CN110459627B - 一种紫外-可见双波段光电探测器 - Google Patents

一种紫外-可见双波段光电探测器 Download PDF

Info

Publication number
CN110459627B
CN110459627B CN201910635101.9A CN201910635101A CN110459627B CN 110459627 B CN110459627 B CN 110459627B CN 201910635101 A CN201910635101 A CN 201910635101A CN 110459627 B CN110459627 B CN 110459627B
Authority
CN
China
Prior art keywords
layer
type
component
ultraviolet
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910635101.9A
Other languages
English (en)
Other versions
CN110459627A (zh
Inventor
庄喆
李成
张�雄
崔一平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201910635101.9A priority Critical patent/CN110459627B/zh
Publication of CN110459627A publication Critical patent/CN110459627A/zh
Application granted granted Critical
Publication of CN110459627B publication Critical patent/CN110459627B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03042Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/1013Devices sensitive to infrared, visible or ultraviolet radiation devices sensitive to two or more wavelengths, e.g. multi-spectrum radiation detection devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Led Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开一种紫外‑可见双波段光电探测器,包括由下至上设置的衬底层、低温AlN成核层、高温AlN缓冲层、n型AlGaN缓冲层、n型AlGaN层、i型AlGaN吸收层、AlGaN倍增层、P型AlGaN层、AlGaN渐变层、n型AlGaN层、n型GaN层、InGaN倍增层、i型InGaN吸收层、P型InGaN层和P型GaN层。在n型AlGaN层(105)和n型GaN层侧面有一外露区域,外露区域的上表面设置n型欧姆接触电极,在P型GaN上表面设置P型欧姆接触层。本发明能够实现紫外以及可见光的探测,通过调节紫外吸收单元的Al组分,可改变紫外探测波长;通过调节可见光吸收单元的In组分,可实现蓝光,绿光,红光等可见光波段的探测。

Description

一种紫外-可见双波段光电探测器
技术领域:
本发明属于半导体光电子器件领域,尤其涉及一种紫外-可见双波段光电探测器。
背景技术:
氮化镓基半导体材料主要包括III族和V族元素的二元化合物GaN、InN、AlN,三元化合物InGaN、AlGaN、AlInN和四元化合物AlInGaN,具有禁带宽度大、热导率高、耐高温、抗辐射、耐酸碱等特性,在抗辐射、耐高温、大功率微波器件等领域有着广泛的应用潜力和良好的市场前景。三元化合物AlxGa1-xN的能带隙可以通过改变Al组分x进行调节,使其对应的吸收光波长在200~365nm之间,三元化合物InxGa1-xN(0≤x≤1)的能带隙范围为0.7~3.4eV,可通过改变In组分x进行连续的调节,使其吸收光谱的波长范围可以从365nm一直到1770 nm。
近年来,第三代宽禁带半导体材料发展迅速,其关键工艺日趋成熟,可见、红外以及紫外光电探测器已逐渐在军事和民用生活方面发挥了巨大的作用。工作波长在深紫外区域的光电探测器,利用了日盲区太阳光辐射能量极其有限甚至微弱的特点,在天然低噪声背景下便可对目标紫外光辐射信号进行分辨与识别。其在航空航天跟踪与控制、生物医药工程分析、短距离的通信以及皮肤病的治疗、碳氢化合物燃烧火焰的探测以及紫外高保密通信等领域有着广阔的应用前景。工作波长在红外区域的探测器,其在天气预报、地貌学、环境监测、遥感资源调查、煤矿井下测温和测气中及隐蔽火源探测、消防和石化报警以及医疗和森林火灾预报中的都得到了广泛的应用。工作波长在可见区域的探测器,其在可见光通信领域具有巨大的作用,可实现对可见信号的探测。
由于传统的紫外光电探测器和红外光电探测器仅能够对单色进行追踪,使得光电探测器的探测范围较窄,无法同时实现对紫外和可见波段的光同时进行探测。然而,当前绝大多数紫外-可见双波段探测器主要由两个分别响应不同波段的探测器构成,通常通过金属键合方式将紫外和红外探测器连接在一起来实现双波段探测,从而增加了器件制作的复杂性。因此,开发一个可同时响应紫外和可见的双波段的探测器,将提高系统应用性能,而且可以大大提高探测效率,并推进紫外-可见双波段探测器单片集成的研究。
发明内容:
发明目的:提供一种紫外-可见双波段探测器及其制备方法,实现了紫外-可见双波段探测器单片集成并提高系统应用性能。
技术方案:为实现上述目的,本发明采用的技术方案为:一种紫外-可见双波段光电探测器,包括由下至上设置的衬底、低温AlN成核层、高温AlN缓冲层、n型Alx1Ga1-x1N缓冲层、n型Alx2Ga1-x2N层、i型Alx3Ga1-x3N吸收层、Alx4Ga1-x4N组分渐变倍增层、p型Alx5Ga1-x5N 层、Alx6Ga1-x6N组分渐变层、n型Alx7Ga1-x7N层、n型GaN层、Iny1Ga1-y1N倍增层、i型Iny2Ga1-y2N 吸收层、p型Iny3Ga1-y3N层、p型GaN层、在p型GaN层上设置的p型欧姆电极、在n型 AlGaN层上设置的n型欧姆电极、在n型GaN层上设置n型欧姆电极。
优选的,所述衬底为蓝宝石衬底,且为双面抛光的C面晶体。
优选的,所述低温AlN成核层(102)的厚度为20nm,高温AlN层(103)的厚度为200nm, n型AlGaN缓冲层(104)的厚度为50-500nm,n型AlGaN层(105)的厚度为200-500nm,非掺杂i型Alx3Ga1-x3N吸收层(106)的厚度为100~300nm,非掺杂Alx4Ga1-x4N组分渐变倍增层(107) 的厚度为100-250nm,p型Alx5Ga1-x5N层(108)的厚度为50-500nm,Alx4Ga1-x4N组分渐变层 (109)的厚度为50-500nm。
优选的,所述n型GaN层的厚度为50-200nm,Iny1Ga1-y1N倍增层的厚度为50~250nm,i型Iny2Ga1-y2N吸收层厚度为500-100nm,p型InGaN层的厚度为50-100nm,p型GaN层的厚度为50-500nm。
优选的,所述Alx1Ga1-x1N缓冲层(104),Al组分x1的取值范围为0.1-1;n型Alx2Ga1-x2N层(105),Al组分x3<=x2;i型Alx3Ga1-x3N吸收层(106),Al组分x3≤x4;Alx4Ga1-x4N组分渐变倍增层(107),Al组分x4由x3渐变到x5;p型Alx5Ga1-x5N层(108),Al组分的范围为x4≤x5≤x6;Alx6Ga1-x6N组分渐变层(109),Al组分x6由x5渐变到x7;n型Alx7Ga1-x7N 层(110),Al组分的范围为x6≤x7。
有益效果:本发明提供的是一种III-V族氮化物基紫外-可见双波段光电探测器。首先在衬底上外延生长紫外探测器结构,其中紫外本征吸收层采用Alx3Ga1-x3N材料,通过控制 Al组分可改变紫外探测波段,可适用于不同紫外波段的探测;在紫外探测器上外延生长可见光探测器,其中本征吸收层采用Iny1Ga1—y1N吸收层,波长调节范围可以从365nm(紫外)一直到1770nm(近红外)。该种探测器可根据实际情况,实现紫外波段探测,也可实现可见波段探测,并且能够实现紫外-可见双波段探测。其中可见光探测器采用p-i-n结构。由于紫外光信号在大气的传输中衰减剧烈,待探测的紫外光信号都是非常微弱的,因而要求信号接收端的光电探测器需具备光电增益。因此紫外波段探测器采用n-p-n型结构。利用入射光在基区所产生的光生空穴在基区累积,降低发射区和基区结的导带势垒,使发射区中的大量电子渡越基区流向集电区,形成比光生电流大得多的集电极电流,对产生的光生载流子具有电流放大作用,大大提高了探测器的灵敏度和探测效率。
附图说明
图1为本发明的一种紫外-可见双波段探测器结构示意图,包括由下至上设置的蓝宝石衬底101、低温AlN成核层102、高温AlN缓冲层103、Alx1Ga1-x1N缓冲层104、n型Alx2Ga1-x2N层105、i型Alx3Ga1-x3N吸收层106、Alx4Ga1-x4N倍增层107、p型Alx5Ga1-x5N层108、Alx6Ga1-x6N 组分渐变层109、n型Alx7Ga1-x7N层110、n型GaN层111、Iny1Ga1-y1N倍增层112、i型Iny2Ga1-y2N 吸收层113、p型Iny3Ga1-y3N层114、p型GaN层115、在p型GaN层115上设置的p型欧姆电极116、在n型AlGaN层105上设置的n型欧姆电极117、在n型GaN层111上设置n型欧姆电极118。i型Alx3Ga1-x3N吸收层106和Alx4Ga1-x4N倍增层107组成紫外吸收单元、 Iny1Ga1-y1N倍增层112和i型Iny2Ga1-y2N吸收层113组成可见吸收单元。
具体实施方式
下面结合附图对本发明作进一步的说明。本发明中:AlN即为氮化铝;AlGaN即为铝镓氮;GaN即为氮化镓;InGaN即为铟镓氮。
图1为本发明的一种紫外-可见双波段探测器结构示意图,包括由下至上设置的蓝宝石衬底101、低温AlN成核层102、高温AlN缓冲层103、n型Alx1Ga1-x1N缓冲层104、n型Alx2Ga1-x2N层105、i型Alx3Ga1-x3N吸收层106、Alx4Ga1-x4N倍增层107、p型Alx5Ga1-x5N层 108、Alx6Ga1-x6N组分渐变层109、n型Alx7Ga1-x7N层110、n型GaN层111、Iny1Ga1-y1N倍增层112、i型Iny2Ga1-y2N吸收层113、p型Iny3Ga1-y3N层114、p型GaN层115、在p型GaN 层115上设置的p型欧姆电极116、在n型AlGaN层105上设置的n型欧姆电极117、在n 型GaN层111上设置n型欧姆电极118
下面就本案的制备过程加以说明。
实施例1
在C面蓝宝石上采用MOCVD生长低温AlN成核层102,AlN成核层的厚度为20nm;
在低温AlN成核层102上生长高温AlN缓冲层103,高温AlN缓冲层厚度为200nm;
在高温AlN层103上生长一层n型Alx1Ga1-x1N缓冲层104,Alx1Ga1-x1N缓冲层的厚度为300nm,利用SiH4进行掺杂,掺杂浓度为4×1018cm-3,组分x1为0.2;
在Alx1Ga1-x1N缓冲层104上生长一层n型Alx2Ga1-x2N层105;n型Alx2Ga1-x2N层105 的厚度为500nm,利用SiH4进行掺杂,其中Si的掺杂浓度为2×1018cm-3,Al组分x2为0.2;
在n型Alx2Ga1-x2N层105上生长一层非掺杂i型Alx3Ga1-x3N吸收层106;非掺杂i 型Alx3Ga1-x3N吸收层106的厚度为300nm,组分x3为0.1;
在i型Alx3Ga1-x3N吸收层106上生长一层非掺杂i型Alx4Ga1-x4N组分渐变倍增层107;Alx4Ga1-x4N组分渐变倍增层107的厚度为100nm,组分x4为0.1-0.15;
在Alx4Ga1-x4N倍增层107上生长一层Alx5Ga1-x5N层108,厚度为150nm,使用二茂镁作p型Alx5Ga1-x5N层108的掺杂剂,掺杂浓度为1×1017cm-3,组分x5为0.15;
在p型Alx5Ga1-x5N层108上生长Alx6Ga1-x6N组分渐变层109;Alx6Ga1-x6N组分渐变层109的厚度为50nm,其中组分x6由0.55线性变化到0.2;
在Alx6Ga1-x6N组分渐变层109上生长n型Alx7Ga1-x7N层110,n型Alx7Ga1-x7N层110 的厚度为100-200nm,利用SiH4进行掺杂,Si掺杂浓度为1×1018cm-3,其中组分x7为0.2;
在n型Alx7Ga1-x7N层110上生长n型GaN层111,n型GaN层111的厚度为100nm,利用SiH4进行掺杂,Si掺杂浓度为1×1018cm-3
在n型GaN层111上生长一层Iny1Ga1-y1N倍增层112,Iny1Ga1-y1N倍增层112的厚度为50nm,其中组分y1为0.2;
在Iny1Ga1-y1N倍增层112上生长一层非掺杂i型InyGa1-y2N吸收层113,Iny2Ga1-y2N吸收层113的厚度为50nm,其中组分y2范围为0.2-0.5;
在i型Iny2Ga1-y2N吸收层113上生长一层P型Iny3Ga1-y3N层114;其中掺杂浓度为 5×1017cm-3,厚度为50nm,其中组分y3为0.1;
在P型Iny3Ga1-y3N层114上生长一层p型GaN层115;p型GaN层115的厚度为200nm,其中的掺杂浓度为5×1017cm-3
在p型GaN层115上旋涂一层光刻胶,利用掩模版进行光刻显影,暴露出需要刻蚀的GaN层115的部分,其余未显影的光刻胶层作为一次掩膜;
使用干法刻蚀技术来刻蚀暴露的外延层,并在刻蚀深度为n型GaN层111处形成台阶结构;
在n型GaN层111台阶结构上旋涂一层光刻胶,采用掩模版进行光刻显影,暴露出需要刻蚀的GaN层115的部分,其余未显影的光刻胶层作为掩膜;
使用干法刻蚀技术来刻蚀暴露的外延层,并在刻蚀深度为n型Alx1Ga1-x1N层105处形成台阶结构;
采用真空蒸镀技术将n型Ti/Al/Ti/Au金属层沉积在n型GaN层111和n型Alx1Ga1-x1N层105上,将P型Ni/Au金属层沉积在p型GaN层116上。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,故凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (9)

1.一种紫外-可见双波段光电探测器,其特征在于:包括由下至上设置的衬底(101)、低温AlN成核层(102)、高温AlN缓冲层(103)、n型Alx1Ga1-x1N缓冲层(104)、n型Alx2Ga1-x2N层(105)、i型Alx3Ga1-x3N吸收层(106)、Alx4Ga1-x4N组分渐变倍增层(107)、p型Alx5Ga1-x5N层(108)、Alx6Ga1-x6N组分渐变层(109)、n型Alx7Ga1-x7N层(110)、n型GaN层(111)、Iny1Ga1-y1N倍增层(112)、i型Iny2Ga1-y2N吸收层(113)、p型Iny3Ga1-y3N层(114)、p型GaN层(115)、在p型GaN层(115)上设置的p型欧姆电极(116)、在n型AlGaN层(105)上设置的n型欧姆电极(117)、在n型GaN层(111)上设置n型欧姆电极(118);其中x1为n型Alx1Ga1-x1N缓冲层(104)中Al组分,x2为n型Alx2Ga1-x2N层(105)中Al组分,x3为i型Alx3Ga1-x3N吸收层(106)中Al组分,x4为Alx4Ga1-x4N组分渐变倍增层(107)中Al组分,x5为p型Alx5Ga1-x5N层(108)中Al组分,x6为Alx6Ga1-x6N组分渐变层(109)中Al组分,x7为n型Alx7Ga1-x7N层(110)中Al组分,y1为Iny1Ga1- y1N倍增层(112)中In组分,y2为i型Iny2Ga1-y2N吸收层(113)中In组分,y3为p型Iny3Ga1-y3N层(114)中In组分。
2.根据权利要求1所述的一种紫外-可见双波段光电探测器,其特征在于:所述衬底为蓝宝石衬底(101),且为双面抛光的C面晶体。
3.根据权利要求1所述的一种紫外-可见双波段光电探测器,其特征在于:所述低温AlN成核层(102)的厚度为10-20nm,高温AlN层(103)的厚度为100-300nm,n型AlGaN缓冲层(104)的厚度为50-500nm,n型AlGaN层(105)的厚度为200-500nm,非掺杂i型Alx3Ga1-x3N吸收层(106)的厚度为100~300nm,非掺杂Alx4Ga1-x4N倍增层(107)的厚度为100-250nm,p型Alx5Ga1-x5N层(108)的厚度为50-500nm,Alx6Ga1-x6N组分渐变层(109)的厚度为50-500nm。
4.根据权利要求1所述的一种紫外-可见双波段光电探测器,其特征在于:n型Alx7Ga1- x7N层(110)的厚度为50-200nm,n型GaN层(111)的厚度为50-200nm,非掺杂Iny1Ga1-y1N倍增层(112)的厚度为50~250nm,i型Iny2Ga1-y2N吸收层(113)厚度为50-100nm,p型InGaN层(114)的厚度为50-100nm,p型GaN层(115)的厚度为50-500nm。
5.根据权利要求1所述的一种紫外-可见双波段光电探测器,其特征在于:所述n型AlGaN缓冲层(104)的电子浓度为1×1018-4×1018cm-3,n型AlGaN层(105)的电子浓度为5×1017-4×1018cm-3,非掺杂i型Alx3Ga1-x3N吸收层(106)的电子浓度为1×1016-1×1017cm-3,非掺杂Alx4Ga1-x4N组分渐变倍增层(107)的电子浓度为1×1016-1×1017cm-3,p型Alx5Ga1-x5N层(108)的空穴浓度为1×1017-1×1018cm-3,Alx6Ga1-x6N组分渐变层(109)的电子浓度为1×1016-1×1017cm-3,n型Alx7Ga1-x7N层(110)的电子浓度为1×1018-4×1018cm-3
6.根据权利要求1所述的一种紫外-可见双波段光电探测器,其特征在于:n型GaN层(111)的电子浓度为1×1018-4×1018cm-3,非掺杂Iny1Ga1-y1N倍增层(112)的电子浓度为5×1018-8×1018cm-3,i型Iny2Ga1-y2N吸收层的电子浓度为1×1016-1×1017cm-3,p型InGaN层(114)的电子浓度为5×1017-4×1018cm-3,p型GaN层(115)的电子浓度为5×1017-1×1018cm-3
7.根据权利要求1所述的一种紫外-可见双波段光电探测器,其特征在于:所述Alx1Ga1-x1N缓冲层(104),Al组分x1的取值范围为0.1-1;n型Alx2Ga1-x2N层(105),Al组分x2≤x1;i型Alx3Ga1-x3N吸收层(106),Al组分x3≤x2;Alx4Ga1-x4N组分渐变倍增层(107),Al组分x4由x3渐变到x5;p型Alx5Ga1-x5N层(108),Al组分的范围为x4≤x5≤x6;Alx6Ga1-x6N组分渐变层(109),Al组分x6由x5渐变到x7;n型Alx7Ga1-x7N层(110),Al组分的范围为x6≤x7。
8.根据权利要求1所述的一种紫外-可见双波段光电探测器,其特征在于:所述Iny1Ga1-y1N倍增层(112),In组分y1范围为0.1-1,i型Iny2Ga1-y2N吸收层(113),In组分y2>y1,p型Iny3Ga1-y3N层(114),In组分y3<y2。
9.根据权利要求1所述的一种紫外-可见双波段光电探测器,其特征在于:所述p型欧姆电极(116)和n型欧姆电极(117,118)的材料为Ni,Al,Au或Ti中的任何一种金属或由以上多种金属构成的合金材料。
CN201910635101.9A 2019-07-15 2019-07-15 一种紫外-可见双波段光电探测器 Active CN110459627B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910635101.9A CN110459627B (zh) 2019-07-15 2019-07-15 一种紫外-可见双波段光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910635101.9A CN110459627B (zh) 2019-07-15 2019-07-15 一种紫外-可见双波段光电探测器

Publications (2)

Publication Number Publication Date
CN110459627A CN110459627A (zh) 2019-11-15
CN110459627B true CN110459627B (zh) 2021-05-14

Family

ID=68482801

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910635101.9A Active CN110459627B (zh) 2019-07-15 2019-07-15 一种紫外-可见双波段光电探测器

Country Status (1)

Country Link
CN (1) CN110459627B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114373814A (zh) * 2021-12-14 2022-04-19 华南理工大学 一种光电探测器芯片及其制备方法与应用
CN114373813A (zh) * 2021-12-14 2022-04-19 华南理工大学 一种用于可见光通信的芯片及其制备方法与应用
CN115036378B (zh) * 2022-04-28 2023-11-28 南昌大学 AlInGaN基单pn结多色探测器及信号检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101777600A (zh) * 2010-01-20 2010-07-14 中国科学院半导体研究所 氮化镓基紫外-红外双色探测器及制作方法
CN101894831A (zh) * 2009-05-20 2010-11-24 中国科学院半导体研究所 紫外-红外双波段探测器及其制作方法
CN104362213A (zh) * 2014-09-11 2015-02-18 东南大学 一种铝镓氮基日盲紫外探测器及其制备方法
CN107195709A (zh) * 2017-05-19 2017-09-22 中山大学 一种三族氮化物基异质结光电晶体管
CN108470793A (zh) * 2018-02-26 2018-08-31 厦门大学 紫外-红外双波段集成p-i-n型光电探测器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110284756A1 (en) * 2008-07-21 2011-11-24 United States of America as repersented by the Administrator of the National Aeronautics and Spac Detector for dual band ultraviolet detection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894831A (zh) * 2009-05-20 2010-11-24 中国科学院半导体研究所 紫外-红外双波段探测器及其制作方法
CN101777600A (zh) * 2010-01-20 2010-07-14 中国科学院半导体研究所 氮化镓基紫外-红外双色探测器及制作方法
CN104362213A (zh) * 2014-09-11 2015-02-18 东南大学 一种铝镓氮基日盲紫外探测器及其制备方法
CN107195709A (zh) * 2017-05-19 2017-09-22 中山大学 一种三族氮化物基异质结光电晶体管
CN108470793A (zh) * 2018-02-26 2018-08-31 厦门大学 紫外-红外双波段集成p-i-n型光电探测器

Also Published As

Publication number Publication date
CN110459627A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
US10629766B2 (en) Method for manufacturing ultraviolet photodetector based on Ga2O3 material
CN106847933B (zh) 单片集成紫外-红外双色雪崩光电二极管及其制备方法
CN110459627B (zh) 一种紫外-可见双波段光电探测器
CN107863413B (zh) 一种AlGaN基日盲紫外雪崩异质结光电晶体管探测器及其制备方法
CN106960887B (zh) 一种铝镓氮基日盲紫外探测器及其制备方法
CN108305911B (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
CN108807588B (zh) 单片式n-i-p-i-n型宽光谱光电探测器
CN109494275B (zh) 一种AlGaN基日盲紫外光电晶体管探测器及其制作方法
CN111739960B (zh) 一种增益型异质结紫外光电探测器
CN100365829C (zh) 氮化镓基紫外-红外双色集成探测器
CN107452820B (zh) 一种同质界面二维δ掺杂型PIN紫外探测器
CN109686809B (zh) 一种iii族氮化物半导体可见光雪崩光电探测器及制备方法
CN104282793A (zh) 一种三台面p-π-n结构III族氮化物半导体雪崩光电探测器及其制备方法
CN102244135A (zh) 一种pin倒置结构紫外雪崩光电探测器及其制备方法
CN109285914B (zh) 一种AlGaN基紫外异质结光电晶体管探测器及其制备方法
CN109935655B (zh) 一种AlGaN/SiC双色紫外探测器
CN113471326B (zh) 一种ⅲ族氮化物异质结光电探测器
CN105742399A (zh) 一种三族氮化物基双异质结光电晶体管
JP2017015507A (ja) 赤外線センサ素子及びその製造方法
CN107195709B (zh) 一种三族氮化物基异质结光电晶体管
CN105097964A (zh) 一种有源区高斯掺杂型pπn紫外探测器
CN102931272A (zh) 一种具有增益的紫外探测器结构及其制备方法
CN110676272A (zh) 一种半导体紫外光电探测器
US11495707B2 (en) AlGaN unipolar carrier solar-blind ultraviolet detector and manufacturing method thereof
CN107393983B (zh) 含极化调控层的氮化物量子阱红外探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant