JP7428891B2 - 光学センサ及び撮像装置 - Google Patents

光学センサ及び撮像装置 Download PDF

Info

Publication number
JP7428891B2
JP7428891B2 JP2020062431A JP2020062431A JP7428891B2 JP 7428891 B2 JP7428891 B2 JP 7428891B2 JP 2020062431 A JP2020062431 A JP 2020062431A JP 2020062431 A JP2020062431 A JP 2020062431A JP 7428891 B2 JP7428891 B2 JP 7428891B2
Authority
JP
Japan
Prior art keywords
layer
light
barrier layer
optical sensor
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020062431A
Other languages
English (en)
Other versions
JP2021163820A (ja
Inventor
僚 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2020062431A priority Critical patent/JP7428891B2/ja
Publication of JP2021163820A publication Critical patent/JP2021163820A/ja
Application granted granted Critical
Publication of JP7428891B2 publication Critical patent/JP7428891B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本発明は、光学センサ及び撮像装置に関する。
光吸収層の上にn型コレクタ兼バリア層、p型ベース層、n型エミッタ層を順に積層し、フォトダイオードとヘテロバイポーラトランジスタとを積層した形のヘテロ接合バイポーラフォトトランジスタが知られている。また、n型バリア層と、n型バリア層上に形成された活性層と、活性層上に形成されたp型バリア層とを備えた赤外線センサが知られている。
国際公開第2010/093058号パンフレット 特開2018-060919号公報
例えば、p型受光層とn型電極層が積層された構造を有し、接触抵抗低減の観点からn型電極層を比較的高不純物濃度に設定した光学センサを考える。pn接合界面は、p型受光層とn型電極層との界面になる。このような光学センサでは、比較的高不純物濃度のn型電極層よりもp型受光層に空乏層が広がり易い。p型受光層への空乏層の広がりは、熱的なキャリアの生成等を引き起こし、暗電流を増加させる要因となる。暗電流の増加は、雑音成分の増加、信号/雑音比の低下を招き、光学センサの性能を低下させる恐れがある。
これに対し、p型受光層と比較的高不純物濃度のn型電極層との間にp型バリア層を設ける構造を採用し、pn接合界面をp型バリア層とn型電極層との界面にすることで、p型受光層への空乏層の広がりを抑え、暗電流を抑えることも考えられる。
しかし、このような構造を採用した光学センサであっても、製造される個々のp型受光層の特性、動作時の印加電圧条件によっては、p型受光層への空乏層の広がり、それによる暗電流の増加、信号/雑音比の低下を、効果的に抑えることができない場合がある。
尚、上記のp型受光層、p型バリア層及びn型電極層とは極性の異なる光学センサ、即ち、n型受光層、n型バリア層及びp型電極層を有する光学センサでも、同様のことが起こり得る。
1つの側面では、本発明は、暗電流の増加を抑え、信号/雑音比の高い光学センサを実現することを目的とする。
1つの態様では、第1導電型の不純物を含む受光層と、前記受光層の第1面に設けられ、前記第1導電型の不純物を含む第1バリア層と、前記第1バリア層の、前記受光層とは反対側の第2面に設けられ、前記第1導電型とは異なる第2導電型の不純物を含む第2バリア層と、前記第2バリア層の、前記第1バリア層とは反対側の第3面に設けられ、前記第2バリア層よりも高濃度の前記第2導電型の不純物を含む電極層とを有し、前記第1バリア層と前記第2バリア層との接合界面において、前記第1バリア層の前記第1導電型の不純物の濃度は、前記第2バリア層の前記第2導電型の不純物の濃度よりも高い光学センサが提供される。
また、1つの態様では、上記のような光学センサを備える撮像装置が提供される。
1つの側面では、暗電流の増加を抑え、信号/雑音比の高い光学センサを実現することが可能になる。
光学センサ及びそれと接続される駆動回路の回路図の一例である。 第1の実施の形態に係る光学センサの一例について説明する図である。 第2の実施の形態に係る光学センサの一例について説明する図である。 第2の実施の形態に係る光学センサの形成方法の一例について説明する図(その1)である。 第2の実施の形態に係る光学センサの形成方法の一例について説明する図(その2)である。 第2の実施の形態に係る光学センサの形成方法の一例について説明する図(その3)である。 第2の実施の形態に係る光学センサの熱平衡状態でのエネルギーバンド図である。 第2の実施の形態に係る光学センサの上部電極層側に正電圧を印加した時のエネルギーバンド図である。 別の形態に係る光学センサの上部電極層側に正電圧を印加した時のエネルギーバンド図である。 印加電圧と受光層の空乏層幅との関係の一例を示す図である。 印加電圧と暗電流との関係の一例を示す図である。 第3の実施の形態に係る光学センサの一例について説明する図である。 第4の実施の形態に係る撮像素子の一例について説明する図(その1)である。 第4の実施の形態に係る撮像素子の一例について説明する図(その2)である。 第5の実施の形態に係る撮像システムの一例について説明する図である。
まず、光学センサについて述べる。
例えば、赤外線を吸収してキャリアを生成する受光層に、インジウムヒ素(InAs)、ガリウムアンチモン(GaSb)等のナローギャップ半導体のタイプII超格子(Type II Super-Lattice;T2SL)構造を用いた光学センサ(「検出器」とも言う)が知られている。また、そのような光学センサを1画素とし、画素群を2次元に配列した撮像素子(「撮像装置」とも言う)が知られている。
タイプII超格子は、水銀カドミウムテルル(Mercury Cadmium Telluride;MCT)に変わる次世代の光学センサ材料として期待されており、現在盛んに研究されている。多くは、GaSb基板上に、それと格子定数が近いGaSb、InAs、アルミニウムアンチモン(AlSb)等の材料を用いて超格子構造を形成する。これを受光層とすることにより、中赤外線(波長3μm~5μm)領域、遠赤外線(波長8μm~12μm)領域の赤外線を検出することのできる光学センサが実現される。また、このような光学センサを1画素とし、複数の画素を2次元に配列した撮像素子により、2次元の像を取得することが可能になる。光学センサ及びそれを用いた撮像素子は、セキュリティ、インフラ点検分野等への応用が期待されている。
撮像素子では、画素となる光学センサの暗電流を低減することによって雑音を低減し、信号/雑音比(S/N比)を高めること、及び画素群の信号/雑音比のばらつきを抑えることが望ましい。
画素となる光学センサの暗電流を低減して雑音を低減し、信号/雑音比を高めることを目的とした構造の1つとして、従来、p型下部電極層上のp型受光層の上にp型バリア層を介してn型上部電極層を積層した構造が開示されている(Superlattice and Microstructures, vol. 104, pp. 402-414 (2017))。
例えば、この構造において、p型バリア層を設けない場合、p型下部電極層、p型受光層、n型上部電極層が積層されることになるので、pn接合界面は、p型受光層とn型上部電極層との界面になる。pn接合界面では空乏層が形成される。ここで、p型受光層側に形成される空乏層の幅をw、n型上部電極層側に形成される空乏層の幅をwとすると、w及びwは、それぞれ次の式(1)及び式(2)のように表される。
=√[{2ε(Vbi-V)/qN}×N/(N+N)]・・・(1)
=√[{2ε(Vbi-V)/qN}×N/(N+N)]・・・(2)
式(1)及び式(2)において、εは半導体の誘電率、Vbiは拡散電位、Vは印加電圧、qは素電荷である。Nはアクセプタ濃度、即ち、p型不純物濃度であり、不純物濃度が高い場合、アクセプタ濃度はp型半導体のキャリア濃度に等しくなる。Nはドナー濃度、即ち、n型不純物濃度であり、不純物濃度が高い場合、ドナー濃度はn型半導体のキャリア濃度に等しくなる。式(1)及び式(2)に示されるように、空乏層の幅は、接合されるp型半導体のアクセプタ濃度とn型半導体のドナー濃度との大小関係で決定され、不純物濃度の低い方へ空乏層が広がる。
通常、n型上部電極層は、接触抵抗の低減のため、比較的高い不純物濃度に設定される。よって、n型上部電極層の不純物濃度は、p型受光層の不純物濃度よりも高くなる。これにより、空乏層は、不純物濃度の低いp型受光層側へ広がる。n型上部電極層側に正電圧、p型下部電極層側に負電圧を印加して光学センサを動作させる場合も、上記の式(1)及び式(2)で示されるように、空乏層は、不純物濃度の低いp型受光層側へ広がる。p型受光層への空乏層の広がりは、熱的なキャリアの生成等を引き起こし、暗電流を増加させる要因となる。
そこで、前述の従来構造のように、p型受光層上にp型バリア層を介してn型上部電極層を設ける構造が採用される。
このようなp型バリア層を設ける構造では、pn接合界面が、p型受光層から離され、p型バリア層とn型上部電極層との界面になる。n型上部電極層は、接触抵抗の低減のため、比較的高い不純物濃度に設定される。よって、n型上部電極層の不純物濃度は、p型バリア層の不純物濃度よりも高くなる。これにより、空乏層は、不純物濃度の低いp型バリア層側へ広がる。p型バリア層側へ広がる空乏層の幅が、p型バリア層の膜厚よりも薄ければ、p型受光層に空乏領域が形成されないことになるので、p型受光層の空乏領域における熱的なキャリアの生成等が抑えられる。また、p型バリア層中に空乏領域が形成されることになるが、p型バリア層のバンドギャップがp型受光層のバンドギャップの2倍以上であれば、p型バリア層の空乏領域で熱的に生成される暗電流は十分無視することができるようになる。p型バリア層を設けた光学センサによれば、暗電流を抑えることができ、n型上部電極層側に正電圧、p型下部電極層側に負電圧を印加して動作させる場合も、p型受光層に空乏層が広がらない印加電圧条件(所定の電圧範囲)であれば高い信号/雑音比を得ることができる。
しかし、このような光学センサでは、製造される個々の光学センサの特性、その動作時の印加電圧条件によっては、p型受光層への空乏層の広がり、それによる暗電流の増加、信号/雑音比の低下を、効果的に抑えることができない場合がある。
図1は光学センサ及びそれと接続される駆動回路の回路図の一例である。
駆動回路200aは、所定の電位のリセットレベルに一方の負荷端子が接続されたリセットスイッチ210と、リセットスイッチ210の他方の負荷端子に接続されたキャパシタ220とを含む。駆動回路200aは更に、リセットスイッチ210とキャパシタ220との接続ノードに一方の負荷端子が接続されたトランジスタ230を含む。このトランジスタ230の他方の負荷端子に光学センサ1aが接続される。光学センサ1aは、受光層1aaを含み、受光層1aaの一方の側に積層される上部電極層がトランジスタ230と接続され、受光層1aaの他方の側に積層される下部電極層が所定の電位Vに設定される。
光学センサ1aを備える撮像素子では、リセットスイッチ210とトランジスタ230が共にOFF状態とされ、赤外線等の光の吸収により受光層1aaに信号電荷が生成される。駆動回路200aのリセットスイッチ210がON状態とされてキャパシタ220の電位が初期値にリセットされる。リセットスイッチ210がOFF状態、トランジスタ230がON状態とされ、光学センサ1aに逆バイアスが印加されると、受光層1aaの信号電荷がキャパシタ220に転送される。これにより、キャパシタ220の電位が初期値から変化し、その変化が信号処理回路で読み出される。そして、リセットスイッチ210がON状態とされてキャパシタ220の電位がリセットされ、リセットスイッチ210とトランジスタ230が共にOFF状態とされて次の信号電荷の検出が準備される。
光学センサ1a及び駆動回路200aを備える撮像素子において、外部から任意に設定できる電位は、下部電極層側の電位Vと、トランジスタ230のゲート端子の電位VIGである。光学センサ1aにかかる電位差、即ち、印加電圧は、下部電極層側の電位Vと、上部電極層側の電位Vとの差になる。電位Vは、駆動回路200aのトランジスタ230のゲート端子の電位VIGと、トランジスタ230を流れるドレイン電流とによって間接的に決まる。そのため、光学センサ1aの上部電極層側に任意の電位を直接与えることはできない。
一般的に、個々の光学センサ1aの受光層1aaの特性は必ずしも同じではなく、光学センサ1a毎に多少の違いがあり得る。そのため、同じ方法を用いて製造された光学センサ1a群に対し、同じ電位V及び電位VIGを与えても、受光層1aaの特性の違いから流れる電流が異なり、電位Vが光学センサ1a毎に異なることが起こり得る。その結果、次のようなことが起こり得る。即ち、同じ電位V及び電位VIGを与えて動作させても、電位Vが、或る光学センサ1aでは受光層1aaへの空乏層の広がりが抑えられる電圧範囲に収まる一方、別の光学センサ1aでは受光層1aaへの空乏層の広がりが抑えられる電圧範囲から外れることが起こり得る。電位Vが、受光層1aaへの空乏層の広がりが抑えられる電圧範囲以下である場合、暗電流の増加が抑えられて雑音が低減されるものの、信号も低減されるため、信号/雑音比が低下してしまう。電位Vが、受光層1aaへの空乏層の広がりが抑えられる電圧範囲以上である場合、信号は増大するものの、受光層1aaに空乏領域が形成されるために暗電流が増加して雑音が増加し、信号/雑音比が低下してしまう。
光学センサ1aとして、上記のようなバリア層を設けた構造、即ち、p型受光層上にp型バリア層を介してn型上部電極層を設ける構造を採用する場合、この構造では、動作時に受光層1aaへの空乏層の広がりが抑えられる電圧範囲がごく限られた範囲になる(例えば、下記図11の電圧範囲Q2)。そのため、異なる光学センサ1a間において、電位Vが異なることによる信号/雑音比のばらつきが生じ易い。個々の光学センサ1aの性能のばらつきが、その製造性、歩留まりを低下させてしまう恐れがある。
また、光学センサ1aを1画素とし、複数の画素を配列した撮像素子では、画素毎に電位Vが異なることで信号/雑音比にばらつきが生じ、画素群を受光層1aaへの空乏層の広がりが抑えられる電圧範囲で動作させることができないことが起こり得る。各画素の性能のばらつきが、撮像素子の性能の低下を招き、その製造性、歩留まりを低下させてしまう恐れがある。
尚、上記のp型下部電極層、p型受光層、p型バリア層及びn型上部電極層とは極性の異なる光学センサ、即ち、n型下部電極層、n型受光層、n型バリア層及びp型上部電極層を有する光学センサでも、同様のことが起こり得る。
また、光学センサの別の例として、特開2013-58580号公報には、量子井戸型赤外線検出器(Quantum Well Infrared Photodetector;QWIP)が開示されている。このQWIPは、井戸層と、井戸層の両主面側に設けられた一対の第1の障壁層と、井戸層と第1の障壁層との間にそれぞれ設けられ井戸層に隣接する第2の障壁層とを有する多重量子井戸層を備える。第1及び第2の障壁層は、バンドギャップが異なり、共にn型とされ、キャリア濃度が同じとされる。
例えば、このような2種類の障壁層を、上記のようなp型受光層とn型上部電極層との間に設けるバリア層として用いる場合を考える。この場合、2種類の障壁層が共にn型であるとすると、pn接合界面は、p型受光層とn型障壁層(バリア層)との界面になる。そのため、p型受光層に空乏領域が形成され、暗電流の増加を招く。また、2種類の障壁層が共にp型であるとすると、pn接合界面は、p型障壁層(バリア層)とn型上部電極層との界面になる。しかし、空乏層の形成は、バンドギャップによらず、キャリア濃度、即ち、不純物濃度の大小関係で決定されるため、2種類のp型障壁層のキャリア濃度が同じであれば、p型受光層側に空乏層が広がり易くなる。従って、上記の光学センサ1a(図1)又はそれを1画素とする撮像素子において、このような2種類の障壁層を用いても、印加電圧が大きくなると、受光層1aaに空乏層が広がり易くなる。そのため、光学センサ1a間又は撮像素子の画素群について、電位Vがばらつき、電位Vとの差がばらついた時に、受光層1aaへの空乏層の広がりを抑えて高い信号/雑音比を得ること、光学センサ1a又は撮像素子の製造性を高めることができないことが起こり得る。
以上のような点に鑑み、以下に実施の形態として示すような手法を用い、広い電圧範囲で受光層への空乏層の広がりを抑えて動作させることができ、暗電流、雑音の増加を抑え、高い信号/雑音比を得ることのできる光学センサ、それを用いた撮像素子を実現する。
[第1の実施の形態]
図2は第1の実施の形態に係る光学センサの一例について説明する図である。図2には、光学センサの一例の要部断面図を模式的に示している。
図2に示す光学センサ1は、受光層2、第1バリア層3、第2バリア層4及び電極層5を有する。
受光層2は、赤外線等の所定の波長の光を吸収してキャリアを生成する。受光層2には、所定の波長の光に応答する1種又は2種以上の半導体材料が用いられる。例えば、受光層2は、p型不純物が導入されてp型受光層として設けられる。或いは、受光層2は、n型不純物が導入されてn型受光層として設けられる。
第1バリア層3は、受光層2の一方の面2aに設けられる。第1バリア層3には、1種又は2種以上の半導体材料が用いられる。第1バリア層3は、受光層2がp型である場合、p型不純物が導入されてp型バリア層として設けられる。第1バリア層3は、受光層2がn型である場合、n型不純物が導入されてn型バリア層として設けられる。
第2バリア層4は、第1バリア層3の、受光層2とは反対側の面3aに設けられる。第2バリア層4には、1種又は2種以上の半導体材料が用いられる。第2バリア層4は、受光層2及び第1バリア層3がp型である場合、n型不純物が導入されてn型バリア層として設けられる。第2バリア層4は、受光層2及び第1バリア層3がn型である場合、p型不純物が導入されてp型バリア層として設けられる。
電極層5は、第2バリア層4の、第1バリア層3とは反対側の面4aに設けられる。電極層5には、1種又は2種以上の半導体材料が用いられる。電極層5は、受光層2及び第1バリア層3がp型であり、第2バリア層4がn型である場合、n型不純物が導入されてn型電極層として設けられる。電極層5は、受光層2及び第1バリア層3がn型であり、第2バリア層4がp型である場合、p型不純物が導入されてp型電極層として設けられる。電極層5は、接触抵抗の低減のため、比較的高い不純物濃度に設定され、第2バリア層4よりも高い不純物濃度とされる。
光学センサ1では、所定の導電型の受光層2と、受光層2とは異なる導電型であって比較的高い不純物濃度とされる電極層5とが隣接しない。光学センサ1では、受光層2と電極層5との間に、受光層2に隣接して受光層2と同じ導電型の第1バリア層3が設けられ、電極層5に隣接して電極層5と同じ導電型で且つ電極層5よりも不純物濃度の低い第2バリア層4が設けられる。
例えば、第1バリア層3及び第2バリア層4を設けずに、互いに異なる導電型の受光層2と電極層5とを隣接させる場合には、pn接合界面が、受光層2と電極層5との界面になる。これに対し、光学センサ1では、pn接合界面6が、互いに異なる導電型の第1バリア層3と第2バリア層4との界面になる。これにより、pn接合界面6が、受光層2から電極層5側の離れた位置に設けられ、受光層2と比較的不純物濃度の高い電極層5とを隣接させる場合に比べて、受光層2への空乏層の広がりが抑えられる。
また、互いに異なる導電型の第1バリア層3と電極層5とを隣接させた場合には、電極層5が比較的高い不純物濃度とされることで、空乏層が第1バリア層3側、受光層2側へ広がり易くなる。これに対し、光学センサ1では、互いに異なる導電型の第1バリア層3と電極層5との間に、電極層5と同じ導電型で電極層5よりも不純物濃度の低い第2バリア層4が設けられる。これにより、比較的不純物濃度の低い第2バリア層4が設けられない場合に比べて、即ち、第1バリア層3と比較的不純物濃度の高い電極層5とが隣接する場合に比べて、より第1バリア層3側、受光層2側に空乏層が広がり難くなる。
光学センサ1によれば、互いに異なる導電型の受光層2側と電極層5側とに逆バイアスが印加されて動作される際、その印加電圧が大きくなっても、受光層2への空乏層の広がりが抑えられる。光学センサ1では、第1バリア層3及び第2バリア層4を設けない場合や、第1バリア層3を設けて第2バリア層4を設けない場合に比べて、印加電圧を大きくしても、受光層2への空乏層の広がりが抑えられ、暗電流の増加、信号/雑音比の低減が抑えられる。
更に、光学センサ1では、第1バリア層3及び第2バリア層4を同じ導電型とする場合に比べて、印加電圧を大きくしても、受光層2への空乏層の広がりが抑えられ、暗電流の増加、信号/雑音比の低減が抑えられる。第1バリア層3及び第2バリア層4を同じ導電型とする場合には、上記QWIPの2種類の障壁層に関して述べた通り、受光層2側に空乏層が広がり易くなるためである。
光学センサ1では、その動作時に受光層2への空乏層の広がりを抑えることのできる電圧範囲が広がるとも言える。従って、個々の光学センサ1の受光層2の特性の違いから、実際の受光層2の電圧が、当初の想定値よりも大きくなる方向にずれてしまったとしても、受光層2への空乏層の広がりが抑えられ、暗電流の増加、信号/雑音比の低減が抑えられる。また、光学センサ1では、受光層2への空乏層の広がりが抑えられる電圧範囲であれば、予め受光層2に印加される電圧が大きくなるように設定された動作条件が用いられても、空乏層の広がりが抑えられ、暗電流の増加、信号/雑音比の低減が抑えられる。即ち、第1バリア層3及び第2バリア層4を設けない場合や、第1バリア層3を設けて第2バリア層4を設けない場合に比べて、より大きな印加電圧条件、動作電圧条件で光学センサ1を使用することが可能になる。受光層2に特性のばらつきがあっても、所定の電圧範囲で印加電圧、動作電圧を大きくすれば、光学センサ1を問題なく使用することが可能になるとも言える。
このように光学センサ1では、広い電圧範囲に渡って、受光層2への空乏層の広がりを抑え、暗電流の増加、信号/雑音比の低減を抑えることが可能になる。また、このような光学センサ1を1画素として複数の画素を配列した撮像素子では、それら複数の画素について、広い電圧範囲に渡って、受光層2への空乏層の広がりを抑え、暗電流の増加、信号/雑音比の低減を抑えることが可能になる。上記構成によれば、製造される個々の光学センサ1の受光層2や、製造される撮像素子の画素として含まれる複数の光学センサ1の受光層2に特性のばらつきがあっても、各光学センサ1について、暗電流の増加を抑えて高い信号/雑音比を得ることが可能になる。これにより、高性能の光学センサ1、及びそのような光学センサ1を用いた高性能の撮像素子を実現することが可能になる。
尚、光学センサ1の受光層2には、赤外線のほか、可視光、紫外線といった、吸収させる光の波長領域に応答する各種材料を用いることができる。例えば、赤外線を吸収させる受光層2の材料には、InAs、GaSb等のナローギャップ半導体のタイプII超格子や、インジウムヒ素アンチモン(InAsSb)等の混晶を用いることができる。また、可視光や紫外線を吸収させる受光層2の材料には、シリコン(Si)、ガリウムヒ素リン(GaAsP)、窒化ガリウム(GaN)系ワイドギャップ半導体、酸化亜鉛(ZnO)等の材料を用いることができる。受光層2に用いられる材料に基づき、受光層2上に設けられる第1バリア層3、第2バリア層4及び電極層5の材料が選択されるほか、受光層2の下地の材料が選択される。
[第2の実施の形態]
ここでは、光学センサの一実施例を、第2の実施の形態として説明する。
図3は第2の実施の形態に係る光学センサの一例について説明する図である。図3には、光学センサの一例の要部断面図を模式的に示している。
図3に示す光学センサ1Aは、赤外線検出器の一例である。光学センサ1Aは、基板10、バッファー層20、エッチングストッパー層30、下部電極層40、受光層50、第1バリア層60、第2バリア層70、上部電極層80、絶縁膜90、並びに電極41及び電極81を有する。
基板10には、例えば、GaSb基板が用いられる。基板10上に、バッファー層20、エッチングストッパー層30、下部電極層40、受光層50、第1バリア層60、第2バリア層70及び上部電極層80が、例えば、分子線エピタキシー(Molecular Beam Epitaxy;MBE)法を用いて、エピタキシャル成長される。
即ち、基板10の一方の面10aに、バッファー層20が成長される。バッファー層20の、基板10とは反対側の面20aに、エッチングストッパー層30が成長される。エッチングストッパー層30の、バッファー層20とは反対側の面30aに、p型の下部電極層40が成長される。下部電極層40の、エッチングストッパー層30とは反対側の面40aに、p型の受光層50が成長される。受光層50の、下部電極層40とは反対側の面50aに、p型の第1バリア層60が成長される。第1バリア層60の、受光層50とは反対側の面60aに、n型の第2バリア層70が成長される。第2バリア層70の、第1バリア層60とは反対側の面70aに、n型の上部電極層80が成長される。
成長された受光層50、第1バリア層60、第2バリア層70及び上部電極層80は、後述のようにエッチングされ、下部電極層40上の所定の領域に設けられる。絶縁膜90は、受光層50、第1バリア層60及び第2バリア層70の側面、上部電極層80の側面及び上面、並びにエッチングにより露出した下部電極層40の上面に設けられる。絶縁膜90には、上部電極層80及び下部電極層40にそれぞれ通じる開口部81a及び開口部41aが設けられ、開口部81a及び開口部41aにそれぞれ電極81及び電極41が設けられる。
光学センサ1Aの形成方法の一例を、図4~図6を参照して説明する。
図4~図6は第2の実施の形態に係る光学センサの形成方法の一例について説明する図である。図4(A)~図4(C)、図5(A)及び図5(B)、並びに図6(A)及び図6(B)にはそれぞれ、光学センサの形成工程の一例の要部断面図を模式的に示している。
基板10として、例えばn型GaSb(100)基板が用いられる。基板10は、MBE装置の基板導入室の中に導入される。そして、基板10は、準備室において脱ガス処理され、その後、超高真空に保持された成長室へと搬送される。成長室へ搬送された基板10は、表面の酸化膜を除去するため、アンチモン(Sb)雰囲気下で加熱される。
酸化膜の除去後、基板10の表面平坦性を高めるため、図4(A)に示すように、基板10上に、バッファー層20が成長される。バッファー層20として、例えば、GaSbバッファー層が、基板温度500℃にて厚さ100nmで成長される。
バッファー層20の成長後、図4(A)に示すように、バッファー層20上に、エッチングストッパー層30が成長される。エッチングストッパー層30として、例えば、InAsSbエッチングストッパー層が、厚さ300nmで成長される。この場合、InAsSbの混晶組成は、GaSbに格子整合するように設定されることが好ましい。例えば、エッチングストッパー層30には、InAs0.91Sb0.09が用いられる。
次いで、図4(B)に示すように、エッチングストッパー層30上に、下部電極層40が成長される。下部電極層40として、例えば、InAsとGaSbの超格子、例えば、厚さ2.2nmのInAsと、厚さ2.1nmのGaSbとを備える超格子が、厚さ450nmで成長される。光学センサ1Aの下部電極層40は、p型不純物、例えば、ベリリウム(Be)がドーピングされて成長され、正孔濃度が1×1018cm-3に設定される。
次いで、図4(C)に示すように、下部電極層40上に、受光層50が成長される。受光層50として、例えば、InAsとGaSbの超格子、例えば、厚さ4.2nmのInAsと、厚さ2.1nmのGaSbとを備える超格子が、厚さ1260nmで成長される。光学センサ1Aの受光層50は、p型不純物、例えば、Beがドーピングされて成長され、正孔濃度が1×1016cm-3に設定される。
次いで、図5(A)に示すように、受光層50上に、第1バリア層60及び第2バリア層70が成長される。
その際は、まず受光層50上に、第1バリア層60として、例えば、InAsとAlSbの超格子、例えば、厚さ4.6nmのInAsと、厚さ1.2nmのAlSbとを備える超格子が、厚さ98nmで成長される。光学センサ1Aの第1バリア層60は、p型不純物、例えば、Beがドーピングされて成長され、正孔濃度が2×1016cm-3に設定される。
そして、第1バリア層60上に、第2バリア層70として、例えば、InAsとAlSbの超格子、例えば、厚さ4.6nmのInAsと、厚さ1.2nmのAlSbとを備える超格子が、厚さ300nmで成長される。光学センサ1Aの第2バリア層70は、n型不純物、例えば、Siがドーピングされて成長され、電子濃度が1×1016cm-3に設定される。
次いで、図5(B)に示すように、第2バリア層70上に、上部電極層80が成長される。上部電極層80として、例えば、InAsとAlSbの超格子、例えば、厚さ4.6nmのInAsと、厚さ1.2nmのAlSbとを備える超格子が、厚さ188nmで成長される。光学センサ1Aの上部電極層80は、n型不純物、例えば、Siがドーピングされて成長され、電子濃度が1×1017cm-3に設定される。
以上のような工程による半導体積層構造の形成後、センサ構造の形成が行われる。
まず、図6(A)に示すように、下部電極層40の一部が露出するように、上部電極層80、第2バリア層70、第1バリア層60及び受光層50が、それぞれ選択的にエッチングされる。これにより、光学センサ1個分の、又は光学センサ群を備える撮像素子の1画素分の、上部電極層80、第2バリア層70、第1バリア層60及び受光層50の積層構造が、下部電極層40上に島状に形成される。
次いで、図6(B)に示すように、エッチングされた上部電極層80の上面及び側面、並びに第2バリア層70、第1バリア層60及び受光層50の側面、更にエッチングにより露出した下部電極層40の上面を覆うように、絶縁膜90、例えば、酸化ケイ素(SiO)が形成される。絶縁膜90の酸化ケイ素は、例えば、化学気相堆積(Chemical Vapor Deposition;CVD)法により、反応ガスとしてシラン(SiH)及び一酸化二窒素(NO)を用いて、厚さ500nmで形成される。
絶縁膜90の形成後、マスクを用いて絶縁膜90が選択的にエッチングされ、上記図3に示したような、上部電極層80の一部に通じる開口部81a、及び下部電極層40の一部に通じる開口部41aが形成される。そして、形成された開口部81a及び開口部41aにそれぞれ、上記図3に示したような、電極81及び電極41が形成される。例えば、チタン(Ti)、白金(Pt)及び金(Au)の積層構造を有する電極81及び電極41が形成される。
以上のような工程により、上記図3に示したような光学センサ1Aが形成される。
光学センサ1Aでは、p型の下部電極層40上に設けられたp型の受光層50の上に、p型の第1バリア層60及びn型の第2バリア層70を介して、第2バリア層70よりも高い不純物濃度とされるn型の上部電極層80が設けられる。これにより、光学センサ1Aでは、その動作時に、n型の上部電極層80側に印加される正電圧が大きくなっても、受光層50に空乏領域が形成されることが抑えられ、暗電流の増加が抑えられる。或いは、光学センサ1Aでは、受光層50の空乏領域の形成による暗電流の増加が抑えられるように光学センサ1Aを動作させることのできる電圧範囲が、広げられる。この点について、次の図7~図11を参照して説明する。
図7は第2の実施の形態に係る光学センサの熱平衡状態でのエネルギーバンド図である。
光学センサ1Aにおいて、下部電極層40のバンドギャップEG1は、約0.296eVである。受光層50のバンドギャップEG2は、約0.127eVであり、遠赤外線(波長8μm~12μm)領域の赤外線が検出できるようになっている。第1バリア層60、第2バリア層70及び上部電極層80のバンドギャップEG3は、約0.485eVである。第1バリア層60及び第2バリア層70のバンドギャップEG3は、受光層50のバンドギャップEG2の2倍以上となっている。
下部電極層40の価電子帯上端Eのエネルギー位置は、受光層50の価電子帯上端Eのエネルギー位置とのオフセットが0eVに近くなるように設計され、下部電極層40は、受光層50の電子に対するポテンシャル障壁となっている。一方で、第1バリア層60、第2バリア層70及び上部電極層80の伝導帯下端Eのエネルギー位置は、受光層50の伝導帯下端Eのエネルギー位置とのオフセットが0eVに近くなるように設計され、第1バリア層60、第2バリア層70及び上部電極層80は、受光層50の正孔に対するポテンシャル障壁となっている。従って、受光層50が赤外線を吸収することにより生じたキャリアの電子正孔対は、負電荷のキャリアである電子が上部電極層80へ、正電荷のキャリアである正孔が下部電極層40へ、それぞれ運ばれて引き出され、光学センサ1Aで赤外線が検出される。
光学センサ1Aにおいて、受光層50及び第1バリア層60はp型の導電型であり、第2バリア層70及び上部電極層80はn型の導電型であるため、pn接合界面100は、第1バリア層60と第2バリア層70との界面になる。第1バリア層60は、Beのドーピングによって正孔濃度が2×1016cm-3とされ、そのアクセプタ濃度は2×1016cm-3である。第2バリア層70は、Siのドーピングによって電子濃度が1×1016cm-3とされ、そのドナー濃度は1×1016cm-3である。よって、第1バリア層60の不純物濃度は、第2バリア層70の不純物濃度よりも大きい。
図8は第2の実施の形態に係る光学センサの上部電極層側に正電圧を印加した時のエネルギーバンド図である。
図8には、光学センサ1A(実施例)の上部電極層80側に+0.2Vを印加した時のエネルギーバンド図を示している。上部電極層80側に+0.2Vを印加すると、pn接合の逆バイアス動作となる。即ち、受光層50で赤外線を吸収して生成された電子正孔対の電子を上部電極層80側に引き出せる状態となる。この時、受光層50の、第1バリア層60に隣接する領域は、図8の点線枠P1の部分に見られるように、エネルギーバンドが左下に向かって傾斜していないことから、空乏化していないことが分かる。
比較として、別の形態に係る光学センサの上部電極層側に正電圧を印加した時のエネルギーバンド図を図9に示す。
図9には、下部電極層上の受光層の上に、第1バリア層を介して、上部電極層を設けた構造とした光学センサ(比較例)の、その上部電極層側に+0.2Vを印加した時のエネルギーバンド図を示している。この図9の光学センサは、上記の第2バリア層70が設けられず、正孔濃度が1×1018cm-3のp型の下部電極層、正孔濃度が1×1016cm-3のp型の受光層、正孔濃度が2×1016cm-3のp型の第1バリア層、電子濃度が1×1017cm-3のn型の上部電極層が順に積層された構造となっている。pn接合界面は、第1バリア層と上部電極層との界面になる。このような構造の光学センサの上部電極層側に+0.2Vを印加すると、pn接合の逆バイアス動作となる。即ち、受光層で赤外線を吸収して生成された電子正孔対の電子を上部電極層側に引き出せる状態となる。この時、受光層の、第1バリア層に隣接する領域は、図9の点線枠P2の部分に見られるように、エネルギーバンドが左下に向かって傾斜していることから、空乏化していることが分かる。
図10は印加電圧と受光層の空乏層幅との関係の一例を示す図である。図10において、横軸は印加電圧[V]を表し、縦軸は空乏層幅[μm]を表している。
図10には、下部電極層40上の受光層50の上に第1バリア層60及び第2バリア層70を介して上部電極層80を設けた光学センサ1Aに関し、印加電圧に対して、受光層50の第1バリア層60に隣接する領域が半導体積層方向に空乏化する膜厚を算出した結果(実施例)を示している。図10には比較として、下部電極層上の受光層の上に第1バリア層を介して上部電極層を設けた光学センサに関し、同様に、印加電圧に対して、受光層の第1バリア層に隣接する領域が半導体積層方向に空乏化する膜厚を算出した結果(比較例)を併せて示している。
図10より、第2バリア層70を設けない比較例の光学センサでは、+0.1V以上で受光層に空乏層が形成されるのに対し、第2バリア層70を設ける実施例の光学センサ1Aでは、+0.4V以上で受光層50に空乏層が形成される。実施例の光学センサ1Aでは、比較例の光学センサで空乏層が形成される+0.1Vや+0.2Vにおいては受光層50に空乏層が形成されない。
図11は印加電圧と暗電流との関係の一例を示す図である。図11において、横軸は印加電圧[V]を表し、縦軸は暗電流[A]を表している。
図11には、下部電極層40上の受光層50の上に第1バリア層60及び第2バリア層70を介して上部電極層80を設けた光学センサ1Aに関し、暗電流の印加電圧依存性をシミュレーションによって求めた結果(実施例)を示している。図11には比較として、下部電極層上の受光層の上に第1バリア層を介して上部電極層を設けた光学センサに関し、同様に、暗電流の印加電圧依存性をシミュレーションによって求めた結果(比較例)を併せて示している。
図11より、上記図10に示した空乏層幅と対応するように、第2バリア層70を設けない比較例の光学センサでは、+0.1V付近から暗電流が増加するのに対し、第2バリア層70を設ける実施例の光学センサ1Aでは、+0.4V付近まで暗電流の増加が抑えられる。
第2バリア層70を設けない比較例の光学センサは、受光層への空乏層の広がりによる暗電流の増加を抑えて動作させることのできる電圧範囲Q2がごく限られた範囲になる。第2バリア層70を設ける実施例の光学センサ1Aでは、暗電流の増加を抑えて動作させることのできる電圧範囲Q1が、第2バリア層70を設けない比較例の光学センサの電圧範囲Q2に比べて、広くなる。尚、図11に示した電圧範囲Q1,Q2は、説明の便宜上図示したものであり、動作電圧がこの電圧範囲Q1,Q2に限定されるというものではない。
光学センサ1Aについて得られた上記のような結果は、以下のような理由によるものと考えられる。
光学センサ1Aでは、受光層50及び第1バリア層60がp型の導電型であり、第2バリア層70及び上部電極層80がn型の導電型である。よって、pn接合界面100は、第1バリア層60と第2バリア層70との界面になる。pn接合界面100が、受光層50から上部電極層80側の離れた位置に設けられ、受光層50への空乏層の広がりが抑えられる。光学センサ1Aでは、上部電極層80よりも不純物濃度の低い第2バリア層70が第1バリア層60と隣接される。第2バリア層70を介さずに第1バリア層60と比較的不純物濃度の高い上部電極層80とが隣接される場合に比べて、より第1バリア層60側、受光層50側に空乏層が広がり難くなる。
また、光学センサ1Aにおいて、第1バリア層60のアクセプタ濃度は2×1016cm-3であり、一方、第2バリア層70のドナー濃度は1×1016cm-3である。即ち、第1バリア層60の不純物濃度は、第2バリア層70の不純物濃度よりも大きい。これにより、上部電極層80側に正電圧が印加されると、第1バリア層60と第2バリア層70のpn接合界面100で電圧降下が起こり、また、印加電圧が大きくなる時、空乏層は、比較的不純物濃度の低い第2バリア層70側に広がり易くなる。つまり、受光層50に隣接する第1バリア層60側には空乏層が広がり難くなり、更にその下の受光層50に空乏層が広がり難くなる。
光学センサ1Aでは、第1バリア層60及び第2バリア層70に空乏領域が形成されることになるが、第1バリア層60及び第2バリア層70のバンドギャップ(EG3≒0.485eV;図7)は、受光層50のバンドギャップ(EG2≒0.127eV;図7)の2倍以上とされる。これにより、p型バリア層の空乏領域で熱的に生成される暗電流は十分無視することができるようになる。
光学センサ1Aによれば、印加電圧が大きくなっても、受光層50への空乏層の広がりが抑えられ、暗電流の増加が抑えられる。換言すれば、光学センサ1Aでは、受光層50への空乏層の広がりによる暗電流の増加を抑えて動作させることのできる電圧範囲が、広げられる。個々の光学センサ1Aの受光層50の特性の違いから、実際の受光層50の電圧が、当初の想定値よりも大きくなる方向にずれてしまったとしても、受光層50への空乏層の広がりが抑えられる。光学センサ1Aでは、受光層50への空乏層の広がりが抑えられることで、暗電流の増加、信号/雑音比の低減が抑えられる。
光学センサ1Aでは、印加電圧が小さくなると、暗電流の増加が抑えられて雑音が低減されるものの、信号も低減されるため、信号/雑音比が低くなる。従って、一定レベル以上の信号を検出するためには、一定レベル以上の大きさの電圧が印加されることが望ましい。しかし、受光層50に隣接して、又は受光層50上の第1バリア層60に隣接して、比較的高不純物濃度の上部電極層80を設ける構造とすると、受光層50に空乏層が広がり易くなり、受光層50への空乏層の広がりを抑えることのできる電圧範囲が比較的狭くなる。そのため、受光層50の特性の違いから、実際の印加電圧が大きくなってしまうと、受光層50への空乏層の広がりを抑えることのできるその比較的狭い電圧範囲から外れてしまうことが起こり易くなる。
これに対し、光学センサ1Aでは、受光層50と上部電極層80との間に上記のような第1バリア層60及び第2バリア層70を設ける構成により、受光層50への空乏層の広がりを抑えることのできる電圧範囲が比較的広くなる。これにより、実際の印加電圧が大きくなったとしても、その比較的広い電圧範囲に収まり易く、空乏層の広がりを抑え、暗電流の増加を抑えて、高い信号/雑音比を得ることができる。また、光学センサ1Aでは、その比較的広い電圧範囲であれば、予め印加電圧が大きくなるように設定された動作条件を用いても、空乏層の広がりを抑え、暗電流の増加を抑えて、高い信号/雑音比を得ることができる。即ち、第1バリア層60及び第2バリア層70を設けない場合や、第1バリア層60を設けて第2バリア層70を設けない場合に比べて、より大きな印加電圧条件、動作電圧条件で光学センサ1Aを使用することが可能になる。受光層50に特性のばらつきがあっても、所定の電圧範囲で印加電圧、動作電圧を大きくすれば、光学センサ1Aを問題なく使用することが可能になるとも言える。
このように光学センサ1Aでは、広い電圧範囲に渡って、受光層50への空乏層の広がりを抑え、暗電流の増加、信号/雑音比の低減を抑えることが可能になる。また、このような光学センサ1Aを1画素として複数の画素を配列した撮像素子では、それら複数の画素について、広い電圧範囲に渡って、受光層50への空乏層の広がりを抑え、暗電流の増加、信号/雑音比の低減を抑えることが可能になる。上記構成によれば、製造される個々の光学センサ1Aの受光層50、製造される撮像素子の画素として含まれる複数の光学センサ1Aの受光層50に特性のばらつきがあっても、各光学センサ1Aについて、暗電流の増加を抑えて高い信号/雑音比を得ることが可能になる。これにより、高性能の光学センサ1A、及びそのような光学センサ1Aを用いた高性能の撮像素子を実現することが可能になる。
尚、上記の特許文献1には、n型基板上の光吸収層の上にn型コレクタ兼バリア層、p型ベース層、n型エミッタ層を順に積層し、フォトダイオードとヘテロバイポーラトランジスタとを積層した形のヘテロ接合バイポーラフォトトランジスタが開示されている。開示の構造では、pn接合界面が、n型エミッタ層とp型ベース層、p型ベース層とn型コレクタ兼バリア層の2つ存在する。このようなpn接合を複数含む構造に電圧が印加されると、それぞれのpn接合界面に電圧降下が起こる。特許文献1によれば、p型ベース層とn型コレクタ兼バリア層のpn接合界面において、例えばp型ベース層のキャリア濃度は1×1017cm-3であって、n型コレクタ兼バリア層のキャリア濃度は1×1015cm-3であり、p型ベース層のキャリア濃度が、光吸収層に隣接するn型コレクタ兼バリア層のキャリア濃度に比べて大きい。従って、p型ベース層及びn型コレクタ兼バリア層に形成される空乏層は、それらのpn接合界面から光吸収層側に位置するn型コレクタ兼バリア層に向かって広がり易い。
従って、受光層50と上部電極層80との間に、第1,第2バリア層60,70に代えて、特許文献1のような、互いの導電型が異なる2種類の層で受光層50側を低不純物濃度とする構造を採用しても、印加電圧が増えると受光層50側に空乏層が広がり易くなる。よって、広い電圧範囲に渡って、受光層50への空乏層の広がりを抑え、暗電流の増加、信号/雑音比の低減を抑える、という上記光学センサ1Aのような効果は得られないものと考えられる。
以上、第2の実施の形態に係る光学センサ1Aについて説明した。
尚、以上第2の実施の形態で述べた光学センサ1Aに関し、その構成は上記のものには限定されず、同様の効果が得られる範囲であれば、適宜変更しても構わない。
例えば、上記の例では、受光層50をInAsとGaSbの超格子としたが、InAsとGaSbの各々の厚さは、受光層50で吸収する光の波長に基づき、適宜設定することができる。超格子のInAsとGaSbとの間には、GaSb基板に格子整合するようにインジウムアンチモン(InSb)が設けられてもよい。超格子は、InAs、InSb、GaSb及びAlSbのうちのいずれか2種以上を用いて実現されてもよい。受光層50には、吸収する光の波長領域に応答する材料であれば、超格子に限らず、混晶が用いられてもよい。例えば、赤外領域に応答する材料として、InAs1-aSb(0≦a≦1)を用いることもできる。
また、上記の例では、p型不純物としてBeを用いたが、その他のp型不純物、例えば亜鉛(Zn)等を用いることもできる。上記の例では、n型の不純物としてSiを用いたが、その他のn型不純物、例えばテルル(Te)等を用いることもできる。
また、上記の例では、半導体積層構造のエピタキシャル成長にMBE法を用いたが、有機金属気相成長(Metal Organic Chemical Vapor Deposition;MOCVD、若しくはMetal Organic Vaper Phase Epitaxy;MOVPE)法等、他の半導体結晶成長技術を用いることもできる。
また、上記の例では、エッチングストッパー層30を設けたが、エッチングストッパー層30は必ずしも設けることを要しない。また、受光層50による光の吸収感度を高める観点から、上記の例に従って図3に示したような光学センサ1Aを形成した後に、基板10、バッファー層20及びエッチングストッパー層30、又は基板10及びバッファー層20を除去することもできる。
[第3の実施の形態]
ここでは、光学センサの別の実施例を、第3の実施の形態として説明する。
図12は第3の実施の形態に係る光学センサの一例について説明する図である。図12には、光学センサの一例の要部断面図を模式的に示している。
図12に示す光学センサ1Bは、赤外線検出器の一例である。光学センサ1Bは、下部電極層40、受光層50、第1バリア層60、第2バリア層70及び上部電極層80の材料及び極性を変更している点で、上記第2の実施の形態で述べた光学センサ1Aと相違する。
光学センサ1Bにおいて、基板10には、例えば、GaSb基板が用いられる。基板10上に、バッファー層20、エッチングストッパー層30、下部電極層40、受光層50、第1バリア層60、第2バリア層70及び上部電極層80が、例えばMBE法を用いて、エピタキシャル成長される。
即ち、基板10の一方の面10aに、バッファー層20が成長される。バッファー層20の、基板10とは反対側の面20aに、エッチングストッパー層30が成長される。エッチングストッパー層30の、バッファー層20とは反対側の面30aに、n型の下部電極層40が成長される。下部電極層40の、エッチングストッパー層30とは反対側の面40aに、n型の受光層50が成長される。受光層50の、下部電極層40とは反対側の面50aに、n型の第1バリア層60が成長される。第1バリア層60の、受光層50とは反対側の面60aに、p型の第2バリア層70が成長される。第2バリア層70の、第1バリア層60とは反対側の面70aに、p型の上部電極層80が成長される。
成長された受光層50、第1バリア層60、第2バリア層70及び上部電極層80は、後述のようにエッチングされ、下部電極層40上の所定の領域に設けられる。絶縁膜90は、受光層50、第1バリア層60及び第2バリア層70の側面、上部電極層80の側面及び上面、並びにエッチングにより露出した下部電極層40の上面に設けられる。絶縁膜90には、上部電極層80及び下部電極層40にそれぞれ通じる開口部81a及び開口部41aが設けられ、開口部81a及び開口部41aにそれぞれ電極81及び電極41が設けられる。
光学センサ1Bは、上記第2の実施の形態で述べた光学センサ1Aの形成(図4~図6)と同様の手順で形成することができる。
光学センサ1Bの形成では、基板10として、例えばn型GaSb(100)基板が用いられる。基板10は、例えばMBE装置の基板導入室の中に導入される。そして、基板10は、準備室において脱ガス処理され、その後、超高真空に保持された成長室へと搬送される。成長室へ搬送された基板10は、表面の酸化膜を除去するため、Sb雰囲気下で加熱される。
酸化膜の除去後、基板10の表面平坦性を高めるため、基板10上に、バッファー層20が成長される(図4(A))。バッファー層20として、例えば、GaSbバッファー層が、基板温度500℃にて厚さ100nmで成長される。
バッファー層20の成長後、バッファー層20上に、エッチングストッパー層30が成長される(図4(A))。エッチングストッパー層30として、例えば、InAsSbエッチングストッパー層が、厚さ300nmで成長される。この場合、InAsSbの混晶組成は、GaSbに格子整合するように設定されることが好ましい。例えば、エッチングストッパー層30には、InAs0.91Sb0.09が用いられる。
次いで、エッチングストッパー層30上に、下部電極層40が成長される(図4(B))。下部電極層40として、例えば、InAsとAlSbの超格子、例えば、厚さ4.6nmのInAsと、厚さ1.2nmのAlSbとを備える超格子が、厚さ450nmで成長される。光学センサ1Bの下部電極層40は、n型不純物、例えば、Siがドーピングされて成長され、電子濃度が1×1017cm-3に設定される。
次いで、下部電極層40上に、受光層50が成長される(図4(C))。受光層50として、例えば、InAsとGaSbの超格子、例えば、厚さ4.2nmのInAsと、厚さ2.1nmのGaSbとを備える超格子が、厚さ1260nmで成長される。光学センサ1Bの受光層50は、n型不純物、例えば、Siがドーピングされて成長され、電子濃度が1×1016cm-3に設定される。
次いで、受光層50上に、第1バリア層60及び第2バリア層70が成長される(図5(A))。
その際は、まず受光層50上に、第1バリア層60として、例えば、アルミニウムガリウムアンチモン(AlGaSb)、一例としてAl0.2Ga0.8Sbが、厚さ98nmで成長される。光学センサ1Bの第1バリア層60は、n型不純物、例えば、Teがドーピングされて成長され、電子濃度が2×1016cm-3に設定される。
そして、第1バリア層60上に、第2バリア層70として、例えば、AlGaSb、一例としてAl0.2Ga0.8Sbが、厚さ300nmで成長される。光学センサ1Bの第2バリア層70は、p型不純物、例えば、Beがドーピングされて成長され、正孔濃度が1×1016cm-3に設定される。
次いで、第2バリア層70上に、上部電極層80が成長される(図5(B))。上部電極層80として、例えば、InAsとGaSbの超格子、例えば、厚さ4.2nmのInAsと、厚さ2.1nmのGaSbとを備える超格子が、厚さ188nmで成長される。光学センサ1Bの上部電極層80は、p型不純物、例えば、Beがドーピングされて成長され、正孔濃度が1×1017cm-3に設定される。
以上のような工程による半導体積層構造の形成後、センサ構造の形成が行われる。
まず、下部電極層40の一部が露出するように、上部電極層80、第2バリア層70、第1バリア層60及び受光層50が、それぞれ選択的にエッチングされる(図6(A))。次いで、上部電極層80の上面及び側面、並びに第2バリア層70、第1バリア層60及び受光層50の側面、更にエッチングにより露出した下部電極層40の上面を覆うように、絶縁膜90、例えば、酸化ケイ素が形成される(図6(B))。エッチングにより、上部電極層80及び下部電極層40の各々の一部に通じる開口部81a及び開口部41aが形成され、Ti、Pt及びAuの積層構造を有する電極81及び電極41が形成される。
以上のような工程により、上記図12に示したような光学センサ1Bが形成される。
光学センサ1Bを動作させる場合は、上記第1の実施の形態で述べた光学センサ1Aとは導電型が反転しているので、上部電極層80側に負電圧が印加される。上部電極層80側に負電圧が印加されることで、受光層50が赤外線を吸収することにより生じた電子正孔対は、正孔が上部電極層80へ、電子が下部電極層40へ、それぞれ引き出され、光学センサ1Bで赤外線が検出される。
光学センサ1Bでは、受光層50及び第1バリア層60がn型の導電型であり、第2バリア層70及び上部電極層80がp型の導電型である。よって、pn接合界面100は、第1バリア層60と第2バリア層70との界面になる。pn接合界面100が、受光層50から上部電極層80側の離れた位置に設けられ、受光層50への空乏層の広がりが抑えられる。光学センサ1Bでは、上部電極層80よりも不純物濃度の低い第2バリア層70が第1バリア層60と隣接される。第2バリア層70を介さずに第1バリア層60と比較的不純物濃度の高い上部電極層80とが隣接される場合に比べて、より第1バリア層60側、受光層50側に空乏層が広がり難くなる。
また、光学センサ1Bにおいて、第1バリア層60のドナー濃度は2×1016cm-3であり、一方、第2バリア層70のアクセプタ濃度は1×1016cm-3である。即ち、第1バリア層60の不純物濃度は、第2バリア層70の不純物濃度よりも大きい。これにより、空乏層は、不純物濃度の低い第2バリア層70側に広がり易くなり、受光層50に隣接する第1バリア層60側には空乏層が広がり難くなるので、受光層50に空乏層が広がることが抑えられる。
光学センサ1Bによれば、負電圧が大きくなっても、受光層50への空乏層の広がりが抑えられ、暗電流の増加が抑えられる。換言すれば、光学センサ1Bでは、受光層50への空乏層の広がりによる暗電流の増加を抑えて動作させることのできる電圧範囲が、広げられる。個々の光学センサ1Bの受光層50の特性の違いから、実際の受光層50の電圧が、当初の想定値よりも大きくなる方向にずれてしまったとしても、受光層50への空乏層の広がりが抑えられる。光学センサ1Bでは、受光層50への空乏層の広がりが抑えられることで、暗電流の増加、信号/雑音比の低減が抑えられる。
光学センサ1Bでは、印加電圧が小さくなると、信号/雑音比が低くなるため、一定レベル以上の大きさの電圧が印加されることが望ましい。光学センサ1Bでは、受光層50と上部電極層80との間に上記のような第1バリア層60及び第2バリア層70を設ける構成により、受光層50への空乏層の広がりを抑えることのできる電圧範囲が比較的広くなる。これにより、印加電圧が大きくなったとしても、その比較的広い電圧範囲に収まり易く、受光層50への空乏層の広がりを抑え、暗電流の増加を抑えて、高い信号/雑音比を得ることができる。また、光学センサ1Bでは、その比較的広い電圧範囲であれば、予め印加電圧が大きくなるように設定された動作条件を用いても、空乏層の広がりを抑え、暗電流の増加を抑えて、高い信号/雑音比を得ることができる。即ち、第1バリア層60及び第2バリア層70を設けない場合や、第1バリア層60を設けて第2バリア層70を設けない場合に比べて、より大きな印加電圧条件、動作電圧条件で光学センサ1Bを使用することが可能になる。受光層50に特性のばらつきがあっても、所定の電圧範囲で印加電圧、動作電圧を大きくすれば、光学センサ1Bを問題なく使用することが可能になるとも言える。
このように光学センサ1Bでは、広い電圧範囲に渡って、受光層50への空乏層の広がりを抑え、暗電流の増加、信号/雑音比の低減を抑えることが可能になる。また、このような光学センサ1Bを1画素として複数の画素を配列した撮像素子では、それら複数の画素について、広い電圧範囲に渡って、受光層50への空乏層の広がりを抑え、暗電流の増加、信号/雑音比の低減を抑えることが可能になる。上記構成によれば、製造される個々の光学センサ1Bの受光層50、製造される撮像素子の画素として含まれる複数の光学センサ1Bの受光層50に特性のばらつきがあっても、各光学センサ1Bについて、暗電流の増加を抑えて高い信号/雑音比を得ることが可能になる。これにより、高性能の光学センサ1B、及びそのような光学センサ1Bを用いた高性能の撮像素子を実現することが可能になる。
[第4の実施の形態]
ここでは、光学センサを用いた撮像素子(「撮像装置」とも言う)の一実施例を、第4の実施の形態として説明する。
図13及び図14は第4の実施の形態に係る撮像素子の一例について説明する図である。図13には、撮像素子の一例の要部斜視図を模式的に示している。図14には、撮像素子の一例の要部断面図を模式的に示している。図14は、図13のXIV-XIV矢視断面図を模式的に示したものである。
図13に示すように、撮像素子300は、1つの光学センサ410を1画素として複数の光学センサ410が2次元に配列された光学センサ基板400、及び光学センサ基板400と貼り合わせられた駆動回路基板200とを備える。光学センサ基板400と駆動回路基板200とは、In等のバンプ310を用いて機械的及び電気的に接続される。光学センサ基板400の光学センサ410には、例えば、上記第2の実施の形態で述べたような光学センサ1A(図3)、或いは上記第3の実施の形態で述べたような光学センサ1B(図12)を用いることができる。
光学センサ基板400は、例えば、図14に示すように、基板10と、基板10上に設けられたバッファー層20と、バッファー層20上に設けられたエッチングストッパー層30と、エッチングストッパー層30上に設けられた下部電極層40とを備える。下部電極層40は、複数の光学センサ410で共通とされる。共通の下部電極層40上の、光学センサ基板400の各画素の位置に、受光層50、第1バリア層60、第2バリア層70及び上部電極層80が順に積層されたセンサ構造420が設けられる。画素となるセンサ構造420が配列された領域の周辺部には、同様に受光層50、第1バリア層60、第2バリア層70及び上部電極層80が順に積層された構造を有するが光を検出する画素としては使用されないダミー構造430が設けられる。共通の下部電極層40上に設けられたセンサ構造420及びダミー構造430を覆うように絶縁膜90が設けられる。各センサ構造420の上部電極層80に接続される電極81、及び共通の下部電極層40に接続される電極41が、絶縁膜90を貫通して設けられる。各センサ構造420の絶縁膜90上には、上部電極層80上の電極81に接続される表面配線440が設けられ、ダミー構造430の絶縁膜90上には、共通の下部電極層40上の電極41に接続される表面配線450が設けられる。このような構成を有する光学センサ基板400の表面配線440及び表面配線450が、バンプ310を介して駆動回路基板200と接続される。
駆動回路基板200は、例えば、図14に示すように、光学センサ基板400のセンサ構造420とバンプ310及び表面配線440を通じて接続されるトランジスタ230を有する駆動回路200aを備える。図14では図示を省略するが、駆動回路200aには、トランジスタ230のほか、例えば上記図1に示したような、リセットレベルに接続されたリセットスイッチ210、リセットスイッチ210及びトランジスタ230に接続されたキャパシタ220等が含まれる。光学センサ基板400の共通の下部電極層40は、表面配線450及びバンプ310を通じて駆動回路基板200内の電位Vと接続される。電位VIGによってトランジスタ230がON状態とされ、光学センサ410の上部電極層80と下部電極層40との間に逆バイアスが印加される。
撮像素子300において、外部から任意に設定できる電位は、下部電極層40側の電位Vと、トランジスタ230のゲート端子の電位VIGである。光学センサ410にかかる電位差は、トランジスタ230のゲート端子の電位VIGとそのトランジスタ230を流れるドレイン電流とによって間接的に決まる上部電極層80側の電位(上記の電位V)と、共通の下部電極層40側の電位Vとの差になる。ここで、光学センサ410の受光層50に特性のばらつきがあると、光学センサ410群に同じ電位V及び電位VIGを与えても、上部電極層80側の電位が光学センサ410毎に異なることが起こり得る。
これに対し、光学センサ410では、受光層50及び第1バリア層60が第1導電型とされ、第2バリア層70及び上部電極層80が第1導電型とは異なる第2導電型とされ、第1バリア層60と第2バリア層70との間がpn接合界面100とされる。更に、光学センサ410では、第2バリア層70が上部電極層80よりも低不純物濃度とされる。これにより、受光層50への空乏層の広がりが抑えられる。また、光学センサ410において、第2バリア層70が第1バリア層60よりも低不純物濃度とされることで、受光層50への空乏層の広がりが、より一層抑えられる。
光学センサ410によれば、受光層50の特性の違いに起因して、実際の受光層50の電圧が当初の想定値よりも大きくなる方向にずれてしまったとしても、受光層50への空乏層の広がりが抑えられる。これにより、受光層50に空乏領域が形成されて暗電流が生じることが抑えられ、暗電流の増加による信号/雑音比の低減が抑えられる。換言すれば、光学センサ410では、受光層50への空乏層の広がりによる暗電流の増加を抑えて動作させることのできる電圧範囲が、広げられる。撮像素子300では、光学センサ410を配列して形成される画素群について、広い電圧範囲に渡って、受光層50への空乏層の広がりを抑え、暗電流の増加、信号/雑音比の低減を抑えることが可能になる。これにより、高性能の撮像素子300が実現される。
撮像素子300は、光学センサ基板400と駆動回路基板200とを、バンプ310を介して貼り合わせることで形成される。
ここで、光学センサ基板400は、上記第2又は第3の実施の形態で述べたような方法の例に従って形成される。即ち、基板10上にバッファー層20、エッチングストッパー層30、下部電極層40、受光層50、第1バリア層60、第2バリア層70及び上部電極層80が順に成長され、エッチングによりセンサ構造420及びダミー構造430が形成される。そして、これらを覆うように絶縁膜90が形成され、各センサ構造420の上部電極層80に接続される電極81、及び共通の下部電極層40に接続される電極41が形成される。次いで、電極81及び電極41にそれぞれ接続される表面配線440及び表面配線450が形成され、各々の上にバンプ310が形成される。
また、駆動回路基板200には、回路基板上にトランジスタ230等として機能する半導体装置が実装されたものや、半導体基板にトランジスタ230等として機能する半導体素子が形成、集積されたものを用いることができる。
予め準備された光学センサ基板400と駆動回路基板200とが、互いのバンプ310とトランジスタ230等に繋がる端子(パッド)とが接続されるように貼り合わされ、撮像素子300が形成される。
尚、図14には、基板10、バッファー層20及びエッチングストッパー層30を備える光学センサ基板400を例示している。このほか、受光層50による光の吸収感度を高める観点から、駆動回路基板200との貼り合わせ後又は貼り合わせ前に、基板10、バッファー層20及びエッチングストッパー層30、又は基板10及びバッファー層20を除去することもできる。
[第5の実施の形態]
ここでは、光学センサを用いた撮像システム(「撮像装置」とも言う)の一実施例を、第5の実施の形態として説明する。
図15は第5の実施の形態に係る撮像システムの一例について説明する図である。
図15に示す撮像システム500は、センサ部510、制御演算部520及び表示部530を備える。センサ部510には、例えば、上記第4の実施の形態で述べたような撮像素子300が含まれる。制御演算部520は、センサ部510の撮像素子300の動作(上記図1及び図14に示したような駆動回路200aに含まれるトランジスタ230及びリセットスイッチ210のスイッチング等)を制御する。制御演算部520は更に、センサ部510の撮像素子300で取得されるデータ(画素データ)を用いて、光学センサ410に入射した光の強度(画素データの階調)を演算し、画像データを生成する。制御演算部520には、このような処理を実行する信号処理回路が含まれる。また、表示部530は、制御演算部520によって生成された画像データを表示する。
撮像システム500では、制御演算部520によってセンサ部510の撮像素子300が駆動される。センサ部510では、撮像素子300(光学センサ基板400)に光が入射し、各画素(光学センサ410)に入射した光の強度に基づいて検出される画素データの集合が取得される。撮像素子300で検出された画素データの集合は、制御演算部520に送られ、制御演算部520では、撮像素子300で検出された画素データの集合の階調(濃淡)が演算されて画像データが生成される。制御演算部520で生成された画像データは、表示部530に表示される。撮像システム500では、例えばこのような処理によって、センサ部510を通した像の取得が行われる。
上記のように、撮像素子300(図14)では、光学センサ410を配列して形成される画素群について、広い電圧範囲に渡って、受光層50への空乏層の広がりが抑えられ、暗電流の増加、信号/雑音比の低減が抑えられる。これにより、各画素(光学センサ410)に入射した光の強度を高い精度で反映した画素データの集合が得られ、それを基に良好な画像データが生成され、表示される。このような撮像素子300が用いられ、高性能の撮像システム500が実現される。
1a,1,1A,1B,410 光学センサ
1aa,2,50 受光層
2a,3a,4a 面
3,60 第1バリア層
4,70 第2バリア層
5 電極層
6,100 pn接合界面
10 基板
10a,20a,30a,40a,50a,60a,70a 面
20 バッファー層
30 エッチングストッパー層
40 下部電極層
41,81 電極
41a,81a 開口部
80 上部電極層
90 絶縁膜
200 駆動回路基板
200a 駆動回路
210 リセットスイッチ
220 キャパシタ
230 トランジスタ
300 撮像素子
310 バンプ
400 光学センサ基板
420 センサ構造
430 ダミー構造
440,450 表面配線
500 撮像システム
510 センサ部
520 制御演算部
530 表示部

Claims (4)

  1. 第1導電型の不純物を含む受光層と、
    前記受光層の第1面に設けられ、前記第1導電型の不純物を含む第1バリア層と、
    前記第1バリア層の、前記受光層とは反対側の第2面に設けられ、前記第1導電型とは異なる第2導電型の不純物を含む第2バリア層と、
    前記第2バリア層の、前記第1バリア層とは反対側の第3面に設けられ、前記第2バリア層よりも高濃度の前記第2導電型の不純物を含む電極層と
    を有し、
    前記第1バリア層と前記第2バリア層との接合界面において、前記第1バリア層の前記第1導電型の不純物の濃度は、前記第2バリア層の前記第2導電型の不純物の濃度よりも高いことを特徴とする光学センサ。
  2. 前記第1バリア層及び前記第2バリア層のバンドギャップは、前記受光層のバンドギャップよりも大きいことを特徴とする請求項1に記載の光学センサ。
  3. 前記第1バリア層及び前記第2バリア層は、前記受光層から前記電極層へ運ばれるキャリアとは反対電荷のキャリアに対してポテンシャル障壁となることを特徴とする請求項1又は2に記載の光学センサ。
  4. 複数の光学センサと、
    前記複数の光学センサと接続された駆動回路と
    を備え、
    前記複数の光学センサはそれぞれ、
    第1導電型の不純物を含む受光層と、
    前記受光層の第1面に設けられ、前記第1導電型の不純物を含む第1バリア層と、
    前記第1バリア層の、前記受光層とは反対側の第2面に設けられ、前記第1導電型とは異なる第2導電型の不純物を含む第2バリア層と、
    前記第2バリア層の、前記第1バリア層とは反対側の第3面に設けられ、前記第2バリア層よりも高濃度の前記第2導電型の不純物を含む電極層と
    を有し、
    前記第1バリア層と前記第2バリア層との接合界面において、前記第1バリア層の前記第1導電型の不純物の濃度は、前記第2バリア層の前記第2導電型の不純物の濃度よりも高く、
    前記駆動回路は、前記電極層と接続されたトランジスタを有する
    ことを特徴とする撮像装置。
JP2020062431A 2020-03-31 2020-03-31 光学センサ及び撮像装置 Active JP7428891B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020062431A JP7428891B2 (ja) 2020-03-31 2020-03-31 光学センサ及び撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020062431A JP7428891B2 (ja) 2020-03-31 2020-03-31 光学センサ及び撮像装置

Publications (2)

Publication Number Publication Date
JP2021163820A JP2021163820A (ja) 2021-10-11
JP7428891B2 true JP7428891B2 (ja) 2024-02-07

Family

ID=78003655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020062431A Active JP7428891B2 (ja) 2020-03-31 2020-03-31 光学センサ及び撮像装置

Country Status (1)

Country Link
JP (1) JP7428891B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102688320B1 (ko) * 2022-12-22 2024-07-25 아이쓰리시스템 주식회사 감광성 반도체 소자와 그를 포함하는 하이브리드 칩 및 그 제조 방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004516656A (ja) 2000-12-12 2004-06-03 キネテイツク・リミテツド 半導体ダイオード装置
JP2005286000A (ja) 2004-03-29 2005-10-13 Anritsu Corp 受光素子およびアバランシェフォトダイオード
JP2011198808A (ja) 2010-03-17 2011-10-06 Renesas Electronics Corp アバランシェフォトダイオード
US20140332755A1 (en) 2013-05-07 2014-11-13 L-3 Communications Cincinnati Electronics Corporation Diode barrier infrared detector devices and superlattice barrier structures
JP2018006415A (ja) 2016-06-28 2018-01-11 富士通株式会社 赤外線検知素子、赤外線検知素子アレイ及び赤外線検知素子を用いて赤外線を検知する方法
JP2019039712A (ja) 2017-08-23 2019-03-14 富士通株式会社 赤外線検出器及びその製造方法、撮像素子、撮像システム
JP2019160836A (ja) 2018-03-07 2019-09-19 住友電気工業株式会社 半導体受光デバイス、赤外線検知装置
CN110797424A (zh) 2019-11-15 2020-02-14 南京大学 一种具有暗电流抑制结构的锑化物超晶格甚长波红外探测器
JP7202252B2 (ja) 2019-05-08 2023-01-11 Hkt株式会社 混合装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004516656A (ja) 2000-12-12 2004-06-03 キネテイツク・リミテツド 半導体ダイオード装置
JP2005286000A (ja) 2004-03-29 2005-10-13 Anritsu Corp 受光素子およびアバランシェフォトダイオード
JP2011198808A (ja) 2010-03-17 2011-10-06 Renesas Electronics Corp アバランシェフォトダイオード
US20140332755A1 (en) 2013-05-07 2014-11-13 L-3 Communications Cincinnati Electronics Corporation Diode barrier infrared detector devices and superlattice barrier structures
JP2018006415A (ja) 2016-06-28 2018-01-11 富士通株式会社 赤外線検知素子、赤外線検知素子アレイ及び赤外線検知素子を用いて赤外線を検知する方法
JP2019039712A (ja) 2017-08-23 2019-03-14 富士通株式会社 赤外線検出器及びその製造方法、撮像素子、撮像システム
JP2019160836A (ja) 2018-03-07 2019-09-19 住友電気工業株式会社 半導体受光デバイス、赤外線検知装置
JP7202252B2 (ja) 2019-05-08 2023-01-11 Hkt株式会社 混合装置
CN110797424A (zh) 2019-11-15 2020-02-14 南京大学 一种具有暗电流抑制结构的锑化物超晶格甚长波红外探测器

Also Published As

Publication number Publication date
JP2021163820A (ja) 2021-10-11

Similar Documents

Publication Publication Date Title
US8022390B1 (en) Lateral conduction infrared photodetector
US8293566B1 (en) Strained layer superlattice focal plane array having a planar structure
US7759698B2 (en) Photo-field effect transistor and integrated photodetector using the same
US10079262B2 (en) Semiconductor photo-detector
JP5936250B2 (ja) センサ、方法、および半導体センサ
JP6880601B2 (ja) 光検出器及び撮像装置
US20110037097A1 (en) Extended wavelength digital alloy nbn detector
US20110156097A1 (en) Reduced dark current photodetector
US20080006816A1 (en) Intersubband detector with avalanche multiplier region
US9941431B2 (en) Photodiode having a superlattice structure
US11152210B2 (en) Semiconductor crystal substrate, infrared detector, and method for producing semiconductor crystal substrate
US20140217540A1 (en) Fully depleted diode passivation active passivation architecture
US10326034B2 (en) Semiconductor laminate and light-receiving element
JP7428891B2 (ja) 光学センサ及び撮像装置
JP2012216727A (ja) 受光素子、その製造方法および検出装置
JP2022032720A (ja) 2波長光検出器、及びこれを用いたイメージセンサ
JP6613923B2 (ja) 半導体積層体、受光素子および半導体積層体の製造方法
Razeghi et al. High-operating-temperature MWIR photon detectors based on type II InAs/GaSb superlattice
JP7380108B2 (ja) 赤外線検出器
KR20180019269A (ko) 반도체 장치
JP6969199B2 (ja) 受光素子
JP2020107648A (ja) 赤外線検出器及びその製造方法、撮像素子、撮像システム
Walther et al. III-V semiconductor quantum well and superlattice detectors
EP2015366B1 (en) Superlattice structure for photodetection incorporating coupled quantum dots
JP7516730B2 (ja) 赤外線センサおよび光検出方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240108

R150 Certificate of patent or registration of utility model

Ref document number: 7428891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150