CN107452820B - 一种同质界面二维δ掺杂型PIN紫外探测器 - Google Patents

一种同质界面二维δ掺杂型PIN紫外探测器 Download PDF

Info

Publication number
CN107452820B
CN107452820B CN201710698526.5A CN201710698526A CN107452820B CN 107452820 B CN107452820 B CN 107452820B CN 201710698526 A CN201710698526 A CN 201710698526A CN 107452820 B CN107452820 B CN 107452820B
Authority
CN
China
Prior art keywords
type
layer
doping
dimension
ohmic contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710698526.5A
Other languages
English (en)
Other versions
CN107452820A (zh
Inventor
王俊
郭进
王国胜
金里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 38 Research Institute
Original Assignee
CETC 38 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 38 Research Institute filed Critical CETC 38 Research Institute
Priority to CN201710698526.5A priority Critical patent/CN107452820B/zh
Publication of CN107452820A publication Critical patent/CN107452820A/zh
Application granted granted Critical
Publication of CN107452820B publication Critical patent/CN107452820B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属于半导体光电子器件技术领域,具体涉及一种同质界面二维δ掺杂型PIN紫外探测器,包括衬底,缓冲层,N型欧姆接触层,N型欧姆接触电极,吸收层,二维δ掺杂层,P型欧姆接触层,P型欧姆接触电极;其中,所述二维δ掺杂层为高掺杂N型半导体材料制成,所述二维δ掺杂层制作在吸收层之上。本发明通过同质二维δ掺杂层来调节电场分布,从而提高P区光生载流子的收集效率,进而提高探测器的光谱响应率。

Description

一种同质界面二维δ掺杂型PIN紫外探测器
技术领域
本发明属于半导体光电子器件技术领域,具体涉及一种同质界面二维δ掺杂型PIN紫外探测器。
背景技术
紫外探测技术是继红外探测和激光探测技术之后的又一军民两用光电探测技术。紫外探测技术在导弹预警、精确制导、紫外保密通信、生化分析、明火探测、生物医药分析、海上油监、臭氧浓度监测、太阳指数监测等领域具有广泛的应用。传统紫外探测器主要以光电倍增管为主,它虽然能实现高响应的紫外探测,但是光电倍增管需要大功率和阴极制冷、体积大、功耗大、易损坏、价格高。近年来随着宽禁带半导体技术的发展,采用全固态半导体器件取代光电倍增管成为可能。GaN能够和AlN形成组分可调的三元系合金AlGaN,属于直接带隙半导体,随着合金材料中Al组分的变化,带隙在3.4eV–6.2eV之间连续变化,AlGaN探测器的本征截止波长能够从365nm连续变化到200nm。GaN基探测器具有全固态,体积小,不受可见光的干扰等优点。近年来,已经有多种结构的GaN基紫外探测器被研制出来,其中,PIN型结构由于量子效率高、暗电流低、响应速度快和能工作在光伏模式下等优点,受到了人们的关注。常规GaN基PIN型结构紫外探测器,由于P型区对入射光的吸收会降低探测器的响应率,为了提高响应率一般通过降低P区厚度或者采用异质外延更高Al组分的P型层。但降低P区厚度会增加欧姆电极的制备难度和增大暗电流,而采用异质外延技术又会带来界面极化问题和牺牲短波响应率的困扰。
发明内容
本发明要解决的技术问题是,提供一种即无需采用异质外延技术又不用改变P区厚度,而通过在P区和吸收区界面插入一层二维δ掺杂的同质外延层来改变器件内部电场分布来获得高响应率的紫外探测器。
为解决上述技术问题,本发明提供了以下技术方案:
一种同质界面二维δ掺杂型PIN紫外探测器,包括:
一衬底;
一缓冲层,该缓冲层制作在衬底上;
一N型欧姆接触层,该N型欧姆接触层制作在缓冲层上;
一N型欧姆接触电极,该N型欧姆接触电极为环形结构,且制作在N型欧姆接触层上;
一吸收层,该吸收层为弱N型半导体材料制成,该吸收层制作在N型欧姆接触层上,且位于环形N型欧姆接触电极围成的区域内;
一二维δ掺杂层;
一P型欧姆接触层,该P型欧姆接触层制作在二维δ掺杂层之上;
一P型欧姆接触电极,该P型欧姆电极制作在P型欧姆接触层之上;
其中,所述二维δ掺杂层为高掺杂N型半导体材料制成,所述二维δ掺杂层制作在吸收层之上。
优选的,所述衬底为蓝宝石、硅、碳化硅、氮化镓或砷化镓材料制成。
优选的,所述缓冲层为低温外延的AlN材料制成,厚度为150纳米~300纳米。
优选的,所述N型欧姆接触层的厚度为300纳米~500纳米,为高电子浓度的N型AlxGa1-xN材料制成,其中0≤x≤1,掺杂浓度大于5×1017cm-3
优选的,所述吸收层的厚度为150纳米~500纳米,为非故意掺杂的弱N型AlxGa1-xN材料,其自由电子浓度为1×1016cm-3
优选的,所述二维δ掺杂层厚度小于1纳米,为二维高掺杂浓度的N型AlxGa1-xN材料,掺杂浓度大于1×1019cm-3
优选的,所述P型欧姆接触层厚度为70纳米,为高浓度的P型AlxGa1-xN材料,其自由空穴浓度大于1×1017cm-3
优选的,探测器的工作模式为光线从P型欧姆接触层所在端入射。
本发明的技术效果在于:通过同质二维δ掺杂层来调节电场分布,从而提高P区光生载流子的收集效率,进而提高探测器的光谱响应率。
附图说明
图1是本发明一种同质界面二维δ掺杂型PIN紫外探测器的结构示意图;
图2是本发明一种同质界面二维δ掺杂型PIN紫外探测器的掺杂分布;
图3是本发明一种同质界面二维δ掺杂型PIN紫外探测器的光谱响应与传统结构紫外探测器的光谱响应的比较示意图。
具体实施方式
以下结合附图对本发明进行详细的描述。
如图1所示,在本具体实施例中,本发明一种同质界面二维δ掺杂型PIN紫外探测器包括一衬底1、一缓冲层2、一N型欧姆接触层3、一吸收层4、一二维δ掺杂层5、一P型欧姆接触层6、一个环形结构的N型欧姆接触电极7、一个环形结构的P型欧姆接触电极8。缓冲层2外延在衬底1上,N型欧姆接触层3制作在缓冲层2上,吸收层4制作在N型欧姆接触层3之上,二维δ掺杂层5制作吸收层4之上,在P型欧姆接触层6制作在二维δ掺杂层5之上,P型欧姆电极8制作在P型欧姆接触层6之上,N型欧姆接触电极7制作在N型欧姆接触层3上。衬底1为蓝宝石材料,缓冲层2为低温外延的AlN材料,N型欧姆接触层3为高电子浓度的N型GaN材料,其掺杂浓度为3×1018cm-3,吸收层4为非故意掺杂的N型GaN材料,二维δ掺杂层5为二维δ高掺杂的N型GaN材料,其掺杂浓度为1.2×1019cm-3,P型欧姆接触层6为高空穴浓度的P型GaN材料,其自由空穴浓度等于1×1018cm-3
本实施例采用前端照射模式,缓冲层2的厚度为100纳米,N型欧姆接触层3的厚度为500纳米,吸收层4经优化后的深度为450纳米,二维δ掺杂层5掺杂区域限制在1纳米内,P型欧姆接触层6厚度为70纳米。图2为沿外延方向的掺杂浓度分布。
如图3所示为本发明一种同质界面二维δ掺杂型PIN紫外探测器的光谱响应同传统PIN紫外探测器的比较结果,可以看出在整个光谱响应范围内,如图2所示掺杂分布的同质界面二维δ掺杂型PIN紫外探测器,具有更大光谱响应值。本发明探测器的高响应率的原因在于,当紫外光从P型欧姆接触层6入射到时,由于GaN材料具有较大的吸收系数,大量紫外线会在P区被吸收,而传统结构探测器由于P区掺杂相对吸收区的本征掺杂较高,耗尽几乎全部落在吸收区,P区的光生载流子要靠扩散才能进入吸收区,大部分P区产生的载流子将被复合而无法形成信号电流。二维δ掺杂层的引入能够使耗尽区进入几乎整个P区,使P区形成电场,将P区产生的载流子通过电场漂移吸收,大大提高响应率和响应速度。本发明一种同质界面二维δ掺杂型PIN紫外探测器是实现了P区光生载流子的有效利用,因而能够获得更高的光谱响应率,同时还可以在保持光谱响应率的同时增加探测器的响应速度。
本发明提出的一种同质界面二维δ掺杂型PIN紫外探测器,相比于传统PIN结构紫外探测器来说,本发明提出的采取二维δ掺杂层来调节电场分布,能够进一步提高探测器的光谱响应,器件性能明显改善。此外,本发明一种同质界面二维δ掺杂型PIN紫外探测器的结构优势可被用于红外及其它波段探测器,所用半导体材料可以是其它高吸收系数材料。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (8)

1.一种同质界面二维δ掺杂型PIN紫外探测器,一衬底(1);
一缓冲层(2),该缓冲层(2)制作在衬底(1)上;
一N型欧姆接触层(3),该N型欧姆接触层(3)制作在缓冲层(2)上;
一N型欧姆接触电极(7),制作在N型欧姆接触层(3)上;
一吸收层(4);
一P型欧姆接触层(6);
一P型欧姆接触电极(8),该P型欧姆电极(8)制作在P型欧姆接触层(6)之上;
其特征在于,该N型欧姆接触电极(7)为环形结构,该吸收层(4)为弱N型半导体材料制成,该吸收层(4)制作在N型欧姆接触层(3)上,且位于环形N型欧姆接触电极(7)围成的区域内;
该探测器还包括:
一二维δ掺杂层(5);
该P型欧姆接触层(6)制作在二维δ掺杂层(5)之上,所述二维δ掺杂层(5)为高掺杂N型半导体材料制成,所述二维δ掺杂层(5)制作在吸收层(4)之上。
2.根据权利要求1所述的同质界面二维δ掺杂型PIN紫外探测器,其特征在于:所述衬底(1)为蓝宝石、硅、碳化硅、氮化镓或砷化镓材料制成。
3.根据权利要求1所述的同质界面二维δ掺杂型PIN紫外探测器,其特征在于:所述缓冲层(2)为低温外延的AlN材料制成,厚度为150纳米~300纳米。
4.根据权利要求1所述的同质界面二维δ掺杂型PIN紫外探测器,其特征在于:所述N型欧姆接触层(3)的厚度为300纳米~500纳米,为高电子浓度的N型AlxGa1-xN材料制成,其中0≤x≤1,掺杂浓度大于5×1017cm-3
5.根据权利要求1所述的同质界面二维δ掺杂型PIN紫外探测器,其特征在于:所述吸收层(4)的厚度为150纳米~500纳米,为非故意掺杂的弱N型AlxGa1-xN材料,其自由电子浓度为1×1016cm-3
6.根据权利要求1所述的同质界面二维δ掺杂型PIN紫外探测器,其特征在于:所述二维δ掺杂层(5)厚度小于1纳米,为二维高掺杂浓度的N型AlxGa1-xN材料,掺杂浓度大于1×1019cm-3
7.根据权利要求1所述的同质界面二维δ掺杂型PIN紫外探测器,其特征在于:所述P型欧姆接触层(6)厚度为70纳米,为高浓度的P型AlxGa1-xN材料,其自由空穴浓度大于1×1017cm-3
8.根据权利要求1所述的同质界面二维δ掺杂型PIN紫外探测器,其特征在于:探测器的工作模式为光线从P型欧姆接触层(6)所在端入射。
CN201710698526.5A 2017-08-15 2017-08-15 一种同质界面二维δ掺杂型PIN紫外探测器 Active CN107452820B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710698526.5A CN107452820B (zh) 2017-08-15 2017-08-15 一种同质界面二维δ掺杂型PIN紫外探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710698526.5A CN107452820B (zh) 2017-08-15 2017-08-15 一种同质界面二维δ掺杂型PIN紫外探测器

Publications (2)

Publication Number Publication Date
CN107452820A CN107452820A (zh) 2017-12-08
CN107452820B true CN107452820B (zh) 2019-04-30

Family

ID=60492126

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710698526.5A Active CN107452820B (zh) 2017-08-15 2017-08-15 一种同质界面二维δ掺杂型PIN紫外探测器

Country Status (1)

Country Link
CN (1) CN107452820B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109192796A (zh) * 2018-10-24 2019-01-11 南京大学 一种UVC增强型PIN结构的4H-SiC紫外探测器
US11495707B2 (en) 2020-04-17 2022-11-08 Changchun Institute Of Optics, Fine Mechanics And Physics, Chinese Academy Of Sciences AlGaN unipolar carrier solar-blind ultraviolet detector and manufacturing method thereof
CN111446332A (zh) * 2020-04-17 2020-07-24 中国科学院长春光学精密机械与物理研究所 一种AlGaN单极载流子日盲紫外探测器及其制备方法
CN113838940B (zh) * 2021-08-19 2024-03-08 北京无线电测量研究所 一种集成型光电探测器及其制作方法
CN115117198A (zh) * 2022-05-16 2022-09-27 上海交通大学 一种δ掺杂层制备方法及电子器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100089464A (ko) * 2009-02-04 2010-08-12 주식회사 실트론 AlGaN/GaN 이종접합 구조를 가지는 반도체 기판 및 이를 이용한 이종접합 전계효과 트랜지스터
CN102244135A (zh) * 2011-07-05 2011-11-16 中山大学 一种pin倒置结构紫外雪崩光电探测器及其制备方法
CN104779316A (zh) * 2015-03-30 2015-07-15 中国电子科技集团公司第三十八研究所 一种新型GaN基PIN结构紫外探测器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100343814B1 (en) * 2000-12-08 2002-07-20 Kwangju Inst Sci & Tech Photodetector using high electron mobility transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100089464A (ko) * 2009-02-04 2010-08-12 주식회사 실트론 AlGaN/GaN 이종접합 구조를 가지는 반도체 기판 및 이를 이용한 이종접합 전계효과 트랜지스터
CN102244135A (zh) * 2011-07-05 2011-11-16 中山大学 一种pin倒置结构紫外雪崩光电探测器及其制备方法
CN104779316A (zh) * 2015-03-30 2015-07-15 中国电子科技集团公司第三十八研究所 一种新型GaN基PIN结构紫外探测器

Also Published As

Publication number Publication date
CN107452820A (zh) 2017-12-08

Similar Documents

Publication Publication Date Title
CN107452820B (zh) 一种同质界面二维δ掺杂型PIN紫外探测器
CN108305911B (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
CN102386269B (zh) GaN基p-i-p-i-n结构紫外探测器及其制备方法
CN105097964B (zh) 一种有源区高斯掺杂型pπn紫外探测器
CN104779316B (zh) 一种新型GaN基PIN结构紫外探测器
CN107403848B (zh) 一种背照式级联倍增雪崩光电二极管
CN102800717A (zh) 一种pin结构紫外雪崩光电探测器及其制备方法
CN103400888A (zh) 高增益的AlGaN紫外雪崩光电探测器及其制备方法
CN106206832B9 (zh) 一种单极阻挡结构窄带通紫外探测器
CN111739960B (zh) 一种增益型异质结紫外光电探测器
CN105655437A (zh) 一种紫外雪崩光电探测器
CN109494275A (zh) 一种AlGaN基日盲紫外光电晶体管探测器及其制作方法
CN109935655B (zh) 一种AlGaN/SiC双色紫外探测器
CN109285914B (zh) 一种AlGaN基紫外异质结光电晶体管探测器及其制备方法
CN110459627B (zh) 一种紫外-可见双波段光电探测器
CN109980040A (zh) 一种氧化镓mis结构紫外探测器
CN102931272A (zh) 一种具有增益的紫外探测器结构及其制备方法
CN113471326B (zh) 一种ⅲ族氮化物异质结光电探测器
CN107195709B (zh) 一种三族氮化物基异质结光电晶体管
Qiu et al. High-gain AlGaN/GaN visible-blind avalanche heterojunction phototransistors
CN108305907B (zh) 一种新型同质结pin紫外探测器
CN109326659B (zh) 一种高响应度低暗电流PIN结构的4H-SiC紫外探测器及其制备方法
CN112490305B (zh) 一种可见-紫外双色探测器
CN109192796A (zh) 一种UVC增强型PIN结构的4H-SiC紫外探测器
Yang et al. High-performance back-illuminated solar-blind AlGaN metal-semiconductor-metal photodetectors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant