CN111710732A - 一种锑化物超晶格甚长波红外探测器中抑制扩散暗电流的结构 - Google Patents

一种锑化物超晶格甚长波红外探测器中抑制扩散暗电流的结构 Download PDF

Info

Publication number
CN111710732A
CN111710732A CN202010528821.8A CN202010528821A CN111710732A CN 111710732 A CN111710732 A CN 111710732A CN 202010528821 A CN202010528821 A CN 202010528821A CN 111710732 A CN111710732 A CN 111710732A
Authority
CN
China
Prior art keywords
layer
long wave
region
superlattice
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010528821.8A
Other languages
English (en)
Inventor
施毅
岳壮豪
牛智川
王国伟
徐应强
蒋洞微
常发冉
李勇
王军转
郑有炓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202010528821.8A priority Critical patent/CN111710732A/zh
Publication of CN111710732A publication Critical patent/CN111710732A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • H01L31/1035Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type the devices comprising active layers formed only by AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • H01L31/035263Doping superlattices, e.g. nipi superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

基于锑化物超晶格的甚长波红外探测器,包括从下到上的以下结构:衬底,缓冲层,中长波欧姆接触层,甚长波波段吸收层,中长波波段势垒层,中长波波段接触层,顶盖层;缓冲层外延于所述衬底之上;中长波波段接触层称为P区,外延于所述缓冲层之上;甚长波波段吸收层称为π区,外延于所述中长波波段接触层P区之上;中长波波段势垒层,外延于所述吸收层之上;中长波波段接触层,外延于所述势垒层之上;本发明结构引入了高掺杂的吸收区进一步降低扩散暗电流以使红外探测器具备高综合探测率。

Description

一种锑化物超晶格甚长波红外探测器中抑制扩散暗电流的 结构
技术领域:
本发明属于半导体光电探测技术领域,具体涉及一种由超晶格材料制备完成的红外探测器结构,尤其是一种能抑制扩散暗电流的锑化物超晶格甚长波红外探测器。
背景技术:
根据普朗克黑体辐射定律,绝对零度以上温度的物体时刻在向外辐射电磁波。不同温度的物体红外特征有所区别,因此红外探测技术在各领域有广泛的应用。对应12–30μm波段的甚长波,这也是本发明讨论的甚长波红外的波长,在气象天文探测等领域有重要应用。近年来以锑化物超晶格材料为基础的高性能红外焦平面技术发展迅速,其良好的均匀性、相对较低的制备难度、较高的成品率以及与碲镉汞材料相当的红外技术性能,使得整个探测器组件满足低成本、小体积、低重量、低功耗功耗(C-SWaP)的工业化控制要求,因而得到了长足发展。基于该材料的甚长波红外探测器目前面临高暗电流以及饱和量子效率开启电压过高等问题。在采用恰当的方式抑制产生复合G-R暗电流分量并降低开启电压后,器件的扩散暗电流分量仍然维持在一个较高的数量级。因此,锑化物超晶格红外探测器需要采用进一步措施降低扩散暗电流分量,以提高综合探测率。
发明内容
本发明目的是,针对传统甚长波红外探测器面临的暗电流噪声过大和开启电压过大的问题,基于现有能够抑制G-R暗电流并降低开启电压的锑化物超晶格甚长波探测器结构基础,提出一种能抑制扩散暗电流的锑化物超晶格甚长波红外探测器,以实现高性能甚长波红外探测。
本发明目的是基于锑化物超晶格材料,提出一种势垒型超晶格红外探测器,能在抑制G-R和隧穿暗电流的基础上,进一步抑制扩散暗电流的探测器结构设计。
本发明是通过如下技术解决上问题的:一种能抑制扩散暗电流的锑化物超晶格甚长波红外探测器,包括从下到上的以下结构:衬底,缓冲层,中长波欧姆接触层,甚长波波段吸收层,中长波波段势垒层,中长波波段接触层,顶盖层;
缓冲层外延于所述衬底之上;
中长波波段欧姆接触层称为P区,外延于所述缓冲层之上;
甚长波波段吸收层称为π区,外延于所述中长波波段接触层P区之上;
中长波波段势垒层称为B区,外延于所述甚长波波段吸收层π区之上;
中长波波段接触层称为N区,外延于所述中长波波段势垒层B区之上;
顶盖层外延于所述中长波波段接触层N区之上;
所述各层均采用三五族半导体材料,包括GaSb、InAs、AlSb和InSb及其超晶格材料;所述衬底为GaSb(100)材料;
所述缓冲层为P型掺杂GaSb材料;
所述中长波欧姆接触层P区,采用P型重掺杂;便于与金属电极形成欧姆接触;
所述甚长波吸收层π区,采用P型掺杂;
所述中长波势垒层B区,采用P型掺杂;
所述中长波欧姆接触层N区,采用N型重掺杂;以便于与金属电极形成欧姆接触;
所述顶盖层为N型掺杂InAs盖层;
上述吸收层π区和接触层P区厚度分别为数微米长和1微米以内;中长波势垒层B区和中长波欧姆接触层N区的厚度均小于1微米。
中长波势垒层的真空能级导带略低于吸收层的真空能级导带;中长波势垒层的真空能级价带远低于吸收层π区的真空能级价带。
精确调控探测器各层的超晶格结构,掺杂和厚度参数以设计探测器结构,使其满足能带设计要求,达到高综合探测率。
上述探测器结构中,所述接触层P区和吸收层π区采用InAs/GaSb体系超晶格材料,势垒层B区和接触层N区采用InAs/GaSb/AlSb/GaSb或InAs/AlSb体系超晶格材料。除吸收层π区以外的区域截止波长(以下截止波长均表示:50%截止波长)均小于目标探测甚长波波段以减小串扰。
优选地,上述结构中,通过能带工程设计各区域超晶格结构,使得他们的等效真空能级满足理想能带条件:接触层P区的导带远高于吸收层π区,价带略高于吸收层π区;势垒层B区的导带略低于吸收层的导带,价带远低于吸收层以阻挡多数载流子;接触层N区采用和势垒层相近或相同的超晶格结构。
优选地,所述吸收层π区采用P型掺杂,掺杂浓度大于6×1016cm-3以使扩散长度较长的电子成为探测少子提供光电信号;势垒层B区采用P型掺杂与吸收层π区形成同型结,使吸收层内形成空穴多子积累层,以抑制G-R和隧穿暗电流。
优选地,合理控制势垒层的厚度以提升载流子输运性能,提高量子效率。
优选地,上述每一段超晶格材料及掺杂均通过分子外延术方法生长实现。
优选地,上述每一段超晶格材料及掺杂均通过分子外延术方法生长实现。
优选地,上述每一段超晶格材料都满足了上下层晶格匹配和应力平衡。
优选地,上述P区采用截止波长为8μm左右的超晶格材料,π区的截止波长约为15μm,M区和N区的截止波长约为8μm。
有益效果:本发明所述结构中,吸收层和势垒层采用相同的P型掺杂形成了同型结,吸收层的内建电场较小。因此带隙最小的吸收层能带基本没有弯曲,导带价带横向间距很大,载流子隧穿概率较小,隧穿暗电流较低。同时,因为同型结的原因,吸收层内部形成了多数载流子积累层,从而抑制了在窄带隙吸收层内部的耗尽区产生的主导G-R暗电流。此时器件的体暗电流只剩下扩散暗电流分量。
本发明所述结构中,吸收层的P型掺杂的掺杂浓度从现有水平提升了数倍至6×1016cm-3以上,大大减小了吸收层内部的少子电子数量,从而进一步抑制了剩余的扩散暗电流。
本发明所述结构中,通过合理控制各个区域的掺杂浓度等参数,使得整体器件的导带平顺通畅,不存在导带突起阻碍光生电流,从而使器件具备高量子效率,和较低开启电压。
本发明所述结构,通过一系列掺杂和超晶格结构调节等措施,形成了体暗电流抑制体系。首先抑制了隧穿暗电流,产生复合G-R暗电流,然后进一步抑制了扩散暗电流。相比现有器件,降低了总体暗电流达到近两个数量级。
附图说明:
为了进一步说明本发明的技术内容,以下结合说明书附图对本发明做详细的描述,其中:
图1为依照本发明实施例的锑化物超晶格甚长波红外探测器结构图;
图2为依照本发明实施例的锑化物超晶格甚长波红外探测器PπBN各区域形成半导体接触后的能带图;
图3为依照本发明实施例的锑化超晶格甚长波红外探测器扩散暗电流随吸收区掺杂浓度关系示意图;
图4为依照本发明实施例的锑化物超晶格甚长波红外探测器的理论暗电流示意图。
附图标志说明:
100-P型GaSb(100)衬底; 200-P型GaSb缓冲层;
300-P型超晶格接触层P区; 400-P型超晶格甚长波吸收层π区;
500-P型掺杂超晶格势垒层M区; 600-N型掺杂超晶格接触层N区;
700-N型掺杂盖层; 800-上电极;
850-下电极; 900-钝化层。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
图1所示是根据本发明提出的器件结构图,在在P型GaSb衬底100上依次生长P型掺杂GaSb缓冲层200,P型掺杂InAs/GaSb中波超晶格材料的接触层P区300(超晶格周期结构为12MLs InAs/8MLs GaSb,对应截止波长约为8μm),P型掺杂InAs/GaSb甚长波超晶格材料吸收层π区400,P型掺杂InAs/GaSb/AlSb中波超晶格材料势垒层M区500,N型掺杂InAs/GaSb/AlSb中波超晶格材料的接触N区600,以及N型掺杂的InAs盖层700。还包括沉积覆盖在材料上方的钝化层材料900,以及上下两端的上电极800和下电极850。
其中,所述P区是采用截止波长为8μm的中波超晶格材料(对应超晶格周期结构为12MLs InAs/8MLs GaSb),π区是采用截止波长为15μm的甚长波超晶格材料(对应超晶格周期结构为16MLs InAs/10MLs GaSb),M区和N区是采用相同截止波长为8μm的InAs/GaSb/AlSb中波超晶格材料(对应超晶格周期结构为20MLs InAs/3MLs GaSb/5MLs AlSb/3MLsGaSb)。各个区域均满足说明书中提到的能带结构要求,以得到良好的光生载流子输运效果。
所述结构中,势垒层M区采用了和吸收层π区同样的P型掺杂,形成了同型结。窄禁带吸收层π区内部形成了多数载流子空穴积累层,消除了内部耗尽层,从而抑制了G-R暗电流。同时,因为同型结的原因,吸收层内建电场和能带弯曲都很小,所以导带价带横向距离较大,有效抑制了隧穿暗电流。
所述结构中,通过合理的控制各个区域的超晶格结构和掺杂等,设计使得器件的整体能带结构平顺通畅,没有阻碍,具备较好的载流子输运性能。因此,器件具有较高的饱和量子效率以及较低的饱和工作开启电压。具体可见图2。
所述结构中,在采取同型结结构设计后,器件在低反偏电压时,暗电流只剩下扩散暗电流分量。随着吸收层P型掺杂浓度提升至至少6×1016cm-3以上,其内部少数载流子电子数量大大降低,扩散暗电流也随之被大幅抑制。
所述结构中,器件扩散暗电流随吸收区掺杂的变化关系模拟结果如图3所示,其中虚线代表理想情况下只有掺杂浓度变化的扩散暗电流变化关系,实线代表考虑到载流子寿命随掺杂浓度提高而降低这一实际情况而做出的扩散暗电流变化模拟结果。
本发明设计一种基于锑化物超晶格材料的甚长波红外探测器,可由分子束外延技术生长实现,具有能精确控制超晶格结构厚度,能带结构高度可调,高重复性,高稳定性和成本较低等优势。本发明基于现有甚长波探测器面临高暗电流,低阻抗等问题的现实背景,提出一种甚长波红外探测器的结构,在有效抑制G-R暗电流和隧穿暗电流的基础上,进一步抑制扩散暗电流。使得红外器件的暗电流相比原先降低数十倍,综合探测率大大提升。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种基于锑化物超晶格的甚长波红外探测器,其特征在于,包括从下到上的以下结构:衬底,缓冲层,中长波欧姆接触层,甚长波波段吸收层,中长波波段势垒层,中长波波段接触层,顶盖层;
缓冲层外延于所述衬底之上;
中长波波段接触层称为P区,外延于所述缓冲层之上;
甚长波波段吸收层称为π区,外延于所述中长波波段接触层P区之上;
中长波波段势垒层称为B区,外延于所述甚长波波段吸收层π区之上;
中长波波段接触层称为N区,外延于所述中长波波段势垒层B区之上;
顶盖层外延于所述中长波波段接触层N区之上;
所述各层均采用三五族半导体材料,包括GaSb、InAs、AlSb和InSb及其超晶格材料,所述衬底为GaSb(100)材料;
所述缓冲层为P型掺杂GaSb材料;
所述中长波欧姆接触层P区,采用P型重掺杂;
所述甚长波吸收层π区,采用P型掺杂;
所述中长波势垒层B区,采用P型掺杂;
所述中长波欧姆接触层N区,采用N型重掺杂;
所述盖层为N型掺杂InAs盖层;
上述吸收层π区和接触层P区厚度分别为数微米长和1微米以内;势垒层B区和接触层N区的厚度均小于1微米。
势垒层的真空能级导带略低于吸收层的真空能级导带;势垒层的真空能级价带远低于吸收层的真空能级价带;
精确调控探测器各层的超晶格结构,掺杂和厚度参数以设计探测器结构,使其满足能带设计要求,达到探测要求。
2.根据权利要求1所述的甚长波红外探测器,其特征在于,上述探测器结构中,所述接触层P区和吸收层π区采用InAs/GaSb体系超晶格材料,势垒层B区和接触层N区采用InAs/GaSb/AlSb/GaSb或InAs/AlSb体系超晶格材料;除吸收层π区以外的区域截止波长;;均小于目标探测甚长波波段以减小串扰;截止波长表示:50%截止波长。
3.根据权利要求2所述的锑化物超晶格甚长波红外探测器,其特征在于,所述吸收层π区采用P型掺杂,掺杂浓度≥6×1016cm-3;势垒层B区采用P型掺杂。
4.根据权利要求1所述的甚长波红外探测器,其特征在于,通过能带工程设计各区超晶格结构,使得各区等效真空能级满足理想能带条件:接触层P区的导带能级远高于吸收层π区,价带能级略高于吸收层π区;势垒层B区的导带能级略低于吸收层的导带,价带能级远低于吸收层以阻挡多数载流子;接触层N区采用和势垒层相近或相同的超晶格结构。
5.根据权利要求1所述的甚长波红外探测器,其特征在于,所述吸收层π区采用P型掺杂,掺杂浓度大于6×1016cm-3以使扩散长度较长的电子成为探测少子提供光电信号;势垒层B区采用P型掺杂与吸收层π区形成同型结,使吸收层内形成空穴多子积累层,以抑制G-R和隧穿暗电流。
6.根据权利要求2所述的锑化物超晶格甚长波红外探测器,其特征在于,接触层P区、势垒层B区和接触层N区均采用中长波波段超晶格材料,吸收层π区采用甚长波超晶格材料。
7.根据权利要求2所述的锑化物超晶格甚长波红外探测器,其特征在于,上述P区采用截止波长为8μm的超晶格材料,π区的截止波长约为15μm,M区和N区的截止波长为8μm。
8.根据权利要求2所述的锑化物超晶格甚长波红外探测器,其特征在于,上述每一段超晶格材料及掺杂均通过分子外延方法生长实现。
9.根据权利要求2所述的锑化物超晶格甚长波红外探测器,其特征在于,上述每一段超晶格材料都满足了上下层晶格匹配和应力平衡;合理控制势垒层的厚度以提升载流子输运性能,提高量子效率。
CN202010528821.8A 2020-06-11 2020-06-11 一种锑化物超晶格甚长波红外探测器中抑制扩散暗电流的结构 Pending CN111710732A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010528821.8A CN111710732A (zh) 2020-06-11 2020-06-11 一种锑化物超晶格甚长波红外探测器中抑制扩散暗电流的结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010528821.8A CN111710732A (zh) 2020-06-11 2020-06-11 一种锑化物超晶格甚长波红外探测器中抑制扩散暗电流的结构

Publications (1)

Publication Number Publication Date
CN111710732A true CN111710732A (zh) 2020-09-25

Family

ID=72539665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010528821.8A Pending CN111710732A (zh) 2020-06-11 2020-06-11 一种锑化物超晶格甚长波红外探测器中抑制扩散暗电流的结构

Country Status (1)

Country Link
CN (1) CN111710732A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113972296A (zh) * 2021-10-25 2022-01-25 中国科学院半导体研究所 红外探测器及其制备方法
CN115020526A (zh) * 2022-06-07 2022-09-06 中科爱毕赛思(常州)光电科技有限公司 NBp势垒型超晶格高温中波红外探测器及其制作方法
CN118016738A (zh) * 2024-04-10 2024-05-10 山西创芯光电科技有限公司 一种超晶格红外探测器焦平面芯片结构及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103887360A (zh) * 2014-04-16 2014-06-25 中国科学院半导体研究所 InAs/GaSb超晶格红外光电探测器及其制备方法
CN104576805A (zh) * 2015-01-21 2015-04-29 哈尔滨工业大学 一种基于InAs/GaSbⅡ类超晶格材料的短波/中波/长波三色红外探测器
CN106601870A (zh) * 2016-12-12 2017-04-26 中国电子科技集团公司第十研究所 一种InSb基高温工作红外探测器材料及其制备方法
CN106784117A (zh) * 2016-12-30 2017-05-31 云南师范大学 一种短波/中波/长波三波段红外探测器的制备方法
CN110797424A (zh) * 2019-11-15 2020-02-14 南京大学 一种具有暗电流抑制结构的锑化物超晶格甚长波红外探测器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103887360A (zh) * 2014-04-16 2014-06-25 中国科学院半导体研究所 InAs/GaSb超晶格红外光电探测器及其制备方法
CN104576805A (zh) * 2015-01-21 2015-04-29 哈尔滨工业大学 一种基于InAs/GaSbⅡ类超晶格材料的短波/中波/长波三色红外探测器
CN106601870A (zh) * 2016-12-12 2017-04-26 中国电子科技集团公司第十研究所 一种InSb基高温工作红外探测器材料及其制备方法
CN106784117A (zh) * 2016-12-30 2017-05-31 云南师范大学 一种短波/中波/长波三波段红外探测器的制备方法
CN110797424A (zh) * 2019-11-15 2020-02-14 南京大学 一种具有暗电流抑制结构的锑化物超晶格甚长波红外探测器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113972296A (zh) * 2021-10-25 2022-01-25 中国科学院半导体研究所 红外探测器及其制备方法
CN115020526A (zh) * 2022-06-07 2022-09-06 中科爱毕赛思(常州)光电科技有限公司 NBp势垒型超晶格高温中波红外探测器及其制作方法
CN118016738A (zh) * 2024-04-10 2024-05-10 山西创芯光电科技有限公司 一种超晶格红外探测器焦平面芯片结构及其制备方法

Similar Documents

Publication Publication Date Title
US7629532B2 (en) Solar cell having active region with nanostructures having energy wells
CN110797424B (zh) 一种具有暗电流抑制结构的锑化物超晶格甚长波红外探测器
CN111710732A (zh) 一种锑化物超晶格甚长波红外探测器中抑制扩散暗电流的结构
US8952354B2 (en) Multi-junction photovoltaic cell with nanowires
US9712105B2 (en) Lateral photovoltaic device for near field use
JP2017022361A (ja) 量子井戸バンド間遷移に基づく光電検出器、光通信システム及び画像形成装置
CN111710733B (zh) 一种超晶格甚长波红外探测器结构
CN108305911B (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
CN111900217B (zh) 一种中/长波红外双波段超晶格红外探测器及其制备方法
CN109494275A (zh) 一种AlGaN基日盲紫外光电晶体管探测器及其制作方法
CN113035992A (zh) 互补势垒超晶格长波红外探测器
US20130154045A1 (en) Avalanche photodiode
US10109758B2 (en) Photovoltaic cell with variable band gap
CN213242573U (zh) 一种基于Sb化物的中短波双色红外探测器
CN112490305B (zh) 一种可见-紫外双色探测器
Burlakov et al. Unipolar semiconductor barrier structures for infrared photodetector arrays
US10269996B1 (en) Low cost, high performance barrier-based position sensitive detector arrays
CN210349846U (zh) 一种吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
CN219106174U (zh) 一种apd光电探测器
KR100436019B1 (ko) 저온성장 화합물반도체를 이용한 hemt 구조의 msm광검출기 제조방법
Bandara et al. Heterojunction-based GaSb/InAs strained-layer superlattice long wavelength infrared detectors
CN110071185B (zh) 多量子阱红外探测器
JP5391945B2 (ja) 受光素子及びエピタキシャルウェハ
Kontrosh et al. Influence of adjacent isotype layers on the characteristics of n++-GaAs/i-GaAs/i-AlGaAs/p++-AlGaAs tunnel diodes
JPH0265279A (ja) 半導体受光素子

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200925