CN113471326B - 一种ⅲ族氮化物异质结光电探测器 - Google Patents

一种ⅲ族氮化物异质结光电探测器 Download PDF

Info

Publication number
CN113471326B
CN113471326B CN202110662245.0A CN202110662245A CN113471326B CN 113471326 B CN113471326 B CN 113471326B CN 202110662245 A CN202110662245 A CN 202110662245A CN 113471326 B CN113471326 B CN 113471326B
Authority
CN
China
Prior art keywords
layer
barrier layer
detector
contact layer
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110662245.0A
Other languages
English (en)
Other versions
CN113471326A (zh
Inventor
江灏
吕泽升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN202110662245.0A priority Critical patent/CN113471326B/zh
Publication of CN113471326A publication Critical patent/CN113471326A/zh
Application granted granted Critical
Publication of CN113471326B publication Critical patent/CN113471326B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及光电探测器的技术领域,具体涉及一种Ⅲ族氮化物异质结光电探测器,包括探测器以及制备于探测器上的器件,所述探测器所用材料为Ⅲ族氮化物材料,所述器件包括从下到上依次设置的衬底层、下接触层、下势垒层、上势垒层和上接触层;所述上接触层和下接触层上分别设有上接触电极和下接触电极;所述上势垒层和下势垒层为异质结构,且所述上势垒层和下势垒层的界面上形成负极化电荷。本发明主要利用Ⅲ族氮化物异质界面的极化电荷来产生器件势垒,从而获得低暗电流、高光增益、快速响应的效果。本发明的光电探测器对应的探测波段可覆盖Ⅲ族氮化物材料禁带宽度所对应的深紫外到近红外波段,具有波长选择范围广、应用范围广的有益效果。

Description

一种Ⅲ族氮化物异质结光电探测器
技术领域
本发明涉及光电探测器的技术领域,更具体地,涉及一种Ⅲ族氮化物异质结光电探测器。
背景技术
光电探测在紫外波段、可见光波段和红外波段都有着广泛的应用需求。例如,紫外光电探测器可以应用于火焰探测、环境监控、太空光通信、导弹预警系统、量子通信等;可见光探测可应用于可见光通信、辅助驾驶、可将光成像、生物荧光以及各种实验测试研究之中;近红外光电探测器更是目前光通信系统中不可或缺的部分。对于上述的光电探测领域,探测器的响应度、响应速度和波长选择性都是极为重要的性能指标。有内部增益、高响应度的半导体探测器可以在低工作偏压、无外加信号放大器的情况下,实现对微弱信号,甚至单光子信号的灵敏探测。探测器响应速度,则决定了通信中信号传输的速率,对于通信等领域的重要性更是不言而喻。而探测器的波长选择性可以让探测器在无需外加滤光的条件下实现对特定波长的灵敏探测。
但对于传统和常用的Si基探测器,由于Si材料的间接带隙和禁带宽度限制,量子效率受到严重制约且难以应对各种响应波长选择性的需求。而Ⅲ族氮化物材料,常见包括AlN、GaN、InN以及它们的多元合金,由于可调直接带隙且带隙对应光子能量覆盖深紫外(~200nm)到近红外(~2067nm)等优点,非常适用于紫外、可见光以及近红外光电探测器件的制备。
然而目前常用的Ⅲ族氮化物光电探测器仍存在很多不足。目前常用的,可实现高内部增益的Ⅲ族氮化物光电探测器器件结构主要有雪崩光电二极管(APD)和异质结光电晶体管(HPT)。但前者对于材料的缺陷敏感,在目前的材料缺陷密度下,器件成品率和稳定性尚有待提高,且需要较高的工作偏压。后者则受限于缺少合适的p型材料,常用的Ⅲ族氮化物p型所采用的Mg掺杂导致的陷阱会严重影响器件的响应速度。不仅于此,其他Ⅲ族氮化物器件,甚至其他材料的器件中,较高浓度的掺杂都会导致晶格质量劣化,器件性能降低。
发明内容
本发明旨在克服上述现有技术的至少一种缺陷(不足),提供一种Ⅲ族氮化物异质结光电探测器,具有高响应度、高响应速度,且可实现大范围内特定波长选择性的有益效果。
为解决上述的技术问题,本发明采取的技术方案是:
一种Ⅲ族氮化物异质结光电探测器,包括探测器以及制备于探测器上的器件,所述探测器所用材料为Ⅲ族氮化物材料,所述器件包括从下到上依次设置的衬底层、下接触层、下势垒层、上势垒层和上接触层;
所述上接触层和下接触层上设有上接触电极和下接触电极;
所述上势垒层和下势垒层为异质结构,且所述上势垒层和下势垒层的界面上形成负极化电荷。
优选地,所述探测器所用材料包括但不限于AlN、GaN、InN以及这几种二元化合物之间的多元合金。
优选地,所述器件制备于Ⅲ族氮化物材料的极性面或半极性面上,包括但不限于c面,r面。
优选地,所述上势垒层和下势垒层的界面通过极化效应形成负极化电荷。
本技术方案的器件结构中,上下势垒层的界面处会由于极化效应产生负极化电荷,对低掺杂浓度或本征导电的上、下势垒层形成耗尽,产生上、下两个连接在一起的内建势垒区域,即势垒结。在外加电压作用下,上、下势垒结中总有一个势垒结处于反偏状态,势垒高度变高,阻碍电子的流通,有利于探测器暗电流的降低;而在响应波段光照下,反偏势垒结中的光生空穴会在电场下漂移到上、下势垒层的界面形成累积,造成界面势垒的降低,导致正偏势垒结电子注入被反向势垒结收集,形成极高的光电流增益。而且,由于两势垒之间直接连接没有中性区域,正偏势垒结的注入电子将被快速收集,因此,本技术方案的器件可在保证高响应度的同时实现快速响应。因此,本技术方案主要利用Ⅲ族氮化物异质界面的极化电荷来产生器件势垒,从而获得低暗电流、高光增益、快速响应的效果。
此外,本技术方案的光电探测器对应的探测波段可覆盖Ⅲ族氮化物材料禁带宽度所对应的深紫外到近红外波段,利用Ⅲ族氮化物的特点,本技术方案的器件可以采用合适的Ⅲ族氮化物材料,在深紫外到近红外的宽波段范围内实现对特定波长的高灵敏度、高速度、选择性探测,因此具有波长选择范围广、应用范围广的有益效果。
更进一步地,现有技术中常见的半导体探测器的内建势垒来源于pn结或者肖特基结,而本技术方案中,主要用异质结界面的负极化电荷来耗尽界面附近的半导体材料,形成内建势垒,从而避免了p型掺杂所带来的响应速度降低、晶格质量劣化或器件性能降低等问题,同时还实现了远高于肖特基势垒的内建电势。
其中,上势垒层和下势垒层为异质材料,从而可以在界面形成负极化电荷。例如,采用(0001)晶面制备时,上/下势垒层可以采用的材料包括但不限于AlxGa1-xN/AlyGa1-yN,InyGa1-yN/InxGa1-xN,InGaN/AlGaN等(其中0≤x<y≤1)。
此外,本技术方案还包括其他能够由于极化效应在界面产生负极化电荷的异质结构,该类异质结构制备于Ⅲ族氮化物材料的极性面或半极性面上。
进一步地,所述器件的制备方式包括但不限于金属有机化学气相沉积、分子束外延、氢化物气相外延、原子层沉积或溅射。
进一步地,所述Ⅲ族氮化物材料的晶格结构为纤锌矿结构,具有自发和压电极化效应。更符合本方案中光电探测器的制备。
进一步地,所述衬底层所述衬底层为结构制备或支撑所需的衬底材料或缓冲层,包括蓝宝石、硅、氮化镓、碳化硅、氧化锌、玻璃,和/或制备在这些衬底材料上的缓冲层。
进一步地,所述下接触层和上接触层的导电类型为n型导电。
优选地,下接触层和上接触层为n型半导体材料,n型导电的来源方式包括但不限于Si掺杂、离子注入或非故意掺杂。
进一步优选地,下接触层或上接触层为重掺杂n型层,掺杂源可以是SiH4
进一步地,所述下接触层和上接触层的电子浓度大于5×1016cm-3
进一步优选地,下接触层和上接触层的电子浓度为3×1018cm-3
具体地,若下接触层和上接触层电子浓度偏低,则将导致电子扩散电流密度受限,光电流增益降低,因此,本技术方案中,下接触层和上接触层的电子浓度优选为大于5×1016cm-3
进一步地,所述下势垒层和上势垒层的导电类型为本征型或弱n型;所述下势垒层和上势垒层的电子浓度低于5×1017cm-3
优选地,下势垒层和上势垒层为本征或非故意掺杂或低掺杂半导体材料,以载流子浓度接近本征为优选。由于上、下势垒层电子浓度过高,会导致界面势垒降低,以及探测器暗电流升高;因此,本技术方案中,下势垒层和上势垒层的电子浓度低于5×1017cm-3
优选地,下势垒层和上势垒层的电子浓度接近本征导电。
进一步优选地,所述上接触电极和下接触电极为欧姆电极,若非欧姆接触电极,上接触电极和下接触电极与器件的接触势垒应低于0.5eV。
其中,上接触电极和下接触电极为欧姆电极时,电极与器件的接触势垒为0,即不存在势垒。
进一步优选地,下接触电极和上接触电极可以是Ti/Al/Ni/Au。
进一步地,所述上接触层与上势垒层、下接触层与下势垒层,为同质材料;当所述上接触层与上势垒层,和/或,下接触层与下势垒层,为异质材料时,上接触层与上势垒层之间,和/或,异质的下接触层与下势垒层之间,插入有过渡层,过渡层的材料包括禁带宽度渐变材料、多异质结。
优选地,上接触层与上势垒层、下接触层与下势垒层,为同质材料。若选用异质材料,则由异质材料形成的异质结带阶将可能会阻碍电子的输运,造成光电流增益降低。
进一步地,若上接触层与上势垒层,和/或,下接触层与下势垒层,为异质材料,则可在异质的上接触层与上势垒层,或异质的下接触层与下势垒层之间,插入过渡层。通过插入过渡层,可以改善异质材料导致的光电流增益降低问题。过渡层的设置可以晶格的应变状态,同时又消除组分差异所导致的带阶对电子输运的阻碍。
具体地,过渡层的材料包括禁带宽度渐变材料、多异质结。
其中,所述禁带宽度渐变材料是指材料的禁带宽度连续变化,例如在Ⅲ族氮化物的多元合金中可以通过合金成分的连续变化来实现。
本技术方案的光电探测器,工作时上接触电极与下接触电极之间的电压,既可以是正压,也可以是负压。优选地,应用于不同的工作偏压状态,上接触层和下接触层的掺杂浓度不同。
进一步优选地,本技术方案的光电探测器,应用于正压工作时,下接触层的掺杂浓度高于上接触层的掺杂浓度;应用于负压工作时,上接触层掺杂浓度高于下接触层的掺杂浓度。
与现有技术相比,本发明的有益效果为:
(1)本发明利用上、下势垒层的界面极化电荷来耗尽此界面附近的半导体材料,形成两个势垒高度较高的反向连接的势垒,即形成势垒结,以在无光照或非响应波段光照下,阻碍器件中载流子的流动,获得低暗电流,从而具备探测微弱信号能力的有益效果。
(2)而在响应波段的光照下,上、下势垒层产生的光生空穴会在上、下势垒层界面累积,降低界面势垒高度,以获得有内部增益的极高光电流,从而产生很高的光暗拒绝比,以实现在低压常温下,对微弱光信号进行高增益灵敏探测。因此,本发明利用Ⅲ族氮化物材料异质结界面的极化电荷形成空穴势阱,来积累光生空穴,降低电子势垒,从而产生高内部增益的有益效果。
(3)本技术方案的探测器采用Ⅲ族氮化物材料,探测波长可以在200~2067nm的大范围内连续可调,因此,可以实现对深紫外到近红外范围中任意波段的高效率本征探测,且还可实现对特定波长的高效率选择性探测。
(4)本发明利用极化电荷形成的器件势垒中不含中性区,具有能够让电子快速渡越的有益效果。
(5)本发明由于避免了p型掺杂和相关缺陷的引入,从而降低了器件结构中包括空穴陷阱等缺陷的密度,进一步提高了器件的响应速度。
附图说明
图1为本发明实施例1的结构图。
图2为本发明实施例5的结构图。
图3为本发明实施例6的结构图。
图4为本发明实施例8的结构图。
图5为本发明实施例9中光、暗电流测试结果图。
图6为本发明实施例9中光谱响应测试的结果图。
具体实施方式
本发明附图仅用于示例性说明,不能理解为对本发明的限制。为了更好说明以下实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
实施例1
如图1所示,本实施例公开了一种Ⅲ族氮化物异质结光电探测器,更具体地,公开了一种GaN/Al0.2GaN异质结光电探测器,包括从下到上依次设置的衬底层201、下接触层202、下势垒层203、上势垒层204和上接触层205,其中,上接触层205和下接触层202上分别设有上接触电极207和下接触电极206,且上接触电极207和下接触电极206分别设于上接触层205和下接触层202上表面的左右两侧。本实施例中探测器结构采用金属有机物化学气相沉积法制备。
进一步地,衬底层201采用的衬底材料为蓝宝石上的GaN,晶面取向为(0001)晶向,GaN晶格类型为纤锌矿结构,蓝宝石上GaN厚度约为3μm。
进一步地,下接触层202为重掺杂n型GaN,掺杂源是SiH4,电子浓度为3×1018cm-3,厚度为300nm;
下势垒层203为非故意掺杂AlGaN,Al组分为20%,厚度为60nm;
上势垒层204为非故意掺杂GaN,厚度为80nm;
上接触层205为重掺杂n型GaN,掺杂源是SiH4,掺杂浓度为3×1018cm-3,厚度为30nm;
下接触电极206和上接触电极207都为Ti/Al/Ni/Au,厚度为15/80/20/60nm。
优选地,下接触层202与下势垒层203由于组分不一致,下接触层202与下势垒层203之间设有过渡层208,过渡层208为渐变组分AlGaN,Al组分从0渐变至20%,其作用是用于下接触层202与下势垒层203组分不一致的过渡层,既保持了晶格的应变状态,又消除了202与203组分差异所导致的带阶对电子输运的阻碍。
其中,当下接触电极206和上接触电极207之间为正压时,器件主要对GaN禁带宽度所对应的362nm以及更短波长的紫外光产生响应;当下接触电极206和上接触电极207之间为负压时,器件主要对Al0.2GaN禁带宽度所对应的~326nm以及更短波长的紫外光产生响应。
实施例2
本实施例与实施例1的不同之处在于,衬底层所用衬底材料为自支撑GaN衬底。
实施例3
本实施例与实施例1的不同之处在于,获得器件结构的材料所用方法为分子束外延。
实施例4
本实施例与实施例1不同之处在于,获得器件结构的材料所用方法为磁控溅射。
实施例5
如图2所示,本实施例与实施例1不同之处在于:本实施例公开了一种Al0.2GaN/GaN异质结光电探测器,主要包括以下特征:
衬底层301采用的衬底材料为自支撑的GaN单晶,晶面取向为(000-1)晶向,GaN晶格类型为纤锌矿结构;
下接触层302为重掺杂n型GaN,掺杂源可以是SiH4,电子浓度为3×1018cm-3,厚度为300nm;
下势垒层303为非故意掺杂GaN,厚度为80nm;
上势垒层304为非故意掺杂AlGaN,Al组分为20%,厚度为60nm;
上接触层305为重掺杂n型AlGaN,Al组分为20%,掺杂源是SiH4,掺杂浓度为3×1018cm-3,厚度为30nm;
下接触电极306和上接触电极307都为Ti/Al/Ni/Au,厚度为15/80/20/60nm;
更具体地,当上、下接触电极之间为负压时,器件主要对GaN禁带宽度所对应的362nm以及更短波长的紫外光产生响应;当上、下接触电极之间为正压时,器件主要对Al0.2GaN禁带宽度所对应的~326nm以及更短波长的紫外光产生响应。
实施例6
如图3所示,本实施例与实施例1不同之处在于:本实施例公开了一种InGaN/GaN异质结光电探测器,主要包含以下特征:
衬底层401采用的衬底材料为蓝宝石上GaN,晶面取向为(0001)晶向,GaN晶格类型为纤锌矿结构;
下接触层402为重掺杂n型GaN,掺杂源是SiH4,电子浓度为2×1018cm-3,厚度为300nm;
下势垒层403为非故意掺杂GaN,厚度为120nm;
上势垒层404为非故意掺杂InGaN,In组分为15%,厚度为120nm;
上接触层405为重掺杂n型GaN,掺杂源可以是SiH4,掺杂浓度为2×1018cm-3,厚度为30nm;
下接触电极406和上接触电极407都为Ti/Al/Ni/Au,厚度为15/80/20/60nm;
更具体地,当上、下接触电极之间为负压时,器件主要对GaN禁带宽度所对应的362nm以及更短波长的紫外光产生响应;当上、下接触电极之间为正压时,器件主要对In0.15GaN禁带宽度所对应的440nm以及更短波长的可见光产生响应。
实施例7
本实施例与实施例6不同之处在于:下势垒层403为Al组分10%的AlGaN。
实施例8
如图4所示,本实施例与实施例1的不同之处在于,本实施例公开了一种Al0.05GaN/Al0.2GaN异质结光电探测器,主要包括以下特征:
衬底层501采用的衬底材料为蓝宝石上的GaN,晶面取向为(0001)晶向,GaN晶格类型为纤锌矿结构,蓝宝石上GaN厚度约为3μm。
下接触层502为重掺杂n型AlGaN,Al组分为5%,掺杂源是SiH4,电子浓度为3×1018cm-3,厚度为300nm;
下势垒层503为非故意掺杂AlGaN,Al组分为20%,厚度为60nm;
上势垒层504为非故意掺杂AlGaN,Al组分为5%,厚度为80nm;
上接触层505为重掺杂n型AlGaN,Al组分为5%,掺杂源是SiH4,掺杂浓度为3×1018cm-3,厚度为30nm;
过渡层508为渐变组分AlGaN,Al组分从5%渐变至20%,其作用是用于作为下接触层502与下势垒层503组分不一致的过渡层;
下接触电极506和上接触电极507都为Ti/Al/Ni/Au,厚度为15/80/20/60nm。
实施例9
本实施例对实施例6制备获得的InGaN/GaN异质结探测器进行光暗电流测试和光谱响应测试。
其中,InGaN/GaN异质结探测器的器件直径为200μm,暗电流测试结果如图5所示,从图5中可以看出,在±0.5V附近,暗电流低至10-14A附近,而在0.2mW/cm-2附近的光照下,光电流接近10-6A,光暗电流比高达108。说明了本实施例的探测器具备探测微弱信号的能力。
光谱响应测试的结果如图6所示,从图6中可知,光谱在InGaN带边附近(约450nm)表现出锐利的带边响应,在400nm处3V偏压下响应度高达2000A/W。此外,该探测器在低于10-4mW/cm-2的弱光条件下可以实现对可见光的高灵敏度探测,对应的,在3V偏压下,入射光功率10-4mW/cm-2时响应度高达10336A/W。此外,根据响应速度测试,在50Ω外接负载时,探测器上升时间为2.2ns,在获得高响应度的同时实现了优秀的高速响应特性。
显然,本发明的上述实施例仅仅是为清楚地说明本发明技术方案所作的举例,而并非是对本发明的具体实施方式的限定。凡在本发明权利要求书的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (6)

1.一种Ⅲ族氮化物异质结光电探测器,其特征在于,包括探测器以及制备于探测器上的器件,所述探测器所用材料为Ⅲ族氮化物材料,所述器件包括从下到上依次设置的衬底层、下接触层、下势垒层、上势垒层和上接触层;
所述上接触层和下接触层上分别设有上接触电极和下接触电极;
所述上势垒层和下势垒层为异质结构,且所述上势垒层和下势垒层的界面上形成负极化电荷;
所述下接触层和上接触层的电子浓度大于5×1016cm-3
所述下势垒层和上势垒层的导电类型为本征型或弱n型;
所述下势垒层和上势垒层的电子浓度低于5×1017cm-3
所述上接触电极和下接触电极为欧姆电极,或上接触电极和下接触电极与器件的接触势垒低于0.5eV。
2.根据权利要求1所述的一种Ⅲ族氮化物异质结光电探测器,其特征在于,所述Ⅲ族氮化物材料的晶格结构为纤锌矿结构。
3.根据权利要求1所述的一种Ⅲ族氮化物异质结光电探测器,其特征在于,所述衬底层为结构制备或支撑所需的衬底材料或缓冲层,包括蓝宝石、硅、氮化镓、碳化硅、氧化锌、玻璃,和/或制备在这些衬底材料上的缓冲层。
4.根据权利要求1所述的一种Ⅲ族氮化物异质结光电探测器,其特征在于,所述下接触层和上接触层的导电类型为n型导电。
5.根据权利要求1所述的一种Ⅲ族氮化物异质结光电探测器,其特征在于,所述上接触层与上势垒层、下接触层与下势垒层,为同质材料;当所述上接触层与上势垒层,和/或,下接触层与下势垒层,为异质材料时,上接触层与上势垒层之间,和/或,异质的下接触层与下势垒层之间,插入有过渡层。
6.根据权利要求5所述的一种Ⅲ族氮化物异质结光电探测器,其特征在于,过渡层的材料包括禁带宽度渐变材料、多异质结。
CN202110662245.0A 2021-06-15 2021-06-15 一种ⅲ族氮化物异质结光电探测器 Active CN113471326B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110662245.0A CN113471326B (zh) 2021-06-15 2021-06-15 一种ⅲ族氮化物异质结光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110662245.0A CN113471326B (zh) 2021-06-15 2021-06-15 一种ⅲ族氮化物异质结光电探测器

Publications (2)

Publication Number Publication Date
CN113471326A CN113471326A (zh) 2021-10-01
CN113471326B true CN113471326B (zh) 2023-04-07

Family

ID=77869904

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110662245.0A Active CN113471326B (zh) 2021-06-15 2021-06-15 一种ⅲ族氮化物异质结光电探测器

Country Status (1)

Country Link
CN (1) CN113471326B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114899269A (zh) * 2021-12-01 2022-08-12 郑厚植 高增益光电探测器和高增益光电探测方法
CN114373814A (zh) * 2021-12-14 2022-04-19 华南理工大学 一种光电探测器芯片及其制备方法与应用
CN115084293B (zh) * 2022-05-11 2024-07-12 中山大学 一种异质结光电探测器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE1150478A1 (sv) * 2011-05-23 2012-03-06 Acreo Ab Struktur för temperatursensorer och infraröddetektorer i form av termiska detektorer.
CN103762262B (zh) * 2014-01-09 2016-07-06 北京大学 一种氮化物宽势垒多量子阱红外探测器及其制备方法
CN107393983B (zh) * 2017-08-30 2023-05-02 中国工程物理研究院电子工程研究所 含极化调控层的氮化物量子阱红外探测器及其制备方法
US11404591B2 (en) * 2018-07-27 2022-08-02 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Methods and apparatuses for improved barrier and contact layers in infrared detectors
CN109686809B (zh) * 2018-12-25 2020-09-04 中山大学 一种iii族氮化物半导体可见光雪崩光电探测器及制备方法
CN110797424B (zh) * 2019-11-15 2021-05-25 南京大学 一种具有暗电流抑制结构的锑化物超晶格甚长波红外探测器

Also Published As

Publication number Publication date
CN113471326A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
CN113471326B (zh) 一种ⅲ族氮化物异质结光电探测器
CN107863413B (zh) 一种AlGaN基日盲紫外雪崩异质结光电晶体管探测器及其制备方法
CN108305911B (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
KR101027225B1 (ko) 자외선 수광 소자
US6956251B2 (en) On-p-GaAs substrate Zn1−xMgxSySe1−y pin photodiode and on-p-GaAs substrate Zn1−xMgxSySe1−y avalanche photodiode
CN109686809B (zh) 一种iii族氮化物半导体可见光雪崩光电探测器及制备方法
CN111739960B (zh) 一种增益型异质结紫外光电探测器
US8324659B2 (en) InGaAsSbN photodiode arrays
CN105655437A (zh) 一种紫外雪崩光电探测器
CN109285914B (zh) 一种AlGaN基紫外异质结光电晶体管探测器及其制备方法
CN107452820B (zh) 一种同质界面二维δ掺杂型PIN紫外探测器
JP4635187B2 (ja) 半導体光検出器
Vigue et al. Evaluation of the potential of ZnSe and Zn (Mg) BeSe compounds for ultraviolet photodetection
US8143648B1 (en) Unipolar tunneling photodetector
US20190013431A1 (en) Photodetector
CN210349846U (zh) 一种吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
CN114678439B (zh) 一种对称叉指结构的2deg紫外探测器及制备方法
Pham et al. Filter-free AlGaN photodiode with high quantum efficiency for partial discharge detection
US20150162471A1 (en) Phototransistor device
WO2022261829A1 (zh) 一种ⅲ族氮化物异质结光电探测器
Razeghi et al. AlGaN ultraviolet detectors
CN115084293B (zh) 一种异质结光电探测器
Lee et al. InGaN metal-semiconductor-metal photodetectors with aluminum nitride cap layers
CN111341841B (zh) 基于Ga2O3/TiO2复合悬浮栅的异质结场效应管及其制备方法和紫外探测器件
Yang AlGaN UV Photodetectors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant