CN114068738A - 势垒增强同型异质结ii类超晶格长/长波双色红外探测器 - Google Patents

势垒增强同型异质结ii类超晶格长/长波双色红外探测器 Download PDF

Info

Publication number
CN114068738A
CN114068738A CN202111275921.5A CN202111275921A CN114068738A CN 114068738 A CN114068738 A CN 114068738A CN 202111275921 A CN202111275921 A CN 202111275921A CN 114068738 A CN114068738 A CN 114068738A
Authority
CN
China
Prior art keywords
type
long
layer
wave
superlattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111275921.5A
Other languages
English (en)
Inventor
徐志成
李光昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongke Aibisaisi Changzhou Photoelectric Technology Co ltd
Original Assignee
Zhongke Aibisaisi Changzhou Photoelectric Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongke Aibisaisi Changzhou Photoelectric Technology Co ltd filed Critical Zhongke Aibisaisi Changzhou Photoelectric Technology Co ltd
Priority to CN202111275921.5A priority Critical patent/CN114068738A/zh
Publication of CN114068738A publication Critical patent/CN114068738A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/1013Devices sensitive to infrared, visible or ultraviolet radiation devices sensitive to two or more wavelengths, e.g. multi-spectrum radiation detection devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03042Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • H01L31/1035Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type the devices comprising active layers formed only by AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明提供一种势垒增强同型异质结II类超晶格长/长波双色红外探测器,包括:在衬底上依次外延生长的缓冲层、P型第一欧姆接触层,P型第一长波吸收层、P型空穴势垒层、P型第二长波吸收层、P型第二欧姆接触层;P型第一长波吸收层以及P型第二长波吸收层分别与P型空穴势垒层形成同型掺杂异质结。本发明公开的结构通过偏压调制实现了在长波段的双色探测功能,结构简单;通过同型掺杂异质结和单势垒结构的引入,相较于传统NPPN结构的双色探测器,大幅降低了长波吸收区中的空间电场,有效抑制了吸收区中的产生‑复合暗电流和隧穿暗电流,提高了器件的信噪比和探测率。

Description

势垒增强同型异质结II类超晶格长/长波双色红外探测器
技术领域
本发明属于半导体光电器件技术领域,尤其涉及一种势垒增强同型异质结II类超晶格长/长波双色红外探测器。
背景技术
随着红外探测系统应用环境的不同,影响红外探测系统准确度的因素也多种多样,比如不断变化的气候温度,探测目标的伪装以及红外诱饵释放等,最终导致单一波段的红外探测器系统在获取信息方面有所削弱。特别是当处于运动状态中的目标自身发生改变时,其红外辐射峰值对应的波长将发生移动,这将使得红外探测系统的探测准确度大幅度降低甚至有可能无法探测到目标。相较于单色探测器,双色探测器可以实现远端温度的测量,且可以在更广的大气环境下工作,更精准的对目标以及背景杂斑进行区分。不同类型辐射源其双色红外辐射响应波段明显不同,因此双波段探测器可以利用目标与红外诱饵光谱特性的差异来提取真实目标,实现抗红外诱饵干扰的目的,另外在对高速移动的物体进行跟踪时,双波段探测的应用可以提供更高的帧频。
根据普朗克黑体公式,物体的红外辐射峰值波长随着物体温度升高而降低。对于室温附近的物体而言,其红外辐射波峰处于8-15μm的长波波段之内,因此利用长/长波双色红外探测器两波段间差异化探测可以对室温目标进行更加高效的捕捉和识别,弥补了单色长波探测器虚警率高、探测距离不足的问题,长/长波双色红外探测技术已经成为航空、航天等领域亟需的重要光电感知手段。
InAs/GaSb II类超晶格作为第三代焦平面红外探测器的优选材料,其最大特点是其特殊的能带排列结构,InAs导带底在GaSb价带顶之下,形成II类超晶格,导致电子和空穴的空间分布分离,有利于单独设计电子和空穴势垒,分别控制电子和空穴的疏运。目前InAs/GaSb II类超晶格双色红外探测器主要是背靠背PIN结构,不同波长的红外辐射在对应的吸收I区中被吸收,光生载流子扩散至欧姆接触层后最终被电极收集产生光电流。但是PIN结构中的空间电荷区由于内建电场的存在,容易产生G-R暗电流和隧穿暗电流,尤其对于长波红外探测器,由于禁带宽度较窄,在空间电荷区产生的暗电流相较于中短波探测器大大提高,因此长波红外探测器的性能受暗电流噪声制约更为严重。
发明内容
本发明的目的是设计一种势垒增强同型异质结II类超晶格长/长波双色红外探测器,以解决目前存在的以下技术问题:
1.PIN结构的光电探测器中空间电荷区会引发暗电流,尤其是长波段红外探测器,由于材料带隙较窄,其暗电流水平较高;
2.目前双色红外探测器主要采用背靠背的PIN结构,其结构复杂,设计和制造难度增加。
本发明采用如下技术方案:
本发明提供一种势垒增强同型异质结II类超晶格长/长波双色红外探测器,包括:P型第一长波吸收层、外延于所述P型第一长波吸收层上的P型空穴势垒层,以及外延于所述P型空穴势垒层上的P型第二长波吸收层;所述P型第一长波吸收层以及所述P型第二长波吸收层分别与所述P型空穴势垒层形成同型掺杂异质结。
进一步的,所述的势垒增强同型异质结II类超晶格长/长波双色红外探测器,还包括:衬底、缓冲层、P型第一欧姆接触层、P型第二欧姆接触层、第一电极以及第二电极;所述缓冲层外延生长于所述衬底之上,所述P型第一欧姆接触层外延生长于所述缓冲层上,所述P型第一长波吸收层外延生长于所述P型第一欧姆接触层上,所述P型第二欧姆接触层外延生长于所述P型第二长波吸收层上;所述第一电极设于所述P型第一欧姆接触层上未被所述P型第一长波吸收层所覆盖的台面上,所述第二电极设于所述P型第二欧姆接触层之上。
进一步的,所述P型第一长波吸收层厚度为0.5~3μm,由InAs/GaSb超晶格组成,每周期由12-16ML InAs和4-10ML GaSb构成,Be的掺杂浓度为1×1015cm-3~5×1015cm-3且不低于所述P型空穴势垒层中Be的掺杂浓度。
进一步的,所述P型空穴势垒层厚度为100nm-200nm,由InAs/GaSb/AlSb/GaSb超晶格组成,每周期由16-22ML InAs、3-5ML GaSb、4-6ML AlSb、3-5ML GaSb构成,Be的掺杂浓度为1×1015cm-3~5×1015cm-3
进一步的,所述P型第二长波吸收层厚度为0.5-3μm,由InAs/GaSb超晶格组成,每周期由12-16ML InAs和4-10ML GaSb构成,Be的掺杂浓度为1×1015cm-3~1×1016cm-3且不低于所述P型空穴势垒层中Be的掺杂浓度。
进一步的,所述P型第一欧姆接触层为在GaSb中掺杂Be形成,Be的掺杂浓度为5×1017cm-3~2×1018cm-3,与所述第一电极形成欧姆接触;所述P型第二欧姆接触层为在InAs中掺杂Be形成,Be掺杂浓度为5×1017cm-3~2×1018cm-3,与所述第二电极形成欧姆接触。
本发明所带来的有益效果:
1.P型第一长波吸收层和P型空穴势垒层形成同型异质结,使处于同型结结区内的空间电荷区缩短,在P型第一长波吸收层抑制了产生-复合电流和隧穿暗电流;
2.P型第二长波吸收层和P型空穴势垒层形成同型异质结,使处于同型结结区内的空间电荷区缩短,在P型第二长波吸收层抑制了产生-复合电流和隧穿暗电流;
3.根据G-R暗电流随带隙变宽快速减小,以及暗电流拟合结果显示,其他带隙较宽区域内产生的G-R电流对总体暗电流贡献不大;
4.本发明P型空穴势垒层采用的InAs/GaSb/AlSb/GaSb超晶格设计,因为AlSb拥有较宽的禁带,使P型空穴势垒层空穴势阱形成双势阱结构,相对于传统InAs/GaSb超晶格拥有更灵活易调控的超晶格等效价带,同时拥有更高的电子有效质量,防止了电子在相邻势阱间的隧穿;
5.本发明中P型第一长波吸收层及P型第二长波吸收层采用P型掺杂,其中少子为具有更高迁移率,更长扩散长度的电子,因此相比N型掺杂器件,本发明可以将P型第一长波吸收层及P型第二长波吸收层设计得更厚以提高器件量子效率,或者在量子效率相同的情况下拥有更短的响应时间;
6.本发明由于合理精确的能带工程调节,使得在较短波长工作模式下,P型第一长波吸收层导带高于P型空穴势垒层导带,且P型空穴势垒层导带高于P型第二长波吸收层导带,在较长波长工作模式下,P型第二长波吸收层导带高于P型空穴势垒层导带且P型空穴势垒层导带高于P型第一长波吸收层导带,且无论外接何种电压,导带皆通畅平滑,因此本发明器件具有良好的载流子疏运性能和较低的工作电压,约0mV-60mV,光生少子即电子在这样的情况下可以顺利地通过漂移作用移动至电极处,从而提高响应度。
附图说明
图1是本发明势垒增强同型异质结II类超晶格长/长波双色红外探测器的结构示意图;
图2是本发明的势垒增强同型异质结II类超晶格长/长波双色红外探测器无外接电压时理论上的器件能带示意图,此时探测器工作模式为较短波段模式;
图3是本发明的势垒增强同型异质结II类超晶格长/长波双色红外探测器外接正偏电压时理论上的器件能带示意图,此时探测器工作模式为较长波段模式。
具体实施方式
现有技术中,InAs/GaSb II类超晶格双色红外探测器主要是背靠背PIN结构,不同波长的红外辐射在对应的吸收I区中被吸收,光生载流子扩散至欧姆接触层后最终被电极收集产生光电流。但是PIN结构中的空间电荷区由于内建电场的存在,容易产生G-R暗电流和隧穿暗电流,尤其对于长波红外探测器,由于禁带宽度较窄,在空间电荷区产生的暗电流相较于中短波探测器大大提高,因此长波红外探测器的性能受暗电流噪声制约更为严重。
为解决现有技术中的上述技术问题,本发明提供一种双色红外探测器,利用超晶格结构易于进行能带调控的特点,引入单势垒结构,通过势垒的宽禁带大幅度抑制空间电荷区处的G-R暗电流和隧穿暗电流,从而降低器件整体暗电流。此外,将扩散长度更长的电子作为光生少子,有利于提高探测器的量子效率,因此长波超晶格的吸收区一般进行P型补偿掺杂。相较于异型掺杂的PN异质结,同型掺杂的PP异质结拥有更窄的空间电荷区,有利于进一步降低器件的暗电流水平。因此可以通过设计同型异质结构,对红外探测器中吸收区及其相邻的结构都进行P型补偿掺杂,进一步提高该探测器的信噪比和探测率。
本发明根据超晶格红外探测器的能带结构特点,通过能带工程,设计并制造了一种结构简单的双色超晶格红外探测器,并且解决了长波红外探测波段暗电流偏高的难题。
如图1所示,在一些说明性的实施例中,本发明针对现有双色红外探测器结构复杂以及暗电流高的技术问题,提供一种双色红外探测器,具体是一种偏压调制的势垒增强同型异质结II类超晶格长/长波双色红外探测器,具体包括:衬底1、缓冲层2、P型第一欧姆接触层3、P型第一长波吸收层4、P型空穴势垒层5、P型第二长波吸收层6、P型第二欧姆接触层7、第一电极8及第二电极9。
衬底1,制备材料包括GaSb。
缓冲层2,外延生长于衬底1之上,制备材料包括非掺杂的GaSb。
P型第一欧姆接触层3,称为P1区,其外延生长于缓冲层2之上,制备材料包括:GaSb、Be。
P型第一长波吸收层4,称为πB区,其外延生长于P型第一欧姆接触层3之上,制备材料包括:InAs/GaSb超晶格。具体的,P型第一长波吸收层4外延生长于部分P型第一欧姆接触层3之上,未被覆盖的P1区形成台面,第一电极8设于P型第一欧姆接触层3上未被P型第一长波吸收层4所覆盖的台面上。
P型空穴势垒层5,称为M区,其外延生长于P型第一长波吸收层4之上,制备材料包括:InAs/GaSb/AlSb/GaSb超晶格。
P型第二长波吸收层6,称为πR区,其外延生长于P型空穴势垒层5之上,制备材料包括:InAs/GaSb超晶格。
P型第二欧姆接触层7,称为P2区,其外延生长于P型第二长波吸收层6之上,制备材料包括:InAs、Be。第二电极9设于P型第二欧姆接触层7之上。第一电极8与第二电极9作为电极窗口通过光刻腐蚀分别开设于台面和P2区之上。
本发明中的P型第一欧姆接触层3为在GaSb中掺杂Be形成,Be的掺杂浓度为5×1017cm-3~2×1018cm-3,形成重型掺杂以便与第一电极8形成欧姆接触。优选的,Be的掺杂浓度具体选为1×1018cm-3
本发明中的P型第一长波吸收层4为超晶格材料,采用P型轻掺杂。
P型第一长波吸收层4的厚度为0.5~3μm,优选的,P型第一长波吸收层4的厚度具体选为1.8μm。
P型第一长波吸收层4由InAs/GaSb超晶格组成,每周期由12-16ML InAs和4-10MLGaSb构成,优选的,InAs/GaSb周期厚度为14ML/6ML。
P型第一长波吸收层4中,Be的掺杂浓度为1×1015cm-3~5×1015cm-3且不低于P型空穴势垒层5中Be的掺杂浓度,以使空间电荷区尽量位于P型空穴势垒层5之内,优选的,Be的掺杂浓度具体选为5×1015cm-3。经此设计的P型第一长波吸收层4禁带宽度为146meV,吸收波长为8.5μm。
本发明中的P型空穴势垒层5为超晶格材料,采用P型轻掺杂。
P型空穴势垒层5的厚度为100nm-200nm,优选的,P型空穴势垒层5的厚度为180nm。
P型空穴势垒层5由InAs/GaSb/AlSb/GaSb M结构超晶格组成,每周期由16-22MLInAs、3-5ML GaSb、4-6ML AlSb、3-5ML GaSb构成。优选的,InAs/GaSb/AlSb/GaSb周期厚度为21ML/3ML/4ML/3ML。
P型空穴势垒层5中Be的掺杂浓度为1×1015cm-3~5×1015cm-3,优选的,Be的掺杂浓度为1×1015cm-3,低于P型第一长波吸收层4和P型第二长波吸收层6中Be的掺杂浓度以涵盖同型异质结中绝大部分的空间电荷区。
具体操作时,本发明可调整InAs/GaSb/AlSb/GaSb超晶格中InAs层、GaSb层、AlSb层的周期厚度和超晶格总厚度以使得导带偏差近零。经此设计的P型空穴势垒层禁带宽度为278meV。
本发明中的P型第二长波吸收层6为超晶格材料,采用P型轻掺杂。
P型第二长波吸收层6的厚度为0.5-3μm,优选的,P型第二长波吸收层6的厚度选为1.8μm。
P型第二长波吸收层6由InAs/GaSb超晶格组成,每周期由12-16ML InAs和4-10MLGaSb构成,优选的,InAs/GaSb周期厚度为15ML/7ML。
P型第二长波吸收层6中Be的掺杂浓度为1×1015cm-3~1×1016cm-3且不低于P型空穴势垒层5中Be的掺杂浓度,以使空间电荷区尽量位于P型空穴势垒层之内,优选的,P型空穴势垒层5中Be的掺杂浓度为5×1015cm-3
经此设计的P型第二长波吸收层6禁带宽度为121meV,吸收波长为10.25μm。
将πB区、M区、πR区中Be的掺杂浓度限定在上述范围内有利于降低器件中的缺陷和产生-复合中心密度,有利于降低暗电流。
P型第二欧姆接触层7为在InAs中掺杂Be形成,Be掺杂浓度为5×1017cm-3~2×1018cm-3,形成重型掺杂以便与第二电极9形成欧姆接触,优选的,Be掺杂浓度为1×1018cm-3
本发明通过将P型空穴势垒层5夹在P型第一长波吸收层4和P型第二长波吸收层6之间形成单势垒增强同型异质结结构,并通过调节各层超晶格的厚度、超晶格组分以及掺杂浓度保持与P型第一长波吸收层4和P型第二长波吸收层6之间近零的导带偏差;通过调节P型空穴势垒层5的厚度和P型掺杂浓度,使其与P型第一长波吸收层4和P型第二长波吸收层6间形成两个导带偏差近零的同型异质结,通过调节工作偏压来改变两个吸收层导带间的相对高度,以实现对P型第一长波吸收层4和P型第二长波吸收层6中光生少子电子通过方向的控制,实现长/长波双色探测的功能。
本发明通过调整各区域超晶格结构,厚度及掺杂浓度以设计器件能带结构,使得各超晶格区域,满足如下特定的能带条件:
第一,如图2所示,较短波长工作模式下,即第一长波模式下,πR区的导带略低于M区的导带,M区的导带略低于πB区的导带,有利于光生电子的疏运。其中,本发明所提到的第一波长模式的吸收波长为8-10μm,即P型第一长波吸收层4的吸收波长为8-10μm;
第二,如图3所示,较长波长工作模式下,即第二长波模式下,πB区的导带略低于M区的导带,M区的导带略低于πR区的导带,有利于光生电子的疏运。其中,本发明所提到的第二波长模式的吸收波长为10-14μm,即P型第二长波吸收层6的吸收波长为10-14μm;
第三,πB区及πR区的导带分别与P1区及P2区的导带相匹配;πB区、πR区、M区之间的导带偏差近零。
本发明在传统势垒结构的基础上,引入了同型结的概念,即πB区、πR区分别与M区形成同型异质结,因此,本发明是一种具有势垒增强同型结结构的长/长波双色红外探测器。本发明进行了势垒增强同型结结构的设计,有效地限制了空间电荷区的宽度,阻止了空间电荷区进入吸收πB区及πR区,从而有效抑制了吸收区中的产生-复合暗电流和隧穿暗电流。
本发明的结构设计使得器件能带结构在无外接电压时如图2所示,由图2可见器件具有通畅平滑的导带,有利于光生电子的疏运。此时,器件工作模式为第一长波模式,导带从πB区到πR区平稳下降,有利于πB区产生的光生电子疏运到P2区处,而多子空穴被P型空穴势垒层5阻挡。
器件能带结构在外接60mV偏置电压时如图3所示,此时器件工作模式为第二长波模式,导带从πR区到πB区平稳下降,有利于πR区产生的光生电子疏运到P1区处,而多子空穴被P型空穴势垒层5阻挡。
综上,本发明的结构无论外接何种偏置电压,即不论是反偏或零偏压时,还是正偏压时,πB区、πR区与M区形成的同型异质结中的绝大部分空间电荷区始终被保持在M区中,大幅度抑制了器件中G-R暗电流和隧穿暗电流的产生,提升了器件的信噪比和探测率。
综上所述,本发明利用超晶格结构易于进行能带调控的特点,引入单势垒结构,通过势垒的宽禁带大幅度抑制空间电荷区处的G-R电流和隧穿电流,从而降低器件整体暗电流。
本发明将扩散长度更长的电子作为光生少子,有利于提高探测器的量子效率,因此长波超晶格的吸收区一般进行P型补偿掺杂。相较于异型掺杂的PN异质结,本发明同型掺杂的PP异质结拥有更窄的空间电荷区,有利于进一步降低器件的暗电流水平。因此对于势垒增强长/长波双色红外探测器,引入同型异质结构,对其势垒层和吸收层都进行P型补偿掺杂,可以进一步提高该探测器的信噪比和探测率。

Claims (6)

1.势垒增强同型异质结II类超晶格长/长波双色红外探测器,其特征在于,包括:P型第一长波吸收层、外延于所述P型第一长波吸收层上的P型空穴势垒层,以及外延于所述P型空穴势垒层上的P型第二长波吸收层;
所述P型第一长波吸收层以及所述P型第二长波吸收层分别与所述P型空穴势垒层形成同型掺杂异质结。
2.根据权利要求1所述的势垒增强同型异质结II类超晶格长/长波双色红外探测器,其特征在于,还包括:衬底、缓冲层、P型第一欧姆接触层、P型第二欧姆接触层、第一电极以及第二电极;
所述缓冲层外延生长于所述衬底之上,所述P型第一欧姆接触层外延生长于所述缓冲层上,所述P型第一长波吸收层外延生长于所述P型第一欧姆接触层上,所述P型第二欧姆接触层外延生长于所述P型第二长波吸收层上;
所述第一电极设于所述P型第一欧姆接触层上未被所述P型第一长波吸收层所覆盖的台面上,所述第二电极设于所述P型第二欧姆接触层之上。
3.根据权利要求2所述的势垒增强同型异质结II类超晶格长/长波双色红外探测器,其特征在于,所述P型第一长波吸收层厚度为0.5~3μm,由InAs/GaSb超晶格组成,每周期由12-16ML InAs和4-10ML GaSb构成,Be的掺杂浓度为1×1015cm-3~5×1015cm-3且不低于所述P型空穴势垒层中Be的掺杂浓度。
4.根据权利要求3所述的势垒增强同型异质结II类超晶格长/长波双色红外探测器,其特征在于,所述P型空穴势垒层厚度为100nm-200nm,由InAs/GaSb/AlSb/GaSb超晶格组成,每周期由16-22ML InAs、3-5ML GaSb、4-6ML AlSb、3-5ML GaSb构成,Be的掺杂浓度为1×1015cm-3~5×1015cm-3
5.根据权利要求4所述的势垒增强同型异质结II类超晶格长/长波双色红外探测器,其特征在于,所述P型第二长波吸收层厚度为0.5-3μm,由InAs/GaSb超晶格组成,每周期由12-16ML InAs和4-10ML GaSb构成,Be的掺杂浓度为1×1015cm-3~1×1016cm-3且不低于所述P型空穴势垒层中Be的掺杂浓度。
6.根据权利要求5所述的势垒增强同型异质结II类超晶格长/长波双色红外探测器,其特征在于,
所述P型第一欧姆接触层为在GaSb中掺杂Be形成,Be的掺杂浓度为5×1017cm-3~2×1018cm-3,与所述第一电极形成欧姆接触;
所述P型第二欧姆接触层为在InAs中掺杂Be形成,Be掺杂浓度为5×1017cm-3~2×1018cm-3,与所述第二电极形成欧姆接触。
CN202111275921.5A 2021-10-29 2021-10-29 势垒增强同型异质结ii类超晶格长/长波双色红外探测器 Pending CN114068738A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111275921.5A CN114068738A (zh) 2021-10-29 2021-10-29 势垒增强同型异质结ii类超晶格长/长波双色红外探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111275921.5A CN114068738A (zh) 2021-10-29 2021-10-29 势垒增强同型异质结ii类超晶格长/长波双色红外探测器

Publications (1)

Publication Number Publication Date
CN114068738A true CN114068738A (zh) 2022-02-18

Family

ID=80236129

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111275921.5A Pending CN114068738A (zh) 2021-10-29 2021-10-29 势垒增强同型异质结ii类超晶格长/长波双色红外探测器

Country Status (1)

Country Link
CN (1) CN114068738A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116487453A (zh) * 2023-06-25 2023-07-25 山西创芯光电科技有限公司 一种二类超晶格红外探测器及其制备方法
CN117747691A (zh) * 2023-11-22 2024-03-22 广州市南沙区北科光子感知技术研究院 双色势垒型GaSb基InAs/InAsSb异质结光电晶体管及制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116487453A (zh) * 2023-06-25 2023-07-25 山西创芯光电科技有限公司 一种二类超晶格红外探测器及其制备方法
CN116487453B (zh) * 2023-06-25 2023-09-12 山西创芯光电科技有限公司 一种二类超晶格红外探测器及其制备方法
CN117747691A (zh) * 2023-11-22 2024-03-22 广州市南沙区北科光子感知技术研究院 双色势垒型GaSb基InAs/InAsSb异质结光电晶体管及制备方法

Similar Documents

Publication Publication Date Title
US8274096B2 (en) Semiconductor device and method
US9647164B2 (en) Single-band and dual-band infrared detectors
CN110797424B (zh) 一种具有暗电流抑制结构的锑化物超晶格甚长波红外探测器
Tian et al. Interband cascade infrared photodetectors with enhanced electron barriers and p-type superlattice absorbers
CN114068738A (zh) 势垒增强同型异质结ii类超晶格长/长波双色红外探测器
US9887307B2 (en) Diode barrier infrared detector devices and barrier superlattice structures
CN111710733B (zh) 一种超晶格甚长波红外探测器结构
US5457331A (en) Dual-band infrared radiation detector optimized for fabrication in compositionally graded HgCdTe
Ting et al. Antimonide-based barrier infrared detectors
US9941431B2 (en) Photodiode having a superlattice structure
Schönbein et al. A 10 μm GaAs/Al x Ga1− x As intersubband photodetector operating at zero bias voltage
Ting et al. Antimonide superlattice complementary barrier infrared detector (CBIRD)
JP5497686B2 (ja) アバランシェフォトダイオード
WO2006015280A2 (en) Photodetectors including germanium
Canedy et al. Antimonide type-II “W” photodiodes with long-wave infrared R 0 A comparable to HgCdTe
Sood et al. Design and development of two-dimensional strained layer superlattice (SLS) detector arrays for IR applications
CN213242573U (zh) 一种基于Sb化物的中短波双色红外探测器
Aifer et al. W-structured type-II superlattice-based long-and very long wavelength infrared photodiodes
Wang et al. A GaAs/AlAs/AlGaAs and GaAs/AlGaAs stacked quantum well infrared photodetector for 3–5 and 8–14 μm detection
Wang et al. Voltage‐tunable dual‐mode operation InAlAs/InGaAs quantum well Infrared photodetector for narrow‐and broadband detection at 10 μm
WO2023141895A1 (zh) 红外探测器及其制备方法
CN115663043A (zh) 一种互补势垒cbird结构的长波红外探测器
JP3368822B2 (ja) 太陽電池
Nguyen et al. Very high performance LWIR and VLWIR Type-II InAs/GaSb superlattice photodiodes with M-structure barrier
CN111799343B (zh) 多色红外探测器及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination