CN105742399A - 一种三族氮化物基双异质结光电晶体管 - Google Patents

一种三族氮化物基双异质结光电晶体管 Download PDF

Info

Publication number
CN105742399A
CN105742399A CN201610095411.2A CN201610095411A CN105742399A CN 105742399 A CN105742399 A CN 105742399A CN 201610095411 A CN201610095411 A CN 201610095411A CN 105742399 A CN105742399 A CN 105742399A
Authority
CN
China
Prior art keywords
layer
iii
energy gap
heterojunction phototransistor
double heterojunction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610095411.2A
Other languages
English (en)
Other versions
CN105742399B (zh
Inventor
江灏
张灵霞
唐韶吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN201610095411.2A priority Critical patent/CN105742399B/zh
Publication of CN105742399A publication Critical patent/CN105742399A/zh
Application granted granted Critical
Publication of CN105742399B publication Critical patent/CN105742399B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • H01L31/1105Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors the device being a bipolar phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种三族氮化物基双异质结光电晶体管,属于半导体器件技术领域。一种三族氮化物基双异质结光电晶体管及其制备方法,包括衬底及生长于衬底之上的外延层,外延层自下而上的顺序依次为缓冲层或过渡层,施主重掺杂欧姆接触层,合金组分渐变层,较大禁带宽度材料的施主掺杂层,较大禁带宽度材料的非故意掺杂层,受主掺杂层,非故意掺杂光吸收层,合金组分渐变层,较大禁带宽度材料的施主掺杂窗口层。本发明采用集电区上置结构,并采用禁带宽度较光吸收层大的三族氮化物多元合金材料作为入射光的窗口层,提高量子效率,增加光生空穴数量,从而提高器件的光电增益;在下置的发射区中采用反向异质结作为发射结,并导入较大禁带宽度材料的非故意掺杂层作为受主掺杂扩散阻挡层及基区?发射区异质界面能带凹陷补偿层,提高晶体管电子注入效率。本发明具有光电增益高、器件性能稳定等特点。

Description

一种三族氮化物基双异质结光电晶体管
技术领域
本发明涉及可见光与紫外光探测器的技术领域,更具体地,涉及一种三族氮化物基双异质结光电晶体管。
背景技术
随着信息技术的发展,光探测、光存储、光信息的检测等对探测器性能要求越来越高,尤其是高速高频高温等应用领域,更需高增益、低暗电流与高系统性噪比的探测器。光电探测器中,p-i-n光电二极管与雪崩光电二极管(APD)得到了广泛的研究与应用。p-i-n具有工作电压低、量子效率高等特点,但没有内部增益,无法实现弱光探测;APD通过雪崩倍增实现内部增益,但工作电压高、噪声大。近年来,光电晶体管由于低电压下高增益、噪声低等特点得到了研究者们广泛的关注与重视。
异质结光电晶体管是在同质结光电晶体管的基础上发展起来的,即晶体管的发射区用较大禁带宽度材料,与同质结相比,异质发射结能提高晶体管的注入效率。1998年,美国Wei Yang(Honeywell Technology Center)等人在文章High gain GaN/AlGaN heterojunciton phototransistor(Applied Physics Letters, Vol. 73,No. 7)中首次发表了基于GaN/AlGaN可见光的紫外(即可见光盲紫外)异质结光电晶体管,由于该器件采用发射区上置,从蓝宝石衬底一侧入射光信号的背入射方式,器件外延结构需要先生长AlN作为缓冲层,然后生长较GaN禁带宽度更大的AlGaN作为入射光窗口层,导致外延结晶质量下降,器件暗电流较高。2001年,日本大阪气体公司的Robert Mouillet等人在文章Photoresponse and defect levels of AlGaN/GaN heterobipolar phototransistor grown on low-temperature AlN interlayer(Jpn. J. Appl. Phys, Vol. 40, pp. L498-L501)中报道了采用正入射方式且集电区上置的可见光盲AlGaN/GaN异质结紫外光电晶体管,但该器件未设置入射窗口层和光吸收层,采用基区裸露与45度角入射相结合的方式实现对紫外光探测,不仅器件工艺复杂,而且量子效率和增益都有待提高。2007年,台南大学M.L.Lee等人在文章Ultraviolet bandpass Al0.17Ga0.83N/GaN heterojunction phototransistors with high optical gain and high rejection ratio(Applied Physics Letters, Vol. 92, 083506)中报道了用发射区上置的可见光盲AlGaN/GaN异质结光电晶体管,发射区采用较大禁带宽度材料并置于顶层,以改善器件对光的吸收、提高器件发射结的注入效率。这种器件结构与之前报道的结构相比,虽然规避了在蓝宝石衬底上直接外延AlN缓冲层及AlGaN窗口层所带来的晶体质量劣化问题,但其p型基区中掺杂杂质Mg的记忆效应及Mg扩散效应导致Mg原子不只是局限在基区,而是向上扩散至发射区,致使n型发射区产生受主杂质补偿,从而降低了器件中载流子输运效率和性能稳定性。
发明内容
本发明为克服上述现有技术所述的至少一种缺陷,提供一种可实现高光电增益、高可靠性、探测灵敏度高的三族氮化物基双异质结光电晶体管。
为解决上述技术问题,本发明采用的技术方案是:一种三族氮化物(包括GaN、AlGaN、AlInN、InGaN、 AlInGaN)基双异质结光电晶体管,其中,包括衬底及生长于衬底之上的外延层,外延层自下而上的顺序依次为缓冲层或者过渡层,施主重掺杂欧姆接触层,合金组分渐变层,较大禁带宽度材料的施主掺杂层,较大禁带宽度材料的非故意掺杂层,受主掺杂层,非故意掺杂光吸收层,合金组分渐变层,较大禁带宽度材料的施主掺杂窗口层。
优选地,所述的衬底为蓝宝石衬底、硅衬底、氧化镁衬底、碳化硅衬底、三族氮化物衬底、镓酸锂衬底、砷化镓衬底。
优选地,所述缓冲层或者过渡层为低温或者高温生长的三族氮化物或者其多元合金材料,厚度为0.02-3 μm。
优选地,所述施主重掺杂欧姆接触层为电子浓度为低温或者高温生长的三族氮化物或者其多元合金材料,电子浓度为8×1017-5×1018cm-3,厚度为0.2~1.5 μm,作为三族氮化物基双异质结光电晶体管的发射极电极引出层。
优选地,合金组分渐变层形式可以为线性渐变或者非线性渐变层,用于降低材料生长时的缺陷、应力和位错,使外延层获得良好的材料质量,其组分渐变从施主重掺杂接触层的合金组分逐渐变化至较大禁带宽度材料的施主掺杂层的合金组分,电子浓度为8×1017-5×1018cm-3,厚度为0.01-0.15 μm。
优选地,较大禁带宽度材料的施主掺杂层电子浓度为8×1017-5×1018cm-3,厚度为0.05-0.3 μm,作为三族氮化物基双异质结光电晶体管的发射区。
优选地,较大禁带宽度材料的非故意掺杂层电子浓度1×1016-1×1017cm-3,厚度为5-30 nm,作为受主掺杂扩散阻挡层及基区-发射区异质界面能带凹陷补偿层,提高晶体管电子注入效率。。
优选地,受主掺杂层厚度为0.08-0.3 μm,空穴浓度为1×1017-5×1018cm-3
优选地,非故意掺杂层厚度为0.1-0.5 μm,电子浓度为1×1016-1×1017cm-3,作为三族氮化物基双异质结光电晶体管的光吸收层。
优选地,合金组分渐变层可以为线性变化或者非线性变化,其禁带宽度从非故意掺杂层的禁带宽度逐渐变化至较大禁带宽度材料的施主掺杂层的禁带宽度,厚度为10-100 nm,电子浓度为1×1016-1×1017cm-3,作为应力缓释层。。
优选地,较大禁带宽度材料的施主掺杂层的电子浓度为电子浓度为8×1017-5×1018cm-3,厚度为0.1-0.3 μm,作为三族氮化物基双异质结光电晶体管的集电区与光的透射窗口层。
与现有技术相比,有益效果是:(1)本发明采用集电区上置的正入射结构,较大禁带宽度材料作为窗口层可允许波长大于其吸收截止波长的光信号通过,入射光信号可以不被吸收地通过窗口层而进入吸收层,提高光入射效率,从而增加光生电子-空穴对;增加的光生空穴会滞留在基区,降低基区势、增强光电增益;(2)本发明将非故意掺杂光吸收层置于受主掺杂层上,除了光吸收,还可起到缓冲受主掺杂原子向施主掺杂层(集电区)的扩散,避免了杂质补偿的作用,从而使器件更能直接实现设计所需性能;(3)本发明将发射结的施主掺杂层置于受主掺杂层之下,可有效规避发射区上置结构中受主杂质原子向上扩散(在结构的外延生长中,受主掺杂层中的受主杂质原子向上扩散或者说是向其后生长的层中扩散的程度要远大于向下扩散的程度),导致异质结作用下降、电子注入效率降低的问题。(5)本发明在发射区设置高低掺杂(即高掺杂层—较大禁带宽度材料的施主掺杂层105,低掺杂层—较大禁带宽度材料的非故意掺杂层106)结构,填补发射区-基区异质结界面中基区一侧能带的凹陷,增强电子渡越基区的效率,从而提高器件的光电增益。
附图说明
图1是本发明三族氮化物基双异质结光电晶体管结构示意图。
图2为实施例1中的三族氮化物基双异质结光电晶体管的结构示意图。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。附图中描述位置关系仅用于示例性说明,不能理解为对本专利的限制。除非特别说明,本发明采用的材料和加工方法为本技术领域常规材料和加工方法。
如图1所示,一种三族氮化物基双异质结光电晶体管,其中,包括衬底101及生长于衬底101之上的外延层,其中,外延层自下而上的顺序依次为缓冲层或者过渡层102,施主重掺杂欧姆接触层103,合金组分渐变层104,较大禁带宽度材料的施主掺杂层105,较大禁带宽度材料的非故意掺杂层106,受主掺杂层107,非故意掺杂光吸收层108,合金组分渐变层109,较大禁带宽度材料的施主掺杂层110。
本实施案例将具体说明图2所示的三族氮化物基双异质结紫外光电晶体管结构,该紫外光电晶体管结构为n-i-p-i-n型,采用正入射的形式。如图2所示,采用金属有机物化学气相沉积(MOCVD)或分子束外延(MBE)的外延生长方法生长三族氮化物基光电晶体管,包括c面蓝宝石衬底201以及外延结构202~210,所述外延结构包括生长在c面蓝宝石衬底上的GaN缓冲层及过渡层202、生长在缓冲及过渡层202上的施主Si重掺杂n型GaN欧姆接触层203,逐次生长的Al与Ga合金组分渐变AlxGa1-xN(x=0~0.1)层204,施主Si掺杂Al0.1Ga0.9N层205,非故意掺杂Al0.1Ga0.9N层206,受主Mg掺杂GaN层207,非故意掺杂GaN光吸收层208,Al与Ga合金组分渐变AlxGa1-xN(x=0~0.1)层209,施主Si掺杂Al0.1Ga0.9N层210。
其中,施主Si掺杂Al0.16Ga0.84N层205、非故意掺杂Al0.1Ga0.9N层206与受主Mg掺杂GaN层207构成了该三族氮化物基双异质结紫外光电晶体管的第一个异质结,为发射结;受主Mg掺杂GaN层207、非故意掺杂GaN光吸收层208、Al与Ga合金组分渐变AlxGa1-xN(x=0~0.1)层209与施主Si掺杂Al0.1Ga0.9N层210构成了一种三族氮化物基双异质结光电晶体管的第二个异质结,为集电结。受主Mg掺杂GaN层207为该三族氮化物基双异质结紫外光电晶体管的基区,位于发射结与集电结之间。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

1.一种三族氮化物基双异质结光电晶体管,其特征在于,包括衬底(101)及生长于衬底(101)之上的外延层,其中,外延层自下而上的顺序依次为缓冲层或者过渡层(102),施主重掺杂欧姆接触层(103),合金组分渐变层(104),较大禁带宽度材料的施主掺杂层(105),较大禁带宽度材料的非故意掺杂层(106),受主掺杂层(107),非故意掺杂光吸收层(108),合金组分渐变层(109),较大禁带宽度材料的施主掺杂层(110)。
2.根据权利要求1所述的一种三族氮化物基双异质结光电晶体管,其特征在于:所述的衬底(101)为蓝宝石衬底、硅衬底、氧化镁衬底、碳化硅衬底、三族氮化物衬底、镓酸锂衬底、砷化镓衬底其中的一种。
3.根据权利要求1所述的一种三族氮化物基双异质结光电晶体管,其特征在于:所述的缓冲层或者过渡层(102)为低温或者高温生长的三族氮化物或者其多元合金材料,厚度为0.02-3 μm。
4.根据权利要求1所述的一种三族氮化物基双异质结光电晶体管,其特征在于:所述的施主重掺杂欧姆接触层(103)为高温生长的三族氮化物或者其多元合金材料,作为三族氮化物基双异质结光电晶体管的发射极欧姆接触电极引出层,电子浓度为8×1017-5×1018cm-3,厚度为0.2-1.5 μm。
5.根据权利要求1所述的一种三族氮化物基双异质结光电晶体管,其特征在于:所述的合金组分渐变层(104)为线性或者非线性变化,其禁带宽度从施主重掺杂接触层的禁带宽度逐渐变化至较大禁带宽度材料的施主掺杂层(105)的禁带宽度,电子浓度为8×1017-5×1018cm-3,厚度为0.01-0.15 μm。
6.根据权利要求1所述的一种三族氮化物基双异质结光电晶体管,其特征在于:所述的较大禁带宽度材料的施主掺杂层(105)为三族氮化物基双异质结光电晶体管的发射区,电子浓度为8×1017-5×1018cm-3,其厚度为0.05-0.3 μm。
7.根据权利要求1所述的一种三族氮化物基双异质结光电晶体管,其特征在于:所述的较大禁带宽度材料的非故意掺杂层(106)电子浓度为1×1016-1×1017cm-3,厚度为5-30 nm。
8.根据权利要求1所述的一种三族氮化物基双异质结光电晶体管,其特征在于:所述的受主掺杂层(107)为三族氮化物基双异质结光电晶体管的基区,厚度为0.08-0.3 μm,空穴浓度为1×1017-5×1018 cm-3
9.根据权利要求1所述的一种三族氮化物基双异质结光电晶体管,其特征在于:所述的非故意掺杂光吸收层(108)为三族氮化物基双异质结光电晶体管的集电区,兼做光吸收层,电子浓度为1×1016-1×1017cm-3,厚度为0.05-0.5 μm。
10.根据权利要求1所述的一种三族氮化物基双异质结光电晶体管,其特征在于:所述的合金组分渐变层(109)可以为线性变化或者非线性变化,其禁带宽度从非故意掺杂层(108)的禁带宽度逐渐变化至较大禁带宽度材料的施主掺杂窗口层(110)的禁带宽度,电子浓度为1×1016-1×1017cm-3,厚度为10-100 nm;所述的较大禁带宽度材料的施主掺杂窗口层(110)电子浓度为8×1017-5×1018cm-3,厚度为0.1-0.3 μm,作为三族氮化物基双异质结光电晶体管的集电区与光的透射窗口。
CN201610095411.2A 2016-02-22 2016-02-22 一种三族氮化物基双异质结光电晶体管 Expired - Fee Related CN105742399B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610095411.2A CN105742399B (zh) 2016-02-22 2016-02-22 一种三族氮化物基双异质结光电晶体管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610095411.2A CN105742399B (zh) 2016-02-22 2016-02-22 一种三族氮化物基双异质结光电晶体管

Publications (2)

Publication Number Publication Date
CN105742399A true CN105742399A (zh) 2016-07-06
CN105742399B CN105742399B (zh) 2018-02-06

Family

ID=56245490

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610095411.2A Expired - Fee Related CN105742399B (zh) 2016-02-22 2016-02-22 一种三族氮化物基双异质结光电晶体管

Country Status (1)

Country Link
CN (1) CN105742399B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107195709A (zh) * 2017-05-19 2017-09-22 中山大学 一种三族氮化物基异质结光电晶体管
CN108574020A (zh) * 2017-03-14 2018-09-25 孙月静 一种pin结构紫外光电探测器及其制备方法
CN109728019A (zh) * 2019-01-04 2019-05-07 复旦大学 基于绝缘层上硅的单晶体管主动像素传感器及制备方法
CN110957354A (zh) * 2019-11-25 2020-04-03 中国电子科技集团公司第五十五研究所 一种硅重掺杂氮化镓异质外延的材料结构及应力控制方法
CN112466975A (zh) * 2020-11-19 2021-03-09 隆基绿能科技股份有限公司 光伏器件
WO2023108862A1 (zh) * 2021-12-14 2023-06-22 华南理工大学 一种用于可见光通信的芯片及其制备方法与应用
WO2023108863A1 (zh) * 2021-12-14 2023-06-22 华南理工大学 一种光电探测器芯片及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101188256A (zh) * 2007-12-10 2008-05-28 厦门大学 无应变InAlGaN/GaN PIN光电探测器
US20090166674A1 (en) * 2006-05-24 2009-07-02 Meijo University Ultraviolet light receiving element
CN102820368A (zh) * 2012-08-30 2012-12-12 中山大学 三族氮化物基光电晶体管探测器件及其制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090166674A1 (en) * 2006-05-24 2009-07-02 Meijo University Ultraviolet light receiving element
CN101188256A (zh) * 2007-12-10 2008-05-28 厦门大学 无应变InAlGaN/GaN PIN光电探测器
CN102820368A (zh) * 2012-08-30 2012-12-12 中山大学 三族氮化物基光电晶体管探测器件及其制作方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108574020A (zh) * 2017-03-14 2018-09-25 孙月静 一种pin结构紫外光电探测器及其制备方法
CN107195709A (zh) * 2017-05-19 2017-09-22 中山大学 一种三族氮化物基异质结光电晶体管
CN107195709B (zh) * 2017-05-19 2019-06-11 中山大学 一种三族氮化物基异质结光电晶体管
CN109728019A (zh) * 2019-01-04 2019-05-07 复旦大学 基于绝缘层上硅的单晶体管主动像素传感器及制备方法
CN110957354A (zh) * 2019-11-25 2020-04-03 中国电子科技集团公司第五十五研究所 一种硅重掺杂氮化镓异质外延的材料结构及应力控制方法
CN110957354B (zh) * 2019-11-25 2022-09-09 中国电子科技集团公司第五十五研究所 一种硅重掺杂氮化镓异质外延的材料结构及应力控制方法
CN112466975A (zh) * 2020-11-19 2021-03-09 隆基绿能科技股份有限公司 光伏器件
WO2023108862A1 (zh) * 2021-12-14 2023-06-22 华南理工大学 一种用于可见光通信的芯片及其制备方法与应用
WO2023108863A1 (zh) * 2021-12-14 2023-06-22 华南理工大学 一种光电探测器芯片及其制备方法与应用

Also Published As

Publication number Publication date
CN105742399B (zh) 2018-02-06

Similar Documents

Publication Publication Date Title
CN105742399B (zh) 一种三族氮化物基双异质结光电晶体管
CN107863413B (zh) 一种AlGaN基日盲紫外雪崩异质结光电晶体管探测器及其制备方法
CN108305911B (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
CN102820368B (zh) 三族氮化物基光电晶体管探测器件及其制作方法
CN109494275B (zh) 一种AlGaN基日盲紫外光电晶体管探测器及其制作方法
US6265727B1 (en) Solar blind photodiode having an active region with a larger bandgap than one or both if its surrounding doped regions
CN109285914B (zh) 一种AlGaN基紫外异质结光电晶体管探测器及其制备方法
CN111739960B (zh) 一种增益型异质结紫外光电探测器
CN103545398A (zh) 基区渐变的单向载流子传输的双异质结光敏晶体管探测器
CN113471326B (zh) 一种ⅲ族氮化物异质结光电探测器
CN109980040A (zh) 一种氧化镓mis结构紫外探测器
CN107195709B (zh) 一种三族氮化物基异质结光电晶体管
Arslan et al. \(640\times 512\) Extended Short Wavelength Infrared In 0.83 Ga 0.17 As Focal Plane Array
CN102176489A (zh) 晶格匹配体系上裁剪带隙波长提高光电探测器性能的方法
CN102820367A (zh) 基于异质结构吸收、倍增层分离GaN基雪崩光电探测器
CN107452820A (zh) 一种同质界面二维δ掺杂型PIN紫外探测器
CN110459627B (zh) 一种紫外-可见双波段光电探测器
US8143648B1 (en) Unipolar tunneling photodetector
Tang et al. Improved performance of ultraviolet AlGaN/GaN npn HPTs by a thin lightly-doped n-AlGaN insertion layer
CN210349846U (zh) 一种吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
CN104319307A (zh) PNIN型InGaAs红外探测器
JP2005235908A (ja) 窒化物半導体積層基板及びGaN系化合物半導体装置
CN103383977A (zh) 宽探测波段的InGaAs/GaAs红外探测器
CN102290458A (zh) 一种InGaN太阳能电池外延片及其制备方法
Liu et al. Effect of heterojunction spike on the quantum efficiency of an AlGaAs/GaAs heterojunction charge coupled device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180206

CF01 Termination of patent right due to non-payment of annual fee