吸收层上生长多周期n型ZnO/Zny2Mg1-y2O超晶格分离层;
(6)在多周期n型ZnO/Zny2Mg1-y2O超晶格分离层上生长一层非掺杂i型Zny3Mg1-y3O倍增层;
(7)在非掺杂i型Zny3Mg1-y3O倍增层上生长一层p型Alx3Ga1-x3N层;
(8)在p型Alx3Ga1-x3N层上生长一层p型GaN层;
(9)在p型GaN层上进行台面刻蚀,露出n型Alx2Ga1-x2N层;
(10)在n型Alx2Ga1-x2N层台面上蒸镀n型Ti/Al/Ti/Au欧姆电极,并且对电极进行退火处理;
(11)在p型GaN层上蒸镀p型Ni/Au欧姆电极,并且对电极进行退火处理。
本发明所提供的技术方案的优点在于:采用多周期超晶格结构的分离层,能够将日盲紫外探测器的吸收区和倍增区分离的铝镓氮基日盲紫外探测器。由于多周期超晶格结构的高吸收系数、高横向载流子迁移率和强极化效应,可有效增加倍增层的电场,有助于提高日盲紫外探测器的雪崩倍增因子,因此能够提高铝镓氮基日盲紫外探测器的量子效率和响应度,降低其雪崩击穿电压阈值。
附图说明
图1为本发明结构示意图。
具体实施方式
下面结合实施例对本发明作进一步说明,但不作为对本发明的限定。
实施例1,如图1所示,本实施例所涉及的铝镓氮基日盲紫外探测器,包括由下至上依次设置图形化C面取向的蓝宝石衬底101、AlN成核层102、Alx1Ga1-x1N缓冲层103、n型Alx2Ga1-x2N层104、非掺杂i型Zny1Mg1-y1O吸收层105、n型ZnO/Zny2Mg1-y2O超晶格分离层106、非掺杂i型Zny3Mg1-y3O倍增层107、p型Alx3Ga1-x3N层108、p型GaN层109,在n型Alx2Ga1-x2N层104上引出的n型欧姆电极110,在p型GaN层109上引出的p型欧姆电极111。其中AlN成核层102的厚度为30nm,具体成核层厚度值可根据实际需要调整。Alx1Ga1-x1N缓冲层103的厚度为500nm,并且其中的x1=0.35。n型Alx2Ga1-x2N层104的厚度为800nm,并且其中的x2=0.45,利用Si进行掺杂,其中Si的掺杂浓度大于5×1018cm-3。非掺杂i型Zny1Mg1-y1O吸收层105的厚度为300nm,并且其中的y1=0.45。n型ZnO/Zny2Mg1-y2O超晶格分离层106厚度为150nm,利用Al进行掺杂,其中Al的掺杂浓度为5×1017cm-3,下标y2满足如下要求:0≤y2≤1。n型ZnO/Zny2Mg1-y2O超晶格分离层106的重复周期数为20个。非掺杂i型Zny3Mg1-y3O倍增层107的厚度为150nm,并且其中的y3=0.6。p型Alx3Ga1-x3N层108的厚度为100nm,使用二茂镁作p型Alx3Ga1-x3N层108的掺杂,掺杂浓度为8×1017cm-3,其中下标x3=0.7。p型GaN层109的厚度为200nm,其中的掺杂浓度为5×1018cm-3。p型欧姆电极110为Ti/Al/Ti/Au合金电极,n型欧姆电极111为Ni/Au合金电极。
该铝镓氮基日盲紫外探测器的制备方法是:
(1)在图形化C面取向蓝宝石衬底上生长AlN成核层;
(2)在AlN成核层上生长一层Alx1Ga1-x1N缓冲层;
(3)在Alx1Ga1-x1N缓冲层上生长一层n型Alx2Ga1-x2N层;
(4)在n型Alx2Ga1-x2N层上生长一层非掺杂i型Zny1Mg1-y1O吸收层;
(5)在非掺杂i型Zny1Mg1-y1O吸收层上生长多周期n型ZnO/Zny2Mg1-y2O超晶格分离层;
(6)在多周期n型ZnO/Zny2Mg1-y2O超晶格分离层上生长一层非掺杂i型Zny3Mg1-y3O倍增层;
(7)在非掺杂i型Zny3Mg1-y3O倍增层上生长一层p型Alx3Ga1-x3N层;
(8)在p型Alx3Ga1-x3N层上生长一层p型GaN层;
(9)在p型GaN层107上进行光刻,刻蚀出电极台面,露出n型Alx2Ga1-x2N层104,对刻蚀后的台面进行处理;
(10)在p型GaN层107上蒸镀p型欧姆电极108,电极为Ti/Al/Ti/Au合金电极,蒸镀后在600℃的N2环境下退火2分钟;
(11)在n型Alx2Ga1-x2N层104台面上蒸镀n型欧姆电极109,电极为Ni/Au合金电极,电极尺寸为0.3×0.3mm2,蒸镀后在850℃的N2环境下退火2分钟。
实施例2,如图1所示,本实施例所涉及的铝镓氮基日盲紫外探测器,包括由下至上依次设置图形化C面取向的蓝宝石衬底101、AlN成核层102、Alx1Ga1-x1N缓冲层103、n型Alx2Ga1-x2N层104、非掺杂i型Zny1Mg1-y1O吸收层105、n型ZnO/Zny2Mg1-y2O超晶格分离层106、非掺杂i型Zny3Mg1-y3O倍增层107、p型Alx3Ga1-x3N层108、p型GaN层109,在n型Alx2Ga1-x2N层104上引出的n型欧姆电极110,在p型GaN层109上引出的p型欧姆电极111。其中AlN成核层102的厚度为20nm,具体成核层厚度值可根据实际需要调整。Alx1Ga1-x1N缓冲层103的厚度为200nm,并且其中的x1=0.4。n型Alx2Ga1-x2N层104的厚度为500nm,并且其中的x2=0.55,利用Si进行掺杂,其中Si的掺杂浓度大于5×1018cm-3。非掺杂i型Zny1Mg1-y1O吸收层105的厚度为100nm,并且其中的y1=0.55。n型ZnO/Zny2Mg1-y2O超晶格分离层106厚度为10nm,利用Al进行掺杂,其中Al的掺杂浓度为5×1017cm-3,下标y2满足如下要求:0≤y2≤1。n型ZnO/Zny2Mg1- y2O超晶格分离层106的重复周期数为5个。非掺杂i型Zny3Mg1-y3O倍增层107的厚度为100nm,并且其中的y3=0.7。p型Alx3Ga1-x3N层108的厚度为50nm,使用二茂镁作p型Alx3Ga1-x3N层108的掺杂,掺杂浓度为8×1017cm-3,其中下标x3=0.6。p型GaN层109的厚度为100nm,其中的掺杂浓度为5×1018cm-3。p型欧姆电极110为Ti/Al/Ti/Au合金电极,n型欧姆电极111为Ni/Au合金电极。该铝镓氮基日盲紫外探测器的制备方法同实施例1。
实施例3,如图1所示,本实施例所涉及的铝镓氮基日盲紫外探测器,包括由下至上依次设置图形化C面取向的蓝宝石衬底101、AlN成核层102、Alx1Ga1-x1N缓冲层103、n型Alx2Ga1-x2N层104、非掺杂i型Zny1Mg1-y1O吸收层105、n型ZnO/Zny2Mg1-y2O超晶格分离层106、非掺杂i型Zny3Mg1-y3O倍增层107、p型Alx3Ga1-x3N层108、p型GaN层109,在n型Alx2Ga1-x2N层104上引出的n型欧姆电极110,在p型GaN层109上引出的p型欧姆电极111。其中AlN成核层102的厚度为50nm,具体成核层厚度值可根据实际需要调整。Alx1Ga1-x1N缓冲层103的厚度为400nm,并且其中的x1=0.5。n型Alx2Ga1-x2N层104的厚度为1000nm,并且其中的x2=0.7,利用Si进行掺杂,其中Si的掺杂浓度大于5×1018cm-3。非掺杂i型Zny1Mg1-y1O吸收层105的厚度为200nm,并且其中的y1=0.6。n型ZnO/Zny2Mg1-y2O超晶格分离层106厚度为200nm,利用Al进行掺杂,其中Al的掺杂浓度为5×1017cm-3,下标y2满足如下要求:0≤y2≤1。n型ZnO/Zny2Mg1- y2O超晶格分离层106的重复周期数为10个。非掺杂i型Zny3Mg1-y3O倍增层107的厚度为150nm,并且其中的y3=0.65。p型Alx3Ga1-x3N层108的厚度为200nm,使用二茂镁作p型Alx3Ga1-x3N层108的掺杂,掺杂浓度为8×1017cm-3,其中下标x3=0.9。p型GaN层109的厚度为150nm,其中的掺杂浓度为5×1018cm-3。p型欧姆电极110为Ti/Al/Ti/Au合金电极,n型欧姆电极111为Ni/Au合金电极。该铝镓氮基日盲紫外探测器的制备方法同实施例1。
必须指出的是:本发明不仅适用于金属-半导体-金属型氮化镓基紫外雪崩光电探测器,对于肖特基势垒型氮化镓基紫外雪崩光电探测器也同样适用。
本发明所提出的具有非掺杂i型Zny1Mg1-y1O吸收层、n型ZnO/Zny2Mg1-y2O超晶格分离层、非掺杂i型Zny3Mg1-y3O倍增层紫外探测器在380nm具有最高响应度96mA/W;在-5V偏压下300nm处的峰值响应度达到51mA/W,外量子效率可达20%以上,并且具有较小的暗电流,为nA数量级。而采用非掺杂i型Alx3Ga1-x3N吸收层、n型Alx4Iny1Ga1-x4-y1N/Alx5Iny2Ga1-x5-y2N超晶格分离层、非掺杂i型Alx6Ga1-x6N倍增层紫外探测器在380nm具有最高响应度81mA/W;在-5V偏压下300nm处的峰值响应度达到24mA/W,外量子效率可达15%以上。上述结果表明,本发明所制得的紫外探测器通过优化工艺和器件结构,明显改善器件性能,获得较高响应度。

Claims (10)

1.一种铝镓氮基日盲紫外探测器,其特征在于,包括由下至上依次设置的蓝宝石衬底、AlN成核层、Alx1Ga1-x1N缓冲层、n型Alx2Ga1-x2N层、非掺杂i型Zny1Mg1-y1O吸收层、n型ZnO/Zny2Mg1-y2O超晶格分离层、非掺杂i型Zny3Mg1-y3O倍增层、p型Alx3Ga1-x3N层、p型GaN层,在n型Alx2Ga1-x2N层上引出的n型欧姆电极,在p型GaN层上引出的p型欧姆电极。
2.根据权利要求1所述的铝镓氮基日盲紫外探测器,其特征在于,所述非掺杂i型Zny1Mg1-y1O吸收层与非掺杂i型Zny3Mg1-y3O倍增层被多周期的n型ZnO/Zny2Mg1-y2O超晶格分离层所分离。
3.根据权利要求1所述的铝镓氮基日盲紫外探测器,其特征在于,所述n型ZnO/Zny2Mg1-y2O超晶格分离层的重复周期数为1~20个。
4.根据权利要求1所述的铝镓氮基日盲紫外探测器,其特征在于,所述AlN成核层厚度为20~50nm,所述Alx1Ga1-x1N缓冲层厚度为200~500nm,所述n型Alx2Ga1-x2N层厚度为500~1000nm,所述非掺杂i型Zny1Mg1-y1O吸收层厚度为100~300nm,所述n型ZnO/Zny2Mg1-y2O超晶格分离层厚度为10~200nm,所述非掺杂i型Zny3Mg1-y3O倍增层厚度为100~150nm,所述p型Alx3Ga1-x3N层厚度为50~200nm,所述p型GaN层厚度为100~200nm。
5.根据权利要求1所述的铝镓氮基日盲紫外探测器,其特征在于,所述n型欧姆电极为Ti/Al/Ti/Au合金电极,p型欧姆电极为Ni/Au合金电极。
6.根据权利要求1所述的铝镓氮基日盲紫外探测器,其特征在于,所述蓝宝石衬底101为C面取向、R面取向、M面取向中的任意一种蓝宝石衬底。
7.根据权利要求1所述的铝镓氮基日盲紫外探测器,其特征在于,所述n型ZnO/Zny2Mg1-y2O超晶格分离层中,下标y2满足如下要求:0≤y2≤1。
8.根据权利要求1所述的铝镓氮基日盲紫外探测器,其特征在于,所述n型ZnO/Zny2Mg1-y2O超晶格分离层利用Al进行掺杂,其中Al的掺杂浓度介于1×1017至1×1020cm-3之间。
9.根据权利要求1所述的铝镓氮基日盲紫外探测器,其特征在于,所述非掺杂i型Zny3Mg1-y3O倍增层的禁带宽度大于非掺杂i型Zny1Mg1-y1O吸收层的禁带宽度。
10.一种铝镓氮基日盲紫外探测器的制备方法,其特征在于,依次包括以下步骤:
(1)在图形化蓝宝石衬底上生长AlN成核层;
(2)在AlN成核层上生长一层Alx1Ga1-x1N缓冲层;
(3)在Alx1Ga1-x1N缓冲层上生长一层n型Alx2Ga1-x2N层;
(4)在n型Alx2Ga1-x2N层上生长一层非掺杂i型Zny1Mg1-y1O吸收层;
(5)在非掺杂i型Zny1Mg1-y1O吸收层上生长多周期n型ZnO/Zny2Mg1-y2O超晶格分离层;
(6)在多周期n型ZnO/Zny2Mg1-y2O超晶格分离层上生长一层非掺杂i型Zny3Mg1-y3O倍增层;
(7)在非掺杂i型Zny3Mg1-y3O倍增层上生长一层p型Alx3Ga1-x3N层;
(8)在p型Alx3Ga1-x3N层上生长一层p型GaN层;
(9)在p型GaN层上进行台面刻蚀,露出n型Alx2Ga1-x2N层;
(10)在n型Alx2Ga1-x2N层台面上蒸镀n型Ti/Al/Ti/Au欧姆电极,并且对电极进行退火处理;
(11)在p型GaN层上蒸镀p型Ni/Au欧姆电极,并且对电极进行退火处理。
CN201710301067.2A 2017-05-02 2017-05-02 一种铝镓氮基日盲紫外探测器及其制备方法 Active CN106960887B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710301067.2A CN106960887B (zh) 2017-05-02 2017-05-02 一种铝镓氮基日盲紫外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710301067.2A CN106960887B (zh) 2017-05-02 2017-05-02 一种铝镓氮基日盲紫外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN106960887A CN106960887A (zh) 2017-07-18
CN106960887B true CN106960887B (zh) 2019-01-11

Family

ID=59484698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710301067.2A Active CN106960887B (zh) 2017-05-02 2017-05-02 一种铝镓氮基日盲紫外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN106960887B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107863403B (zh) * 2017-11-28 2023-10-20 中国工程物理研究院电子工程研究所 一种高线性增益红外雪崩光电二极管及其制备方法
CN109119508B (zh) * 2018-08-08 2023-10-20 镇江镓芯光电科技有限公司 一种背入射日盲紫外探测器及其制备方法
CN109103267A (zh) * 2018-08-09 2018-12-28 镇江镓芯光电科技有限公司 一种AlGaN基MSM结构日盲型紫外探测器及其制备方法
CN109103268A (zh) * 2018-08-09 2018-12-28 镇江镓芯光电科技有限公司 一种GaN基p-i-n紫外探测器结构及制备方法
CN109585592B (zh) * 2018-11-29 2020-09-04 西安电子科技大学 p-BN/i-AlGaN/n-AlGaN的紫外探测器及制作方法
JP7044048B2 (ja) * 2018-12-19 2022-03-30 日本電信電話株式会社 アバランシェフォトダイオードおよびその製造方法
CN110501773B (zh) * 2019-08-29 2020-06-02 南京大学 应用于日盲光电探测器的AlN/AlGaN多周期一维光子晶体滤波器及日盲光电探测器
US11049993B1 (en) 2019-12-26 2021-06-29 National Chung-Shan Institute Of Science And Technology Method for preparing aluminum nitride-zinc oxide ultraviolet detecting electrode
JP6906043B2 (ja) * 2019-12-26 2021-07-21 國家中山科學研究院 窒化アルミニウム‐酸化亜鉛の紫外線検出電極を作製する方法
CN114361303B (zh) * 2021-03-08 2022-07-12 常熟理工学院 一种铝镓氮基紫外发光二极管外延层结构及其制备方法
CN114361283B (zh) * 2021-03-08 2022-09-23 常熟理工学院 一种深紫外探测器件及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7456384B2 (en) * 2004-12-10 2008-11-25 Sony Corporation Method and apparatus for acquiring physical information, method for manufacturing semiconductor device including array of plurality of unit components for detecting physical quantity distribution, light-receiving device and manufacturing method therefor, and solid-state imaging device and manufacturing method therefor
CN102244135B (zh) * 2011-07-05 2013-09-25 中山大学 一种pin倒置结构紫外雪崩光电探测器及其制备方法
CN104362213B (zh) * 2014-09-11 2016-06-15 东南大学 一种铝镓氮基日盲紫外探测器及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Enhancement of UV absorption behavior in ZnO-TiO2 composites;Reinosa, JJ et al.;《BOLETIN DE LA SOCIEDAD ESPANOLA DE CERAMICA Y VIDRIO》;20160430;第55卷(第2期);55-62
High performance ultraviolet detector based on TiO2/ZnO heterojunction;Zhang, DZ et al.;《JOURNAL OF ALLOYS AND COMPOUNDS》;20150105;第618卷;551-554

Also Published As

Publication number Publication date
CN106960887A (zh) 2017-07-18

Similar Documents

Publication Publication Date Title
CN106960887B (zh) 一种铝镓氮基日盲紫外探测器及其制备方法
CN104362213B (zh) 一种铝镓氮基日盲紫外探测器及其制备方法
CN106960885B (zh) 一种pin结构紫外光电探测器及其制备方法
CN108305911B (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
CN107240627B (zh) 一种具有双掺杂多量子阱结构的紫外发光二极管
Muñoz (Al, In, Ga) N‐based photodetectors. Some materials issues
JP2010512664A (ja) 酸化亜鉛多接合光電池及び光電子装置
CN102386269B (zh) GaN基p-i-p-i-n结构紫外探测器及其制备方法
Gorji et al. The effects of recombination lifetime on efficiency and J–V characteristics of InxGa1− xN/GaN quantum dot intermediate band solar cell
CN109686809B (zh) 一种iii族氮化物半导体可见光雪崩光电探测器及制备方法
CN110047955B (zh) 一种AlGaN紫外雪崩光电二极管探测器及其制备方法
CN104051561B (zh) 一种氮化镓基紫外雪崩光电探测器
CN111739960B (zh) 一种增益型异质结紫外光电探测器
CN103258869A (zh) 基于氧化锌材料的紫外红外双色探测器及其制作方法
CN102610472A (zh) 峰值响应在532 nm敏感的反射式GaAlAs光电阴极及其制备方法
CN105655437A (zh) 一种紫外雪崩光电探测器
CN109285914B (zh) 一种AlGaN基紫外异质结光电晶体管探测器及其制备方法
CN110459627B (zh) 一种紫外-可见双波段光电探测器
CN106410001B (zh) 一种AlGaN基紫外发光二极管
Liu et al. Progress on photovoltaic AlGaN photodiodes for solar-blind ultraviolet photodetection
Jani et al. Design, growth, fabrication and characterization of high-band gap InGaN/GaN solar cells
CN107342344B (zh) 一种紫外雪崩探测器及其制备方法
CN103474503B (zh) 一种基于二维晶格的紫外单波长msm光电探测器
CN207021269U (zh) 一种pin结构紫外光电探测器
CN210349846U (zh) 一种吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant