CN111710733B - 一种超晶格甚长波红外探测器结构 - Google Patents

一种超晶格甚长波红外探测器结构 Download PDF

Info

Publication number
CN111710733B
CN111710733B CN202010529281.5A CN202010529281A CN111710733B CN 111710733 B CN111710733 B CN 111710733B CN 202010529281 A CN202010529281 A CN 202010529281A CN 111710733 B CN111710733 B CN 111710733B
Authority
CN
China
Prior art keywords
region
layer
superlattice
band
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010529281.5A
Other languages
English (en)
Other versions
CN111710733A (zh
Inventor
施毅
岳壮豪
牛智川
王国伟
徐应强
蒋洞微
常发冉
李勇
王军转
郑有炓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202010529281.5A priority Critical patent/CN111710733B/zh
Publication of CN111710733A publication Critical patent/CN111710733A/zh
Application granted granted Critical
Publication of CN111710733B publication Critical patent/CN111710733B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • H01L31/035263Doping superlattices, e.g. nipi superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • H01L31/1035Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type the devices comprising active layers formed only by AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种基于锑化物超晶格的甚长波红外探测器结构,包括从下到上的以下结构:衬底,缓冲层,甚长波波段吸收层,中长波波段势垒层,甚长波波段欧姆接触层,顶盖层;缓冲层外延于所述衬底之上;本发明拥有良好载流子输运性能的锑化物超晶格甚长波红外探测器。本发明引入了同型结和分段掺杂,同时对各个区域超晶格结构,掺杂浓度和厚度进行了调控以得到高综合探测率的红外探测器结构。

Description

一种超晶格甚长波红外探测器结构
技术领域
本发明属于半导体器件技术领域,具体涉及一种超晶格甚长波红外探测器的结构,尤其是一种基于锑化物超晶格的甚长波红外探测器结构。采用包括超晶格结构调整,区域厚度控制,分段掺杂在内的方式对器件的能结构进行精确调控。
背景技术
不同温度的物体因为黑体辐射具有不同的红外辐射谱和红外特征,因此不同波段的红外探测器能探测响应识别不同的目标。其中甚长波对应12-30μm波段,长波及甚长波红外成像能在黑暗和低温的环境下探测到物体,即使在有烟雾、粉尘的情况下也不需要可见光光源,可全天候使用,且以被动的方式探测物体发出的红外辐射,比其他带光源的系统更具有隐蔽性,因此已在气象,天文探测,武器装备中得到广泛应用,成为现代高技术装备中不可缺少的重要部分。以锑化物为代表的II类超晶格材料在甚长波段具有载流子有效质量高,能抑制俄歇复合过程,材料均一稳定性高,焦平面造价低等优势,因而受到了广泛关注。II类超晶格材料探测器目前主要面临暗电流过大以及开启电压即量子效率饱和电压过高的问题。暗电流主要组分有扩散暗电流,产生复合G-R暗电流以及隧穿暗电流,其中G-R暗电流为主导地位。而开启电压过高的问题来源于探测器各区域的超晶格能带不匹配等因素。这两个问题限制了探测器的综合探测率,降低了探测器的工作温度,大大削弱了探测器的工作能力。
发明内容
本发明目的是,基于现有超晶格甚长波器件面临暗电流噪声过大和开启电压过高的现状,从能带结构的角度,提出一种基于锑化物超晶格材料体系的高性能甚长波红外探测器结构,以显著降低暗电流和实现低开启电压,对甚长波红外探测目标提高器件的综合探测率。通过采用包括超晶格结构调整,区域厚度控制,分段掺杂在内的方式对器件的能结构进行精确调控,以达到设计目的。
本发明是通过如下技术解决上问题的:一种基于锑化物超晶格的甚长波红外探测器结构,包括从下到上的以下结构:衬底,缓冲层,甚长波波段吸收层,中长波波段势垒层,甚长波波段欧姆接触层,顶盖层;
缓冲层外延于所述衬底之上;
甚长波波段吸收层称为P区,外延于所述缓冲层之上;
中长波波段势垒层称为B区,外延于所述甚长波波段吸收层P区之上;
甚长波波段欧姆接触层,称为p区,外延于所述中长波波段势垒层B区之上;
顶盖层,外延于所述接触层p区之上;通过精确调控各个区域的超晶格结构,厚度以及掺杂以设计满足特定能带结构的红外探测器结构;
所述衬底为GaSb(100)材料;
所述缓冲层为P型掺杂GaSb材料;
所述甚长波吸收层P区采用P型掺杂;
所述中长波势垒层B区采用P型分段掺杂;
所述甚长波接触层(欧姆接触层)p区采用P型重掺杂;
所述盖层为P型重掺杂材料。
优化各个区域的超晶格结构,掺杂以及厚度等以调整器件能带,得到最佳探测性能。所述P、B、p区和缓冲层及盖层均由三五族半导体组成,可由InAs,GaSb,AlSb,InSb及其超晶格材料组成;所述吸收层P区为超晶格材料,采用P型掺杂,P型掺杂浓度约为0.5-1.5×1016cm-3左右,以使电子成为探测少子,外延于上述缓冲层上;
所述势垒层B区为超晶格材料,采用P型分段掺杂,外延于上述吸收层P区上;
所述欧姆接触层p区为超晶格材料,采用P型重掺杂,以便于与外电极形成欧姆接触,外延于上述势垒层B区上;
所述顶盖层为GaSb体材料,采用P型重掺杂,以便形成欧姆接触,外延于上述接触层p区上。
其中吸收层P区和接触层p区采用InAs/GaSb II类超晶格材料,势垒B区采用InAs/GaSb/AlSb/GaSb超晶格材料或InAs/AlSb超晶格材料。
根据超晶格能带理论,调节超晶格周期中的组分,厚度,排列,界面等能有效改变其带隙和真空能级位置,即导带和价带位置。因此在满足各个区域超晶格和衬底互相晶格匹配的前提下,通过综合调整上述参数,使得器件的各个区域满足探测器能带设计要求。具体的超晶格结构由理论模拟方法结合实验反馈建立的超晶格能带模拟体系给出。
上述超晶格材料的吸收层P区的带隙对应截止波长在目标甚长波红外波段内;吸收层P区对红外波段进行光电转化,采用P型掺杂,将扩散长度较长的电子作为少子进行红外光电探测。掺杂浓度约为1016cm-3
上述结构中的各区域,通过超晶格材料的能带工程,使得各区域满足以下特定的能带条件:势垒层B区的带隙为吸收区带隙的两倍以上;势垒层B区的导带真空能级略低于吸收层P区的导带真空能级;势垒层B区的价带真空能级低于吸收层P区的价带真空能级一个吸收层P区的禁带宽度,以阻挡多数载流子。
上述超晶格材料的接触层p区,从提高器件生长便利度方面考虑,采用与吸收层P区相同的超晶格结构,故具有相同的真空能级,但采用不同的掺杂。接触p区采用P型重掺杂,以便于与外电极形成欧姆接触从而利于光生载流子向电极的输运。掺杂浓度≥5x1017cm-3
上述超晶格材料的势垒层B区的带隙对应截止波长在中长波波段内,势垒层的厚度被调控优化,并采用偏P型掺杂的分段掺杂,以便与两侧区域接触形成恰当的能带结构。合理的分段掺杂能使得两侧的吸收层P区和接触层p区形成电荷积累层,同时使得势垒层B区内部的导带保持比较平顺平坦的形状没有较高的导带突起出现。
上述结构中的吸收区层厚度约为数μm,势垒层厚度为数百纳米,接触层的厚度小于1μm,盖层的厚度约为几十至数百纳米。
优选地,上述结构中,势垒层B区内部分按物理位置为三个部分采用各自的掺杂模式。其中两侧的部分采用P型掺杂以与周围窄禁带材料形成同型结,中间的部分采用N型或本征偏N型掺杂以提高载流子输运性能。
优选地,上述每一段超晶格材料及掺杂均通过分子束外延方法生长实现。
优选地,上述每一段超晶格材料都满足了上下晶格匹配和应力平衡。
优选地,上述吸收层P区和接触层p区采用截止波长为16μm的超晶格材料,势垒层B区采用截止波长为6μm的超晶格材料。
有益效果:本发明吸收层P区,接触层p区和势垒层B区的两个子区域均采用合理的P型掺杂,器件内部特别是窄禁带材料内没有强内建电场,导带和价带横向间距较远。所以,当施加低反偏电压时,载流子隧穿概率很小,隧穿暗电流对总暗电流的贡献小。本发明引入了同型结和分段掺杂,同时对各个区域超晶格结构,掺杂浓度和厚度进行了调控以得到高综合探测率的红外探测器结构。
本发明中由于势垒层B区的两侧子区域采用P型掺杂,与同样P型掺杂的吸收层和接触层形成同型结。在窄禁带吸收层和接触层内形成空穴多子积累层,抑制了占据主导地位的G-R暗电流。
本发明在反偏低压处,有效抑制了隧穿和G-R暗电流,体暗电流分量只剩下基本不随电压变化且绝对值很低的扩散暗电流分量。此时,探测器具有极高的R0A阻抗和综合探测率,以及平直的I-V和RA-V特性响应。
本发明调整势垒层的厚度优化,并将势垒层三个子区域的中间第二子区进行N型掺杂或直接不作特意掺杂,使其保持本征偏N型掺杂。第二子区与附近的第一、第三子区形成P-N结,其内建电场拉低了势垒层B区的导带突起。从而使得器件只需要施加较小的反偏电压,便能收集到大部分光生载流子,具有较高量子效率。本发明在保持极好载流子输运性能的同时抑制了隧穿和产生复合G-R暗电流。因此,器件具有较低的工作开启电压并且较高的暗电流阻抗RA。
附图说明
为了进一步说明本发明的技术内容,以下结合说明书附图对本发明做详细的描述,其中:
图1为依照本发明实施例的锑化物超晶格的甚长波红外探测器结构图;
图2为依照本发明实施例的锑化物超晶格的甚长波红外探测器各个区域的真空能级示意图(未形成半导体接触);PBp结构的各区域未接触的真空能级示意图
图3为依照本发明实施例的锑化物超晶格甚长波红外探测器形成半导体接触后的器件能带示意图;即PBp结构接触后的真空能级示意图。
图4为依照本发明实施例的锑化物超晶格的甚长波红外探测器测量与理论暗电流大小示意图。
附图标志说明:
100-P型GaSb(100)衬底; 200-P型GaSb缓冲层;
300-P型掺杂超晶格吸收层P区; 400-分段掺杂超晶格甚长波势垒层B区;
500-P型重掺杂超晶格接触层p区; 600-P型GaSb盖层;
700-顶电极; 800-下电极;
900-钝化层; 401-势垒层B区第一子区; 402-势垒层B区第二子去; 403-势垒层B区第三子区。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
图1是根据本发明提出的红外探测器结构图,在P型GaSb衬底100上利用分子束外延技术(MBE)依次生长P型GaSb缓冲层200,P型掺杂InAs/GaSb甚长波超晶格材料吸收层P区300,P型分段掺杂InAs/GaSb/AlSb/GaSb中长波超晶格材料势垒层B区400,P型掺杂接触层p区500,P型掺杂GaSb材料盖层600。除了上述超晶格材料以外,还包括沉积覆盖在结构上方的钝化层材料900,以及上电极700和下电极800。
其中,吸收层P区300超晶格的截止波长对应目标甚长波波段约16μm(对应超晶格周期结构为16MLs InAs/10MLs GaSb),势垒层B区400采用截止波长约为6μm的超晶格材料(对应超晶格周期结构为20MLs InAs/3MLs GaSb/5MLs AlSb/3MLs GaSb),接触层p区500采用与吸收层300相同的超晶格结构。这三个区域满足特定的真空能带结构条件,即势垒层的导带略低于吸收层的导带,以利于光生电子的输运;势垒层的价带远低于吸收层的价带,以阻挡多数载流子空穴;接触层和势垒层的超晶格结构一模一样。图2展示了满足上述条件的各区域真空能级示意图。
所述结构中,吸收层P区采用P型弱掺杂(掺杂浓度约为2x 1016cm-3),接触层p区采用P型重掺杂(掺杂浓度约为1x 1018cm-3),势垒层B区的结构采用分段掺杂,按照物理位置分为三个子区401、402和403,子区401与吸收层300连接,子区403与接触层500连接,子区402位于中间。这三个子区分别采用P型(掺杂浓度约为1x 1016cm-3),本征,P型掺杂(掺杂浓度约为1x 1016cm-3),具体见图3。
所述结构当中,子区401与吸收层300采用了相同的P型掺杂,形成了同型结。根据半导体接触原理,在费米能级较高的窄禁带吸收层300内产生了多子空穴积累层。同理,接触层内部也只存在空穴积累层,多子耗尽层全被压缩到了禁带宽禁带势垒层内,详情见图3。图3展现了所述结构形成半导体欧姆接触后,在-0.05V反偏电压下的器件能带结构图。吸收层300内向上弯曲的价带代表了空穴积累层。所述器件通过同型结的方式抑制了吸收层中的耗尽层内产生的主导产生复合G-R暗电流,剩余的势垒层内的G-R暗电流则不占主导地位,具体的器件暗电流表现可见图4。子区403与右侧甚长波欧姆接触层的关系也是类似的。这样的结构设计有效降低了探测器的暗电流大小,提高了动态阻抗和综合探测率。
所述结构中,同型结会导致势垒层400内出现导带凸起,从而阻碍光生电子输运。所以势垒层的中间区域402采取N型掺杂与周边形成P-N结,借助内建电场减小势垒层的导带阻碍,以提升光生载流子的输运,降低探测器开启电压。图3展示了所述器件在-50mV偏压下的整体能带图,可以看到器件的导带平滑通畅,产生于吸收区的光生载流子可以顺利地通过势垒层400向顶电极700移动而被充分收集。
本发明的目的是提出一种超晶格材料的甚长波红外探测器结构,所述结构中的各个部分均采用分子束外延(MBE)技术生长,以实现设计要求,包括精确控制超晶格周期结构,高晶格质量,高均一度和稳定的掺杂浓度。基于本发明结构的红外探测器包含超晶格结构调控,区域厚度控制,同型结设计和分段掺杂等方法。所述器件在有效抑制体暗电流提升综合探测率的同时,仍具有极好载流子输运性能和较低的开启电压,满足高性能甚长波红外探测要求。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种基于锑化物超晶格的甚长波红外探测器结构,其特征是,包括从下到上的以下结构:衬底,缓冲层,甚长波波段吸收层,中长波波段势垒层,甚长波波段欧姆接触层,顶盖层;
缓冲层外延于所述衬底之上;
甚长波波段吸收层称为P区,外延于所述缓冲层之上;
中长波波段势垒层称为B区,外延于所述甚长波波段吸收层P区之上;
甚长波波段欧姆接触层,称为p区,外延于所述中长波波段势垒层B区之上;
顶盖层,外延于所述接触层p区之上;
所述衬底为GaSb(100)材料;
所述缓冲层为P型掺杂GaSb材料;
所述甚长波吸收层P区采用P型掺杂;
所述中长波势垒层B区采用P型分段掺杂;
所述甚长波接触层即欧姆接触层p区采用P型重掺杂;
所述盖层为P型重掺杂材料;
所述P、B、p区和缓冲层及盖层均由三五族半导体组成:InAs,GaSb,AlSb,InSb及其超晶格材料组成;探测器各个区域三五族半导体材料生长和掺杂通过分子束外延技术MBE或金属有机气相沉积技术MOCVD实现;调控各个区域的超晶格结构,掺杂以及厚度以调整器件能带,得到额定探测性能;
所述吸收层P区为超晶格材料,采用P型掺杂,以使电子成为探测少子;P型掺杂浓度为0.5-1.5×1016 cm-3
所述势垒层B区为超晶格材料,采用P型分段掺杂,外延于上述吸收层P区上;
所述欧姆接触层p区为超晶格材料,采用P型重掺杂,以便于与外电极形成欧姆接触,外延于上述势垒层B区上;
所述顶盖层为GaSb体材料,采用P型重掺杂,以便形成欧姆接触,外延于上述接触层p区上;
其中吸收层P区和接触层p区采用InAs/GaSb II类超晶格材料,势垒B区采用InAs/GaSb/AlSb/GaSb超晶格材料或InAs/AlSb超晶格材料;
上述超晶格材料的吸收层P区的带隙对应截止波长在目标甚长波红外波段内;势垒层的厚度在20-250 nm范围内;势垒层采用分段掺杂,以物理位置划分不同的区域并采用不同的掺杂,以实现形成同型结和调控载流子输运性能的要求;吸收层和接触层均采用甚长波波段超晶格材料,势垒层采用中长波波段超晶格材料;
上述结构中的各区域,通过超晶格材料的能带工程,使得各区域满足以下特定的能带条件:势垒层B区的带隙为吸收区带隙的两倍以上;势垒层B区的导带真空能级略低于吸收层P区的导带真空能级;势垒层的价带远低于吸收层的价带、势垒层B区的价带真空能级低于吸收层P区的价带真空能级一个吸收层P区的禁带宽度,以阻挡多数载流子;
所述超晶格材料的接触层p区,采用与吸收层P区相同的超晶格结构,具有相同的真空能级,但采用不同的掺杂;接触p区采用P型重掺杂,以便于与外电极形成欧姆接触从而利于光生载流子向电极的输运;掺杂浓度5 × 1017 cm-3,上述结构中的吸收区层厚度为2-10μm,势垒层厚度为20-250纳米,接触层的厚度小于1μm,盖层的厚度为20至500纳米;
势垒层采用InAs/GaSb/AlSb/GaSb或InAs/AlSb体系超晶格材料,厚度1μm以内;势垒层B区内部分按物理位置为三个部分采用各自的掺杂模式;其中两侧的部分采用P型掺杂以与周围窄禁带材料形成同型结,中间的部分采用N型或本征偏N型掺杂以提高载流子输运性能。
2.根据权利要求1所述的超晶格红外探测器,其特征在于,接触层p区掺杂浓度达到1018cm-3,以便与金属电极形成欧姆接触。
3.根据权利要求1所述的超晶格红外探测器,其特征在于,上述超晶格材料的势垒层B区的带隙对应截止波长在中长波波段内,势垒层的厚度被调控优化,并采用P型掺杂的分段掺杂,以便与两侧区域接触形成恰当的能带结构。
4.根据权利要求1所述的超晶格红外探测器,其特征在于,每一段超晶格材料及掺杂均通过分子束外延方法生长实现。
5.根据权利要求1所述的超晶格红外探测器,其特征在于,上述每一段超晶格材料都满足上下晶格匹配和应力平衡;上述吸收层P区和接触层p区采用截止波长为16 μm的超晶格材料,势垒层B区采用截止波长为6 μm的超晶格材料。
CN202010529281.5A 2020-06-11 2020-06-11 一种超晶格甚长波红外探测器结构 Active CN111710733B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010529281.5A CN111710733B (zh) 2020-06-11 2020-06-11 一种超晶格甚长波红外探测器结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010529281.5A CN111710733B (zh) 2020-06-11 2020-06-11 一种超晶格甚长波红外探测器结构

Publications (2)

Publication Number Publication Date
CN111710733A CN111710733A (zh) 2020-09-25
CN111710733B true CN111710733B (zh) 2023-10-17

Family

ID=72539616

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010529281.5A Active CN111710733B (zh) 2020-06-11 2020-06-11 一种超晶格甚长波红外探测器结构

Country Status (1)

Country Link
CN (1) CN111710733B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113972296B (zh) * 2021-10-25 2022-11-11 中国科学院半导体研究所 红外探测器及其制备方法
CN114649432B (zh) * 2022-03-24 2023-02-17 中国科学院半导体研究所 反转型太赫兹光电探测器及其制备方法
CN115020526A (zh) * 2022-06-07 2022-09-06 中科爱毕赛思(常州)光电科技有限公司 NBp势垒型超晶格高温中波红外探测器及其制作方法
CN116581190B (zh) * 2023-07-13 2023-09-26 太原国科半导体光电研究院有限公司 一种超晶格阵列红外探测器芯片和制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110797424A (zh) * 2019-11-15 2020-02-14 南京大学 一种具有暗电流抑制结构的锑化物超晶格甚长波红外探测器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110797424A (zh) * 2019-11-15 2020-02-14 南京大学 一种具有暗电流抑制结构的锑化物超晶格甚长波红外探测器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
B.-M. Nguyen, S. Bogdanov, S. Abdollahi Pour, and M. Razeghi.Minority electron unipolar photodetectors based on type II InAs/GaSb/AlSb superlattices for very long wavelength infrared detection. Applied Physics Letters.2009,第95卷(第183502期),1-3. *
G. Bishop, E. Plis, J. B. Rodriguez, Y. D. Sharma, H. S. Kim, L. R. Dawson, and S. Krishna .nBn detectors based on In As ∕ Ga Sb type-II strain layer superlattice. Journal of Vacuum Science & Technology B.2008,第26卷(第1145期),1145-1148. *

Also Published As

Publication number Publication date
CN111710733A (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
CN111710733B (zh) 一种超晶格甚长波红外探测器结构
CN110797424B (zh) 一种具有暗电流抑制结构的锑化物超晶格甚长波红外探测器
US5679963A (en) Semiconductor tunnel junction with enhancement layer
US8274096B2 (en) Semiconductor device and method
US9887307B2 (en) Diode barrier infrared detector devices and barrier superlattice structures
US9712105B2 (en) Lateral photovoltaic device for near field use
US6614086B2 (en) Avalanche photodetector
US8299497B1 (en) Near-infrared photodetector with reduced dark current
US5457331A (en) Dual-band infrared radiation detector optimized for fabrication in compositionally graded HgCdTe
Schönbein et al. A 10 μm GaAs/Al x Ga1− x As intersubband photodetector operating at zero bias voltage
Canedy et al. Antimonide type-II “W” photodiodes with long-wave infrared R 0 A comparable to HgCdTe
Burlakov et al. Unipolar semiconductor barrier structures for infrared photodetector arrays
US20220416110A1 (en) Avalanche photodiode structure
CN213242573U (zh) 一种基于Sb化物的中短波双色红外探测器
US20180182912A1 (en) Compound semiconductor solar cell
CN111710732A (zh) 一种锑化物超晶格甚长波红外探测器中抑制扩散暗电流的结构
WO2023141895A1 (zh) 红外探测器及其制备方法
CN113410329B (zh) 双色红外探测器及其制作方法
CN114068738A (zh) 势垒增强同型异质结ii类超晶格长/长波双色红外探测器
Nguyen et al. Very high performance LWIR and VLWIR Type-II InAs/GaSb superlattice photodiodes with M-structure barrier
US7202411B1 (en) Photovoltaic and thermophotovoltaic devices with quantum barriers
US20180308999A1 (en) Semiconductor light receiving device
KR20150014298A (ko) 화합물 반도체 태양 전지
CN110071185B (zh) 多量子阱红外探测器
Kontrosh et al. Influence of adjacent isotype layers on the characteristics of n++-GaAs/i-GaAs/i-AlGaAs/p++-AlGaAs tunnel diodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant