CN107195709B - 一种三族氮化物基异质结光电晶体管 - Google Patents

一种三族氮化物基异质结光电晶体管 Download PDF

Info

Publication number
CN107195709B
CN107195709B CN201710357458.6A CN201710357458A CN107195709B CN 107195709 B CN107195709 B CN 107195709B CN 201710357458 A CN201710357458 A CN 201710357458A CN 107195709 B CN107195709 B CN 107195709B
Authority
CN
China
Prior art keywords
layer
tri
nitride
forbidden bandwidth
heterojunction phototransistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710357458.6A
Other languages
English (en)
Other versions
CN107195709A (zh
Inventor
江灏
张灵霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Sun Yat Sen University
Original Assignee
National Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Sun Yat Sen University filed Critical National Sun Yat Sen University
Priority to CN201710357458.6A priority Critical patent/CN107195709B/zh
Publication of CN107195709A publication Critical patent/CN107195709A/zh
Application granted granted Critical
Publication of CN107195709B publication Critical patent/CN107195709B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • H01L31/1105Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors the device being a bipolar phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03042Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及可见光与紫外光探测器技术领域,更具体地,涉及一种三族氮化物基异质结光电晶体管,包括衬底及生长于衬底之上的三族氮化物外延层;所述三族氮化物外延层自下而上依次包括成核层、过渡层、施主掺杂层、非故意掺杂层、多元合金受主掺杂层、较大禁带宽度材料的非故意掺杂层,较大禁带宽度材料的施主掺杂层。本发明一种三族氮化物基异质结光电晶体管,采用合金组分与掺杂浓度缓变基区,产生附加加速电场,加速电子渡越基区,减小其在基区被复合的几率,从而提高光电增益及探测的灵敏度。

Description

一种三族氮化物基异质结光电晶体管
技术领域
本发明涉及可见光与紫外光探测器技术领域,更具体地,涉及一种改善载流子基区渡越效率的三族氮化物基异质结光电晶体管。
背景技术
可见光与紫外探测在军事和国民经济的各个领域均有广泛的用途,可见光探测在光度计量、工业自动控制、可见光成像、可见光通信等方面有重要的应用;而紫外探测则由于背景噪声低、突发干扰源少等特点,在火灾报警、环境监测、高压电晕放电检测、工业燃烧过程监测等方面有着重要的应用。在可见光与紫外探测中,基于固态半导体的可见光或紫外光电探测器具有体积小、响应速度快、光电转换量子效率高的优点,其主要类型有肖特基型光电二极管、PIN型光电二极管、雪崩光电二极管(APD)与光电晶体管等。其中,肖特基与PIN型光电二极管虽然具有工作电压低、量子效率高的优点,但因其没有内部增益,导致其性噪比低、弱光探测性能较差,难以获得高探测灵敏度;雪崩光电二极管(APD)具有高内部光电流增益、高响应速度,可获得高探测灵敏度,但其工作电压高、雪崩过程带来的额外噪声、工作电压受温度影响大的缺点限制了APD的部分应用。与这些类型的光电探测器不同,光电晶体管是利用双极性晶体管双结耦合的特性,以光生电子-空穴对产生的电子或空穴电流作为晶体管的基极电流,被放大的集电极电流作为输出电流,从而实现内部增益,其最大的优点在于可在低工作电压下获得高光电流增益,同时可使暗电流保持在低水平(低噪声),因此可实现高灵敏度探测。
对于三族氮化物双极型异质结光电晶体管,其研制的起始与三族氮化物放光二极管(LED)的研制几乎是同步。1998年,美国Wei Yang(Honeywell Technology Center)等人在论文High gain GaN/AlGaN heterojunciton phototransistor (Applied PhysicsLetters, Vol. 73, No. 7)中首次报道了研制的基于 GaN/AlGaN的可见光盲异质结光电晶体管紫外光探测器,该器件采用背入射结构,光电流增益,但是,该结构的异质结光电晶体管暗电流较高,主要是因为外延层最先生长较大禁带宽度的AlGaN,GaN基区与集电区生长于其上,使得外延层晶体质量无法得到保证。2001年,日本大阪气体株式会社的RobertMouillet等人在文章Photoresponse and defect levels of AlGaN/GaN heterobipolarphototransistor grown on low-temperature AlN interlayer(Jpn. J. Appl. Phys,Vol. 40, pp. L498-L501)中报道了采用45度角正入射结构的可见光盲AlGaN/GaN异质结光电晶体管,其增益随着光强的减弱而减小,通过测试发现p型基区材料缺陷是影响器件的首要因素,该结构的器件能实现微弱光探测,但光电增益不高。2007年,台南大学M.L.Lee等人在文章Ultraviolet bandpass Al0.17Ga0.83N/GaN heterojunction phototransistorswith high optical gain and high rejection ratio(Applied Physics Letters, Vol.92, 083506)中报道了将较大禁带宽度材料AlGaN作为发射层与入射光窗口层,并置于器件外延结构最上层的可见光盲AlGaN/GaN异质结光电晶体管,该器件采用异质结作为发射结,提高了器件的光电流增益;同时,由于器件采用AlGaN发射区兼作入射光窗口层,这不仅提高了器件发射结的注入效率,也改善了器件对入射光的吸收效率。与之前报道的结构相比,该器件规避了将带隙较宽的AlGaN层置于外延结构下层中所带来的晶体质量劣化问题,但是由于p型基区受主掺杂杂质Mg原子的记忆效应,导致对n型发射区的杂质补偿、基区与发射区的结界面偏移,影响了器件性能的改善。
因此,目前研制的三族氮化物基光电晶体管在技术改善上,其着重点主要是放在入射光吸收效率的改善与利用异质结提高发射结的电子注入效率两方面。对于三族氮化物光电晶体管,由于三族氮化物中电子和空穴的有效质量较大,且外延层中线缺陷和点缺陷密度较高,因此不论是电子或是空穴,其在基区渡越的效率都会受到一定程度的制约;而少子在基区的渡越效率是影响双极型光电晶体管光电增益与响应速度的关键因素之一。
发明内容
本发明针对现有三族氮化物基光电晶体管中存在的不足之处,提供一种载流子基区渡越增强的n-p-n型三族氮化物基异质结光电晶体管,该光电晶体管通过在p型基区建立附加漂移电场,帮助电子渡越中性基区,提高渡越效率,实现三族氮化物基异质结光电晶体管的高光电增益和高灵敏度探测。这种改进的双极型光电晶体管结构,对生长设备和工艺条件没有特殊要求,在不会对外延生长和工艺步骤产生较大改动的基础上,提高了光电晶体管的性能。
为了实现上述目的,本发明提供一种三族氮化物基异质结光电晶体管,包括衬底及生长于衬底之上的三族氮化物外延层;三族氮化物外延层自上而下依次包括成核层、过渡层、施主掺杂层、非故意掺杂层、多元合金受主掺杂层、较大禁带宽度材料的非故意掺杂层,较大禁带宽度材料的施主掺杂层。所述三族氮化物包括三种二元化合物GaN、AlN和InN及其组分可调的三元合金(InGaN、AlGaN、InAlN)与四元(InAlGaN)合金。
优选地,所述的衬底为蓝宝石衬底、碳化硅衬底、硅衬底、三族氮化物衬底、氧化镁衬底、镓酸锂衬底、铝酸锂衬底或砷化镓衬底中的任一种。
优选地,所述成核层为低温或者高温生长的三族氮化物,厚度为10-200 nm。
优选地,所述过渡层为非故意掺杂三族氮化物,厚度为0.1-3.0 μm。
优选地,所述的施主掺杂层为三族氮化物基异质结光电晶体管的集电极欧姆接触引出层,厚度为0.1-1.5μm,层中电子浓度为5×1017-8×1018cm-3
优选地,所述的非故意掺杂层为三族氮化物基异质结光电晶体管的集电区与光吸收层,层中电子浓度为1×1016-2×1017cm-3,厚度为0.1-0.5μm。
所述的多元合金受主掺杂层为电子基区渡越增强三族氮化物基异质结光电晶体管的基区,其中的合金组分与受主掺杂浓度可以为线性变化或者非线性变化,其禁带宽度从作为集电区的非故意掺杂层的禁带宽度逐渐变化至较大禁带宽度的非故意掺杂层的禁带宽度,而层中的受主掺杂浓度从作为集电区的非故意掺杂层边缘逐渐增大至较大禁带宽度材料的非故意掺杂层的边缘,空穴浓度变化范围为1×1017-8×1018cm-3,该多元合金受主掺杂层厚度为0.08-0.3μm,
所述的较大禁带宽度的非故意掺杂层为受主扩散缓冲层,厚度为0.05-0.3μm,层中电子浓度为1×1016-2×1017cm-3,且其禁带宽度与非故意掺杂层(105)的禁带宽度只差ΔEg,ΔEg大于且等于100 meV。
所述的较大禁带宽度材料的施主掺杂层为电子基区渡越增强三族氮化物基异质结光电晶体管的发射极欧姆接触引出层与入射光的透射窗口层,层厚度为0.1-0.3μm,层中电子浓度为5×1017-8×1018 cm-3且其禁带宽度与非故意掺杂层(105)的禁带宽度只差ΔEg,ΔEg大于且等于100 meV。
与现有技术相比,本发明具有如下有益效果:
(1)本发明采用正入射,较大禁带宽度材料的施主掺杂层作为发射区与入射光窗口层,允许光子能量小于其禁带宽度的入射光信号通过,光信号在p型基区与n型集电区之间的耗尽层内被吸收,提高了光的吸收效率;
(2)本发明在多元合金受主掺杂层生长后,设计了较大禁带宽度材料的非故意掺杂层,可有效缓减多元合金受主掺杂原子向发射区扩散,改善受主杂质扩散对发射区的杂质补偿,提高发射结性能及器件的光电增益;
(3)本发明中基区的禁带宽度大于光吸收层的禁带宽度,入射光透过基区在内部具有强电场的光吸收层(非故意掺杂层)被吸收,产生的光生载流子被迅速分离,提高了光的吸收效率;
(4)本发明中基区采用合金组分与掺杂浓度缓变的多元合金受主掺杂层,产生内建电场,加速分离光生载流子并使得电子以更快的速度渡越基区,以被集电极收集,该结构一方面可减小电子在基区被复合的几率,提高增益;另一方面,也可以使该光电晶体管的响应速率得到提高;
该光电晶体管通过在p型基区采用三族氮化物三元或四元合金半导体,同时逐渐变化p型基区合金半导体的组分和掺杂浓度,从而在基区建立附加漂移电场,帮助电子渡越中性基区,提高渡越效率,实现三族氮化物基异质结光电晶体管的高光电增益和高灵敏度探测。
附图说明
图1是本发明一种三族氮化物基异质结光电晶体管的结构示意图。
图2为实施例1中的一种三族氮化物基异质结光电晶体管的结构示意图。
图3为实施例2中的一种三族氮化物基异质结光电晶体管的结构示意图。
具体实施方式
下面结合附图和具体实施例对本发明的发明目的作进一步详细地描述,实施例不能在此一一赘述,但本发明的实施方式并不因此限定于以下实施例。除非特别说明,本发明采用的材料和加工方法为本技术领域常规材料和加工方法。
实施例1
本发明一种种三族氮化物基异质结光电晶体管的结构示意图如图1所示,包括衬底101及生长于衬底101之上的三族氮化物外延层;其中,三族氮化物外延层自下而上依次包括成核层102,过渡层103,施主掺杂层104,非故意掺杂层105,多元合金受主掺杂层106,较大禁带宽度材料的非故意掺杂层107,较大禁带宽度材料的施主掺杂层108。
以下将结合图2具体说明一种三族氮化物基异质结可见光盲紫外(光响应截止波长≤365 nm)光电晶体管的结构,该紫外光电晶体管结构为npn型,采用正入射的形式。如图2所示,采用金属有机物化学气相沉积(MOCVD)或分子束外延(MBE)的外延生长方法生长三族氮化物基异质结光电晶体管,包括蓝宝石衬底201以及三族氮化物外延层202~208,所述三族氮化物外延层包括生长在蓝宝石衬底201上的20 nm厚低温GaN成核层202、2.0μm厚度的非故意掺杂GaN过渡层203、生长在过渡层203上的1.0μm厚度的施主Si重掺杂n型GaN集电极欧姆接触层204,0.2μm厚度的非故意掺杂的GaN集电极光吸收层205,0.1μm厚度的受主Mg掺杂合金组分与掺杂浓度缓变基区AlxGa1-xN(x=0~0.15)层206(层中空穴浓度由205一侧开始从3.0×1017 cm-3增加至另一侧边缘处的4.0×1018 cm-3),0.1μm厚度的非故意掺杂的Al0.15Ga0.85N受主Mg扩散缓冲层207,0.1μm厚度施主Si掺杂Al0.15Ga0.85N发射极欧姆接触引出层208。
本发明一种载流子基区渡越增强的n-p-n型三族氮化物基异质结光电晶体管,该光电晶体管通过在p型基区建立附加漂移电场,帮助电子渡越中性基区,提高渡越效率,实现三族氮化物基异质结光电晶体管的高光电增益和高灵敏度探测。
实施例2
本实施案例2将具体说明图3所示的一种三族氮化物基异质结可见光(光响应截止波长≤460 nm)光电晶体管的结构,该可见光异质结光电晶体管结构为npn型,采用正入射的形式。如图3所示,采用金属有机物化学气相沉积(MOCVD)或分子束外延(MBE)的外延生长方法生长三族氮化物基异质结光电晶体管,包括6H-SiC衬底301以及三族氮化物外延层302~308,所述三族氮化物外延层包括生长在6H-SiC衬底上的25 nm厚高温GaN成核层302、3.0μm厚度的非故意掺杂GaN过渡层303、生长在过渡层303上的1.0μm厚度的施主Si重掺杂n型GaN集电极欧姆接触层304,0.15μm厚度的非故意掺杂的In0.16Ga0.84N集电极光吸收层305(对应响应截止波长为460 nm),0.1μm厚度的受主Mg掺杂合金组分与掺杂浓度缓变基区InxGa1-xN(In组分x从305一侧的16%线性减少至另一侧边缘处3%,而空穴浓度则由305一侧开始从3.0×1017 cm-3增加至另一侧边缘处的5.0×1018 cm-3)层306,0.1μm厚度的非故意掺杂的In0.03Ga0.97N受主Mg扩散缓冲层307,0.1μm厚度施主Si掺杂GaN发射极欧姆接触引出层308。
本发明一种载流子基区渡越增强的n-p-n型三族氮化物基异质结光电晶体管,该光电晶体管通过在p型基区建立附加漂移电场,帮助电子渡越中性基区,提高渡越效率,实现三族氮化物基异质结光电晶体管的高光电增益和高灵敏度探测。

Claims (9)

1.一种三族氮化物基异质结光电晶体管,其特征在于,包括衬底(101)及生长于衬底(101)之上的三族氮化物外延层;其中,三族氮化物外延层自下而上依次包括成核层(102),过渡层(103),施主掺杂层(104),非故意掺杂层(105),多元合金受主掺杂层(106),较大禁带宽度材料的非故意掺杂层(107),较大禁带宽度材料的施主掺杂层(108);
所述的多元合金受主掺杂层(106)为三族氮化物基异质结光电晶体管的基区,其合金组分呈线性变化或者非线性变化,使其禁带宽度从非故意掺杂层(105)的禁带宽度逐渐变化至较大禁带宽度材料的非故意掺杂层(107)的禁带宽度,厚度为0.08-0.3μm。
2.根据权利要求1所述的一种三族氮化物基异质结光电晶体管,其特征在于,所述的衬底(101)为蓝宝石衬底、碳化硅衬底、三族氮化物衬底、硅衬底、氧化镁衬底、镓酸锂衬底或砷化镓衬底中的任一种。
3.根据权利要求1所述的一种三族氮化物基异质结光电晶体管,其特征在于,所述的成核层(102)为低温或者高温生长的三族氮化物,厚度为10-200nm。
4.根据权利要求1所述的一种三族氮化物基异质结光电晶体管,其特征在于,所述的过渡层(103)为非故意掺杂三族氮化物,厚度为0.1-3.0μm。
5.根据权利要求1所述的一种三族氮化物基异质结光电晶体管,其特征在于,所述的施主掺杂层(104)为三族氮化物基异质结光电晶体管的集电极欧姆接触引出层,厚度为0.1-1.5μm,层中电子浓度为5×1017-8×1018cm-3
6.根据权利要求1所述的一种三族氮化物基异质结光电晶体管,其特征在于,所述的非故意掺杂层(105)为三族氮化物基异质结光电晶体管的集电区及光吸收区,厚度为0.1-0.5μm,层中电子浓度为1×1016-2×1017cm-3
7.根据权利要求1所述的一种三族氮化物基异质结光电晶体管,其特征在于,所述的多元合金受主掺杂层(106)中的受主掺杂浓度从非故意掺杂层(105)的边缘至较大禁带宽度材料的非故意掺杂层(107)的边缘逐渐增大,增大趋势呈线性变化或者非线性变化,对应的层中空穴浓度变化范围为1×1017-8×1018cm-3
8.根据权利要求1所述的一种三族氮化物基异质结光电晶体管,其特征在于,所述的较大禁带宽度材料的非故意掺杂层(107)为受主扩散缓冲层,厚度为0.05-0.3μm,层中电子浓度为1×1016-2×1017cm-3,且其禁带宽度与非故意掺杂层(105)的禁带宽度只差ΔEg,ΔEg大于且等于100meV。
9.根据权利要求1所述的一种三族氮化物基异质结光电晶体管,其特征在于,所述的较大禁带宽度材料的施主掺杂层(108)为三族氮化物基异质结光电晶体管发射区的欧姆接触引出层与入射光信号的透射窗口层,其厚度为0.1-0.3μm,层中电子浓度为5×1017-8×1018cm-3,且其禁带宽度与非故意掺杂层(105)的禁带宽度只差ΔEg,ΔEg大于且等于100meV。
CN201710357458.6A 2017-05-19 2017-05-19 一种三族氮化物基异质结光电晶体管 Active CN107195709B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710357458.6A CN107195709B (zh) 2017-05-19 2017-05-19 一种三族氮化物基异质结光电晶体管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710357458.6A CN107195709B (zh) 2017-05-19 2017-05-19 一种三族氮化物基异质结光电晶体管

Publications (2)

Publication Number Publication Date
CN107195709A CN107195709A (zh) 2017-09-22
CN107195709B true CN107195709B (zh) 2019-06-11

Family

ID=59874890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710357458.6A Active CN107195709B (zh) 2017-05-19 2017-05-19 一种三族氮化物基异质结光电晶体管

Country Status (1)

Country Link
CN (1) CN107195709B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109285914B (zh) * 2018-10-15 2020-10-16 中山大学 一种AlGaN基紫外异质结光电晶体管探测器及其制备方法
CN110459627B (zh) * 2019-07-15 2021-05-14 东南大学 一种紫外-可见双波段光电探测器
CN110957354B (zh) * 2019-11-25 2022-09-09 中国电子科技集团公司第五十五研究所 一种硅重掺杂氮化镓异质外延的材料结构及应力控制方法
WO2022261829A1 (zh) * 2021-06-15 2022-12-22 中山大学 一种ⅲ族氮化物异质结光电探测器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1166410A2 (en) * 1999-03-26 2002-01-02 Matsushita Electric Industrial Co., Ltd. Semiconductors structures using a group iii-nitride quaternary material system with reduced phase separation and method of fabrication
CN102903615A (zh) * 2012-10-18 2013-01-30 中山大学 一种p型GaN与AlGaN半导体材料的制备方法
CN103545398A (zh) * 2013-10-16 2014-01-29 北京工业大学 基区渐变的单向载流子传输的双异质结光敏晶体管探测器
CN103560146A (zh) * 2013-10-29 2014-02-05 中山大学 一种用于制备GaN异质结场效应晶体管的外延结构及生长方法
CN105742399A (zh) * 2016-02-22 2016-07-06 中山大学 一种三族氮化物基双异质结光电晶体管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1166410A2 (en) * 1999-03-26 2002-01-02 Matsushita Electric Industrial Co., Ltd. Semiconductors structures using a group iii-nitride quaternary material system with reduced phase separation and method of fabrication
CN102903615A (zh) * 2012-10-18 2013-01-30 中山大学 一种p型GaN与AlGaN半导体材料的制备方法
CN103545398A (zh) * 2013-10-16 2014-01-29 北京工业大学 基区渐变的单向载流子传输的双异质结光敏晶体管探测器
CN103560146A (zh) * 2013-10-29 2014-02-05 中山大学 一种用于制备GaN异质结场效应晶体管的外延结构及生长方法
CN105742399A (zh) * 2016-02-22 2016-07-06 中山大学 一种三族氮化物基双异质结光电晶体管

Also Published As

Publication number Publication date
CN107195709A (zh) 2017-09-22

Similar Documents

Publication Publication Date Title
CN107863413B (zh) 一种AlGaN基日盲紫外雪崩异质结光电晶体管探测器及其制备方法
CN107195709B (zh) 一种三族氮化物基异质结光电晶体管
CN109494275B (zh) 一种AlGaN基日盲紫外光电晶体管探测器及其制作方法
Pernot et al. Solar-blind UV photodetectors based on GaN/AlGaN pin photodiodes
CN108305911B (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
US6265727B1 (en) Solar blind photodiode having an active region with a larger bandgap than one or both if its surrounding doped regions
CN105742399B (zh) 一种三族氮化物基双异质结光电晶体管
US6137123A (en) High gain GaN/AlGaN heterojunction phototransistor
US20110018010A1 (en) Infrared light emitting device
CN109686809B (zh) 一种iii族氮化物半导体可见光雪崩光电探测器及制备方法
CN111739960B (zh) 一种增益型异质结紫外光电探测器
CN109285914B (zh) 一种AlGaN基紫外异质结光电晶体管探测器及其制备方法
Chang et al. Inverted Al0. 25Ga0. 75N/GaN ultraviolet pin photodiodes formed on p-GaN template layer grown by metalorganic vapor phase epitaxy
Wang et al. Highly-rectifying graphene/GaN Schottky contact for self-powered UV photodetector
KR101671552B1 (ko) 센서, 반도체 기판 및 반도체 기판의 제조 방법
CN107452820A (zh) 一种同质界面二维δ掺杂型PIN紫外探测器
Sammak et al. A CMOS compatible Ge-on-Si APD operating in proportional and Geiger modes at infrared wavelengths
CN110459627B (zh) 一种紫外-可见双波段光电探测器
CN113471326B (zh) 一种ⅲ族氮化物异质结光电探测器
Chang et al. GaN-Based Schottky Barrier Photodetectors With a 12-Pair Mg $ _ {\rm x} $ N $ _ {\rm y} $–GaN Buffer Layer
JP2005235908A (ja) 窒化物半導体積層基板及びGaN系化合物半導体装置
CN106409965B (zh) 一种高速饱和单行载流子紫外光电二极管及制备方法
Yang AlGaN UV Photodetectors
Aslam et al. Development of ultra-high sensitivity wide-band gap UV-EUV detectors at NASA Goddard Space Flight Center
Chang et al. Low-noise and high-detectivity GaN-based UV photodiode with a semi-insulating Mg-doped GaN cap layer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant