CN110797424B - 一种具有暗电流抑制结构的锑化物超晶格甚长波红外探测器 - Google Patents

一种具有暗电流抑制结构的锑化物超晶格甚长波红外探测器 Download PDF

Info

Publication number
CN110797424B
CN110797424B CN201911117680.4A CN201911117680A CN110797424B CN 110797424 B CN110797424 B CN 110797424B CN 201911117680 A CN201911117680 A CN 201911117680A CN 110797424 B CN110797424 B CN 110797424B
Authority
CN
China
Prior art keywords
region
long wave
superlattice
layer
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911117680.4A
Other languages
English (en)
Other versions
CN110797424A (zh
Inventor
岳壮豪
施毅
牛智川
王国伟
徐应强
蒋洞微
常发冉
李勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201911117680.4A priority Critical patent/CN110797424B/zh
Publication of CN110797424A publication Critical patent/CN110797424A/zh
Application granted granted Critical
Publication of CN110797424B publication Critical patent/CN110797424B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • H01L31/035263Doping superlattices, e.g. nipi superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • H01L31/1035Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type the devices comprising active layers formed only by AIIIBV compounds

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种具有暗电流抑制结构的锑化物超晶格甚长波红外探测器,以抑制器件暗电流并提高光生载流子输运。包括以下结构:衬底;缓冲层,外延于所述衬底之上;中长波波段接触层,称为P区,外延于所述缓冲层之上;甚长波波段吸收层,称为π区,外延于所述中长波波段接触层P区之上;中长波波段势垒层,称为M区,外延于所述甚长波波段吸收层π区之上;中长波波段接触层,称为N区,外延于所述中长波波段势垒层M区之上;盖层外延于所述中长波波段接触层N区之上;调整控制各个区域的超晶格结构,吸收层与势垒层的掺杂方式及厚度以设计所述红外探测器器件的能带结构。该结构基于PπMN结构,提出了全新势垒结构设计涉及超晶格、厚度和掺杂。

Description

一种具有暗电流抑制结构的锑化物超晶格甚长波红外探测器
技术领域
本发明属于半导体器件技术领域,具体涉及一种超晶格甚长波红外探测器的结构,以抑制器件暗电流并提高光生载流子输运。尤其是一种基于锑化物超晶格的甚长波红外探测器的能带结构。该结构基于PπMN结构,提出了全新的势垒结构设计,涉及超晶格结构,厚度和掺杂等。
背景技术
高于绝对零度的物体,总是不断地在向外界辐射电磁波,波长在0.76-1000μm范围内的称作红外辐射。物体因为具有不同的温度而表现出各异的红外特征,因此红外探测技术在军事,民用,天文等领域有广泛而重要的应用。其中甚长波红外探测技术(12-20μm)对于大气温度湿度元素分布监测以及天文观测等应用有重要作用。分子束外延技术的飞速发展使得锑化物二类超晶格成为理想的甚长波红外光电探测材料,具有俄歇复合速率低,载流子有效质量高,载流子寿命长,材料均匀性稳定性高,焦平面造价相对便宜等显著优势。抑制暗电流降低噪声对器件发展非常重要。
探测器的综合探测率由两个指标决定,分别是外量子效率QE(QuantumEfficiency)和动态阻抗RA。外量子效率QE决定了器件将红外光信号转化为电信号的比例,主要与吸收区的吸收系数和厚度以及器件载流子的收集性能有关。动态阻抗R0A决定了器件的噪声水平,直接影响器件的探测性能,他主要与器件的暗电流行为有关。现有的甚长波红外探测器存在的问题是,动态阻抗R0A较低,且随反偏电压增加而迅速减小。体现在77K工作温度下,RA从0V时的40Ω·cm2下降到-0.3V的0.6Ω·cm2。结合各种暗电流机制原理,分析甚长波红外探测器的暗电流电流特性图,判定器件的主要暗电流机制为隧穿暗电流,产生复合G-R暗电流(SRH过程)以及表面暗电流。在低偏压区域,产生复合G-R暗电流占据主要地位,而在中高偏压区域,隧穿暗电流为主,表面漏电流则在整个反偏区域都有影响。
本发明主要从器件的能带结构设计出发,提出一种抑制隧穿和产生复合G-R等体暗电流的结构。至于表面漏电流可由有效的表面钝化来抑制。
发明内容
本发明目的是,基于现有甚长波器件严重受限于高暗电流噪声的现状,以及超晶格红外探测器整体面临高G-R暗电流和隧穿暗电流等现实问题,从能带结构的角度,提出一种基于锑化物超晶格材料体系的高性能长波/甚长波红外探测器结构设计方案,得以显著降低器件暗电流,提高综合探测率。
本发明是通过如下技术解决上述问题的:一种基于锑化物超晶格的甚长波红外探测器,包括以下结构:
衬底;缓冲层,外延于所述衬底之上;
中长波波段接触层,称为P区,外延于所述缓冲层之上;
甚长波波段吸收层,称为π区,外延于所述中长波波段接触层P区之上;
中长波波段势垒层,称为M区,外延于所述甚长波波段吸收层π区之上;
中长波波段接触层,称为N区,外延于所述中长波波段势垒层M区之上;
盖层,外延于所述中长波波段接触层N区之上;
调整控制各个区域的超晶格结构,吸收层与势垒层的掺杂方式及厚度以设计器件的能带结构。
接触层P区为超晶格材料,P型重掺杂,外延于上述缓冲层上;吸收层π区为超晶格材料,P型掺杂,外延于上述吸收π区上;势垒M区超晶格材料,P型分段掺杂,外延于上述π区上;接触N区超晶格材料,N型分段掺杂,外延于上述M区上;顶盖层,N型重掺杂,外延于上述N区上。
所述P、π、M、N区均由三五族锑化物半导体组成,可由InAs,GaSb,AlSb及其超晶格组成;
所述衬底为GaSb(100)材料;
所述缓冲层为P型掺杂GaSb材料;
所述中长波接触层P区,采用P型重掺杂,以便于与金属电极形成欧姆接触;
所述甚长波吸收层π区,采用P型掺杂;
所述中长波势垒层M区,采用P型掺杂;
所述中长波接触层N区,采用N型重掺杂,以便于与金属电极形成欧姆接触;
所述盖层为N型掺杂InAs盖层。
上述各层中的接触P区和吸收π区为InAs/GaSb二类超晶格材料,势垒M区和接触N区为InAs/GaSb/AlSb材料或是InAs、AlSb超晶格材料。根据超晶格能带工程理论,通过调节超晶格周期中不同组分的厚度等参数可以调控超晶格的带隙和真空能级即导带和价带的位置。上述各层中的势垒M区和接触N区采用相同的超晶格周期结构,具有相同的真空能级位置,但掺杂不同。上述各区域超晶格材料为互相晶格匹配的半导体超晶格材料。上述结构采用PπMN结构,在传统PIN探测器结构中插入了势垒层,从而降低暗电流,提升器件阻抗。
上述探测器结构中的众多超晶格材料,能实现能带工程;通过改变超晶格周期内的组分、厚度、界面等能够在很大范围内调节其带隙和真空能级位置;综合运用八带微扰模型与紧束缚方法等,结合实验反馈建立超晶格能带理论计算体系,指导超晶格的周期结构设计。
上述超晶格材料的吸收π区采用超晶格材料,超晶格材料的带隙对应截止波长在甚长波红外波段内。所述吸收π区对红外波段进行光电转化探测,吸收π区采用P型掺杂,从而使得光生电子成为少子从而实现红外光电探测;吸收区的掺杂浓度≥1x 1016cm-3
上述超晶格材料的势垒M区采用超晶格材料,精细准确调控势垒M区的物理厚度,厚度在40–550nm区间内。
优选地,上述结构中,设计各区域超晶格结构,使得接触P区,势垒M区和接触N区的超晶格截止波长小于吸收π区的截止波长,使得吸收π区能顺利收集到甚长波段的红外光谱而不被其他区域干扰吸收。
上述势垒M区和接触N区采用超晶格材料,采用分段掺杂,将所述M区和N区各自分成多个区域;每个区域根据不同的能带设计要求,分别进行不同方式及不同浓度的掺杂。
上述探测器结构的各个超晶格区域,满足特定的能带条件,势垒M区的真空导带略低于吸收π区导带,价带远低于吸收π区的价带;接触N区的真空能级与势垒M区相匹配;接触P区的真空导带高于吸收π区,价带与吸收π区匹配。
上述吸收π区和接触P区采用InAs/GaSb材料体系的超晶格结构,吸收π区的超晶格材料的截止波长对应甚长波红外波段,厚度为数微米(例如2-10微米);接触P区的截止波长对应中长波红外波段,厚度在1μm以内。
上述势垒M区和接触N区采用InAs/GaSb/AlSb材料体系的超晶格结构,它们的截止波长对应中长波红外波段,厚度均在1μm以内。
通过合理控制势垒区的厚度,并采用分段掺杂的方式,探测器内部形成必要的同型结,从而有效抑制隧穿暗电流,G-R暗电流,大幅提升器件的暗电流阻抗和综合探测率。同时,探测器具有良好的载流子输运和极低的工作电压,便于读出电路的设计。
上述结构中的各区域,通过能带工程,调控吸收区和势垒区的超晶格结构设计,使得势垒区的导带真空能级低于吸收区的导带真空能级,约0.005eV。从而使得吸收区的光生载流子电子顺利通过势垒区被收集,势垒区价带远低于吸收区价带至少一个吸收区带隙大小约0.08eV,从而阻挡多数载流子。同时,通过能带调控,使得P区价带近似等于π区价带以便多数载流子输运形成电流通路。
上述结构中,接触P区采用InAs/GaSb二类超晶格或其他超晶格材料,采用P型重掺杂,掺杂浓度约为1018cm-3,以便与金属电极形成欧姆接触,从而制成探测器件。上述结构中,吸收π区形成电子少子,由光生电子少子扩散至收集电极以实现光电探测。合理控制超晶格层厚度和界面使得吸收区带隙落在红外甚长波段以满足探测要求。
上述结构中,势垒M区采用InAs/GaSb/AlSb或GaSb超晶格材料,其厚度被精准控制,在40-550nm内。势垒M区采用分段掺杂,分为两个区域:第一区域靠近π区,采用P型掺杂与π区接触形成同型结;第二区域靠近N区,采用本征掺杂,或者弱N型掺杂,以提升导带平顺性。
优选地,上述结构中,接触N区与势垒M区为同种超晶格结构,采用分段掺杂结合渐变掺杂,分为两个区域:第一区域靠近M区,采用N型渐变掺杂(掺杂浓度为1x1017 cm-3至1x1018 cm-3);第二区域靠近顶盖层,采用N型重掺杂,以便于金属电极形成欧姆接触。
优选地,上述结构中,势垒M区靠近吸收区的一侧采用和吸收区相同的P型掺杂形成同型结,从而在吸收区形成积累层,以抑制吸收区内产生的产生复合G-R暗电流。同时,通过精确控制势垒M区的物理厚度和掺杂方式及浓度等参数,有效控制M区的能带结构,使吸收区产生的光生少子电子能自由地流经势垒M区向N区及电极运动,而被收集。同时,吸收π区位于和势垒M区接触的部分仍然是电荷积累层。
优选地,上述每一段超晶格材料及掺杂均通过分子外延术方法生长实现。
优选地,上述每一段超晶格材料都满足了上下层晶格匹配和应力平衡。
优选地,上述P区采用截止波长为6μm左右的超晶格材料,π区的截止波长约为15μm,M区和N区的截止波长约为6μm。
有益效果:本发明吸收π区和势垒M区第一区域采用相同的P型掺杂,形成同型结;使处于同型结结区内的吸收区成为电荷积累层,从而抑制了只在耗尽区内生成的产生复合G-R暗电流;根据G-R暗电流随禁带宽度减小而剧烈变大以及暗电流模拟结果显示,其他较宽带隙区域内的G-R暗电流对总暗电流贡献不大。同时禁带宽度较大的M区阻挡了空穴多子,也分担了大部分落在器件内部的压降。
本发明在低压处,由于势垒M区和接触N区采用了适当的掺杂,使得落在吸收π区上的压降很小,导带和价带间距较远,从而大幅减小器件中电子空穴隧穿几率,抑制隧穿暗电流,提升了器件的动态阻抗。
本发明在低压处,G-R暗电流和隧穿暗电流都被抑制之后,只有RA阻抗较高且随电压变化很平稳的扩散暗电流。探测器在低电压处,具有很低的暗电流,和极高的阻抗RA,从而具有较高综合探测率。同时,器件工作在扩散暗电流情况下,RA-V特性响应平直,有利于焦平面器件的设计。后续还可以通过增大吸收区掺杂浓度等方式,进一步降低器件的扩散暗电流,获得更高的探测性能。
该结构基于PπMN结构,采用全新的势垒结构设计包括超晶格结构,厚度和掺杂等。通过合理控制势垒区的厚度,并采用分段掺杂的方式,使探测器内部形成必要的同型结,从而有效抑制隧穿暗电流,G-R暗电流,大幅提升器件的暗电流阻抗和综合探测率。同时,探测器具有良好的载流子输运和极低的工作电压,便于读出电路的设计。
本发明由于恰当合理精确的能带工程调节,势垒M区的导带低于吸收π区的导带。同时,由于M区和N区采用了恰当的厚度控制并采用了分段掺杂,使得M区以及整体器件的导带通畅平滑,有利于π区的光生载流子流经M区向电极运动。因此器件具备极好的载流子输运性能,和低工作开启电压,约为50mV。器件具有低功耗,高可靠性等优势。
附图说明
为了进一步说明本发明的技术内容,以下结合说明书附图对本发明做详细的描述,其中:
图1为依照本发明实施例的锑化物超晶格的甚长波红外探测器结构图;
图2为依照本发明实施例的锑化物超晶格的甚长波红外探测器中各个区域的真空能级示意图(未形成半导体接触);
图3为依照本发明实施例的锑化物超晶格的甚长波红外探测器形成半导体接触后的器件能带示意图
图4为依照本发明实施例的锑化物超晶格的甚长波红外探测器的理论暗电流示意图。
附图标志说明:
100-P型GaSb(100)衬底; 200-P型GaSb缓冲层;
300-P型超晶格接触层;P区; 400-弱P型超晶格甚长波吸收层;π区;
500-分段掺杂超晶格势垒层M区; 600-N型分段掺杂超晶格接触层N区;
700-N型掺杂盖层; 800-上电极;
900-下电极; 950-钝化层;
501-势垒层M区第一段; 502-势垒层M区第二段;
601-接触层N区第一段; 602-接触层N区第二段。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
图1所示是根据本发明提出的器件结构图,在半绝缘GaSb衬底100上依次生长P型掺杂GaSb缓冲层200,P型掺杂InAs/GaSb中波超晶格材料的接触P区300,P型掺杂InAs/GaSb甚长波超晶格材料的吸收π区400,P型分段掺杂的InAs/GaSb/AlSb超晶格材料的势垒M区500,N型分段掺杂InAs/GaSb/AlSb超晶格材料的接触N区600,以及N型掺杂的InAs盖层/接触层700。除了超晶格材料以外,还包括沉积覆盖在材料上方的钝化层材料950,以及上下两端连接的上电极800和下电极900。
其中,所述P区是采用截止波长为5μm的中波超晶格材料,π区是采用截止波长为15μm的甚长波超晶格材料,M区和N区是采用相同截止波长为6μm的InAs/GaSb/AlSb中波超晶格材料。图2展示了探测器的各个区域对应的真空能级。
所述M区分为两个区域:势垒层第一分区501,靠近吸收π区,采用P型渐变掺杂;势垒层第二分区502,靠近接触N区,采用本征偏N型掺杂,见图1。
所述N区也分为两个区域:接触N区第一分区601,采用N型渐变掺杂,掺杂浓度为1x1017 cm-3渐变至1x1018 cm-3;接触N区第二分区602,靠近InAs盖层,采用N型掺杂,掺杂浓度为1x1018 cm-3,见图1。
所述结构当中,势垒M区采用了分段掺杂。根据同型结的接触原理,势垒M区第一部分501采用了和π区相同的P型掺杂,在半导体接触面的窄带隙π区一侧形成了积累区,将耗尽区压缩至禁带宽度较大的M区,详情可见图3。图3是探测器在一定外加电场下对应的能带结构图,展现了采用本发明结构之后的探测器在形成半导体接触之后的工作状态,其中吸收区400对应的能带出现向上弯曲的多子空穴积累层。从而抑制了在耗尽区产生的随禁带宽度减小急剧增大的G-R产生复合暗电流。器件M区中的G-R暗电流分量对总暗电流贡献很小,故此设计降低了器件暗电流,提升了器件的动态阻抗RA。势垒M区的第二部分502采用了本征N型掺杂,与第一部分501形成了弱P-N结,从而缓和地降低了第一部分501因为掺杂引起的导带势垒,大幅度提升了光生电子的输运能力。详情可见图3中的导带,器件在较低的外加电压下,具有平滑通畅的导带,光生电子可以顺利地运动至上电极800而形成光响应电流。
采用了上述M区和N区的设计之后,吸收π区仍然形成了电荷积累层,从而在低压处,器件的暗电流,只剩下数量低且变化非常平稳的扩散暗电流分量,因此器件具有极高的RA和综合探测率。继续增大电压后,吸收区会慢慢在电压作用下弯曲从而G-R暗电流才慢慢显现出来,详情可见图4。
本发明的目的是设计一种基于超晶格材料的甚长波红外探测器,器件每个部分均可采用分子束外延技术生长,可以实现本发明中的设计要求,包括精确控制超晶格周期厚度,高晶格质量,高稳定性以及较精确的掺杂浓度。针对现有器件暗电流密度大,动态阻抗低的不足之处,提出一种基于实践基础的理论设计方案,引入了分段掺杂、渐变掺杂、周期结构能带调控等方式。旨在降低器件的G-R暗电流,隧穿暗电流,提高了器件的动态阻抗以及综合探测率。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种基于锑化物超晶格的甚长波红外探测器,其特征在于,包括以下结构:衬底;缓冲层,外延于所述衬底之上;
中长波波段接触层,称为P区,外延于所述缓冲层之上;
甚长波波段吸收层,称为
Figure DEST_PATH_IMAGE002
区,外延于所述中长波波段接触层P区之上;
中长波波段势垒层,称为M区,外延于所述甚长波波段吸收层
Figure 117779DEST_PATH_IMAGE002
区之上;
中长波波段接触层,称为N区,外延于所述中长波波段势垒层M区之上;
盖层,外延于所述中长波波段接触层N区之上;
调整控制各个区域的超晶格结构,吸收层与势垒层的掺杂方式及厚度以设计所述红外探测器器件的能带结构;
所述P、
Figure 707023DEST_PATH_IMAGE002
、M、N区为三五族锑化物半导体材料,包括InAs、GaSb、AlSb材料及其上述材料的超晶格;所述衬底为GaSb (100) 材料;
所述缓冲层为P型掺杂GaSb材料;
所述中长波波段 接触层P区,接触P区采用InAs或GaSb二类超晶格,采用P型重掺杂,掺杂浓度为1018 cm-3以便于与金属电极形成欧姆接触;
所述甚长波波段 吸收层π 区采用InAs或GaSb超晶格,采用P型弱掺杂,掺杂浓度
Figure DEST_PATH_IMAGE004
1 x1016 cm-3
所述中长波波段 势垒层M区,采用P型掺杂;超晶格材料的势垒M区采用超晶格材料,准确调控势垒M区的物理厚度,厚度在40 – 550 nm区间内;势垒M区采用分段掺杂,分为两个区域:第一区域靠近
Figure 329503DEST_PATH_IMAGE002
区,采用P型掺杂与
Figure 662396DEST_PATH_IMAGE002
区接触形成同型结;第二区域靠近N区,采用本征掺杂,或者弱N型掺杂,以提升导带平顺性;
所述中长波波段 接触层N区与势垒M区为同种超晶格结构,采用上分段掺杂结合渐变掺杂,分为两个区域:第一区域靠近M区,采用N型渐变掺杂、掺杂浓度为1x1017 cm-3至1x1018cm-3;第二区域靠近顶盖层,采用N型重掺杂,以便于金属电极形成欧姆接触;
所述盖层为N型掺杂InAs盖层;
上述探测器结构的各个超晶格区域,满足特定的能带条件,势垒M区的真空导带略低于吸收
Figure 414451DEST_PATH_IMAGE002
区导带,价带远低于吸收
Figure 136114DEST_PATH_IMAGE002
区的价带;接触N区的真空能级与势垒M区相匹配;接触P区的真空导带高于吸收区,价带与吸收区匹配。
2.根据权利要求1所述的基于锑化物超晶格的甚长波红外探测器,其特征在于,上述吸收
Figure 340830DEST_PATH_IMAGE002
区和接触P区采用InAs / GaSb材料体系的超晶格结构,吸收
Figure 211834DEST_PATH_IMAGE002
区的超晶格材料的截止波长对应甚长波红外波段,厚度为2-10微米;接触P区的截止波长对应中长波红外波段,厚度在1 μm以内。
3.根据权利要求1所述的基于锑化物超晶格的甚长波红外探测器,其特征在于,上述势垒M区和接触N区采用InAs / GaSb / AlSb材料体系的超晶格结构,它们的截止波长对应中长波红外波段,厚度在1 μm以内。
CN201911117680.4A 2019-11-15 2019-11-15 一种具有暗电流抑制结构的锑化物超晶格甚长波红外探测器 Active CN110797424B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911117680.4A CN110797424B (zh) 2019-11-15 2019-11-15 一种具有暗电流抑制结构的锑化物超晶格甚长波红外探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911117680.4A CN110797424B (zh) 2019-11-15 2019-11-15 一种具有暗电流抑制结构的锑化物超晶格甚长波红外探测器

Publications (2)

Publication Number Publication Date
CN110797424A CN110797424A (zh) 2020-02-14
CN110797424B true CN110797424B (zh) 2021-05-25

Family

ID=69444789

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911117680.4A Active CN110797424B (zh) 2019-11-15 2019-11-15 一种具有暗电流抑制结构的锑化物超晶格甚长波红外探测器

Country Status (1)

Country Link
CN (1) CN110797424B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7428891B2 (ja) * 2020-03-31 2024-02-07 富士通株式会社 光学センサ及び撮像装置
CN111710732A (zh) * 2020-06-11 2020-09-25 南京大学 一种锑化物超晶格甚长波红外探测器中抑制扩散暗电流的结构
CN111710733B (zh) * 2020-06-11 2023-10-17 南京大学 一种超晶格甚长波红外探测器结构
CN112201712B (zh) * 2020-09-21 2022-03-22 武汉高芯科技有限公司 超晶格梯度能带空穴势垒层结构以及红外探测器
CN113035992A (zh) * 2021-02-26 2021-06-25 中国科学院半导体研究所 互补势垒超晶格长波红外探测器
CN113471326B (zh) * 2021-06-15 2023-04-07 中山大学 一种ⅲ族氮化物异质结光电探测器
CN113972296B (zh) * 2021-10-25 2022-11-11 中国科学院半导体研究所 红外探测器及其制备方法
CN118016738B (zh) * 2024-04-10 2024-06-18 山西创芯光电科技有限公司 一种超晶格红外探测器焦平面芯片结构及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106601870A (zh) * 2016-12-12 2017-04-26 中国电子科技集团公司第十研究所 一种InSb基高温工作红外探测器材料及其制备方法
JP2018138903A (ja) * 2017-02-24 2018-09-06 富士通株式会社 赤外線検出器、撮像素子、及び撮像システム。

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5512583B2 (ja) * 2011-03-29 2014-06-04 旭化成エレクトロニクス株式会社 量子型赤外線センサ
US10062794B2 (en) * 2016-05-27 2018-08-28 The United States Of America, As Represented By The Secretary Of The Navy Resonant-cavity infrared photodetectors with fully-depleted absorbers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106601870A (zh) * 2016-12-12 2017-04-26 中国电子科技集团公司第十研究所 一种InSb基高温工作红外探测器材料及其制备方法
JP2018138903A (ja) * 2017-02-24 2018-09-06 富士通株式会社 赤外線検出器、撮像素子、及び撮像システム。

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Bias-selectable mid-/long-wave dual band infrared focal plane array based on Type-II InAs/GaSb superlattice;Zhi Jiang 等;《Infrared Physics & Technology》;20170905;第86卷;正文第160页2实验部分,图3a-3b *
InAs/GaSb超晶格长波红外探测器;汪良衡 等;《红外技术》;20180531;第40卷;正文第474页右栏第一段,图2 *
The 640 × 512 LWIR type-II superlattice detectors operating at 110 K;Bi-song Tan 等;《Infrared Physics & Technology》;20180109;第89卷;正文第169页2.1实验部分,图1a *

Also Published As

Publication number Publication date
CN110797424A (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
CN110797424B (zh) 一种具有暗电流抑制结构的锑化物超晶格甚长波红外探测器
US7629532B2 (en) Solar cell having active region with nanostructures having energy wells
US8368051B2 (en) Complementary barrier infrared detector (CBIRD)
US9887307B2 (en) Diode barrier infrared detector devices and barrier superlattice structures
CN111710733B (zh) 一种超晶格甚长波红外探测器结构
US5679963A (en) Semiconductor tunnel junction with enhancement layer
US8962992B2 (en) Dilute group III-V nitride intermediate band solar cells with contact blocking layers
CN105283964B (zh) 高速光探测器
US9748430B2 (en) Staircase avalanche photodiode with a staircase multiplication region composed of an AIInAsSb alloy
Schönbein et al. A 10 μm GaAs/Al x Ga1− x As intersubband photodetector operating at zero bias voltage
US20130074901A1 (en) Compositionally graded dilute group iii-v nitride cell with blocking layers for multijunction solar cell
KR101921239B1 (ko) 화합물 반도체 태양 전지
CN111710732A (zh) 一种锑化物超晶格甚长波红外探测器中抑制扩散暗电流的结构
CN113035992A (zh) 互补势垒超晶格长波红外探测器
US20140026937A1 (en) Semiconductor Heterostructure and Photovoltaic Cell Including Such A Heterostructure
KR20150092608A (ko) 화합물 태양 전지
TWM514112U (zh) 光伏電池
KR102387737B1 (ko) 태양 전지
CN117276367B (zh) 中波红外探测器、探测器探测方法及制备方法
CN115084293B (zh) 一种异质结光电探测器
KR20150014298A (ko) 화합물 반도체 태양 전지
JPH07231108A (ja) 太陽電池
JPH0750429A (ja) 受光素子及びその製造方法
CN115020526A (zh) NBp势垒型超晶格高温中波红外探测器及其制作方法
Tian et al. Mid-IR photovoltaic devices based on interband cascade structures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant