CN110957354A - 一种硅重掺杂氮化镓异质外延的材料结构及应力控制方法 - Google Patents

一种硅重掺杂氮化镓异质外延的材料结构及应力控制方法 Download PDF

Info

Publication number
CN110957354A
CN110957354A CN201911166845.7A CN201911166845A CN110957354A CN 110957354 A CN110957354 A CN 110957354A CN 201911166845 A CN201911166845 A CN 201911166845A CN 110957354 A CN110957354 A CN 110957354A
Authority
CN
China
Prior art keywords
layer
gan
doped
thickness
heavily doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911166845.7A
Other languages
English (en)
Other versions
CN110957354B (zh
Inventor
李传皓
李忠辉
潘传奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 55 Research Institute
Original Assignee
CETC 55 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 55 Research Institute filed Critical CETC 55 Research Institute
Priority to CN201911166845.7A priority Critical patent/CN110957354B/zh
Publication of CN110957354A publication Critical patent/CN110957354A/zh
Application granted granted Critical
Publication of CN110957354B publication Critical patent/CN110957354B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及一种硅重掺杂氮化镓异质外延的GaN SBD材料及应力控制方法,按外延生长顺序包括:衬底;氮化铝(AlN)成核层;非故意掺杂铟镓氮(InGaN)层;非故意掺杂氮化镓(GaN)层;n+‑GaN重掺层;n‑‑GaN轻掺层。基于金属有机物化学气相沉积(MOCVD)等气相外延生长方法,通过引入非故意掺杂InGaN层及对AlN成核层的应力调制,在保证外延材料低应力和高质量的同时,显著提升了n+‑GaN重掺层的掺杂浓度,从而有效降低GaN肖特基二极管(SBD)等高频器件的寄生串联电阻,提高器件的截止频率和工作效率。本方法与常规GaN异质外延工艺兼容,可控性好。

Description

一种硅重掺杂氮化镓异质外延的材料结构及应力控制方法
技术领域
本发明涉及一种硅重掺杂氮化镓异质外延的材料结构及应力控制方法,属于半导体外延材料技术领域。
背景技术
要实现太赫兹频段的应用,首先需研制出太赫兹功率源芯片。目前研制太赫兹功率源芯片的主要途径是SBD技术等,利用SBD倍频原理实现300GHz以上的太赫兹电路。相对砷化镓(GaAs),GaN材料具备宽禁带、高击穿及电子饱和速度高等特性,因而GaN高频器件能够获得更高的输出功率。然而,现阶段研制的GaN SBD等高频器件由于寄生串联电阻偏高,导致截止频率及工作效率均偏低,造成器件性能不能满足太赫兹领域的实际应用。
目前降低GaN SBD等高频器件寄生串联电阻的方法主要有两种:一是引入异质结多沟道结构,利用多层异质结沟道提高二维电子气密度,达到降低串联电阻的目的。这种方法的不足在于结构复杂,工艺实现难度大,且批次间稳定性较差;二是通过提高n+-GaN层的掺杂浓度,提升单位面积下的电子密度,从而降低串联电阻,增大隧穿电流。
由于硅烷具有成本低、并入效率高等特点,因此硅烷是GaN材料中最常用的N型掺杂源。然而,由于硅原子与镓原子半径差别较大,在GaN材料中掺入高浓度的硅原子会引起GaN晶格产生畸变,即从非故意掺杂GaN层到n+-GaN重掺层的外延期间,圆片应力由压应力向张应力方向发生明显演变,且重掺浓度越高,张应力增量越大。并且,常用衬底(碳化硅、硅等)的热膨胀系数低于GaN的热膨胀系数,因而在外延结束后的降温过程中,圆片的张应力会进一步增大。张应力增长到一定程度会导致外延材料表面出现大量裂纹,严重影响材料的质量。为缓解圆片的张应力,需要减小n+-GaN重掺层的掺杂浓度来降低n+-GaN重掺层生长期间的张应力增量,但会造成GaN SBD等高频器件的寄生串联电阻偏高不能达到太赫兹功率源芯片的研制需求。因此,在有效控制圆片应力的同时,如何有效提高n+-GaN重掺层的掺杂浓度,从而大幅度降低寄生串联电阻,对于太赫兹GaN SBD器件与高效倍频电路的应用具有十分重要的意义。
发明内容
当前GaN SBD等高频器件受限于外延材料应力失衡而致使寄生串联电阻偏高、高频性能严重退化。为解决该难题,本发明提出一种硅重掺杂氮化镓异质外延的材料结构及应力控制方法,采用应力补偿机制实现了外延材料的低应力。在保证高的外延材料质量及有效控制圆片应力的同时,显著提升了n+-GaN重掺层的掺杂浓度,从而有效降低GaN SBD等高频器件的寄生串联电阻,大幅提升器件截止频率和工作效率。
本发明的技术方案:本发明提出一种硅重掺杂氮化镓异质外延的材料结构及应力控制方法,其材料结构由下而上依次为衬底、AlN成核层、非故意掺杂InGaN层、非故意掺杂GaN层、n+-GaN重掺层和n--GaN功能层。
其应力控制方法,包括以下步骤:
(1)选取碳化硅(SiC)单晶衬底,置于MOCVD等气相外延生长设备的设备内基座上;
(2)反应室升温至1000~1100℃,设定反应室压力50~150torr,在氢气氛围下烘烤衬底5~15min,去除表面沾污;
(3)升温至1100~1200℃,设定反应室压力为30~200torr,通入氨气(NH3)和铝源,保证V/III比达到R,生长厚度为T1的AlN成核层,关闭铝源;
(4)在氨气氛围中将温度降至700~1000℃,设定反应室压力为100~400torr,通入镓源和铟源,生长厚度为T2的非故意掺杂InxGa1-xN层,其中In组分为x,再关闭铟源和镓源;
(5)温度升至1000~1100℃,反应室压力为100~400torr,通入镓源,生长厚度为T3的非故意掺杂GaN层;
(6)保持其它生长条件不变,通入硅烷生长n+-GaN重掺层;
(7)生长n--GaN轻掺层等为电子提供漂移路径的n--GaN功能层,关闭镓源等金属有机化合物源和硅烷;
(8)在氨气保护下降至室温,取出外延片。
所述步骤(4)中的非故意掺杂InGaN层,其厚度T2范围为200~500nm,In组分范围为2~10%。采用700~1000℃温度生长InGaN层,利于促进InGaN外延初期的侧向生长模式,加速刃位错的湮灭,从而降低材料内缺陷密度;为保证非故意掺杂InGaN层生长期间的压应力增量得到显著提升,有利提升n+-GaN重掺层的掺杂浓度,In组分x≥2%,厚度T2≥200nm;同时为抑制高In组分下In原子的无序排布,保证高的外延材料质量,In组分x≤10%,厚度T2≤500nm。
所述步骤(3)中的AlN成核层V/III比R范围为1000~2400,厚度T1范围为30~80nm。V/III比偏高时(R>2400),成核层工艺期间铝原子的表面扩散长度严重退化,造成AlN成核层质量偏低,不利于后续高质量外延材料的生长;而V/III比较低时(R<1000),SiC衬底与GaN材料间晶格失配产生的应力在AlN成核层内得到有效释放,但会造成后续非故意掺杂GaN层的压应力增量降低,不利于n+-GaN重掺层掺杂浓度的提升。因此,V/III比R范围为1000~2400。同时,AlN成核层厚度偏低时(T1<30nm),成核层岛间合并不充分,造成AlN成核层晶体质量差,不利于后续高质量GaN材料的生长;AlN成核层厚度偏高(T1>80nm)时,SiC与GaN间晶格失配产生的应力被厚层AlN成核层弱化,造成非故意掺杂GaN层的压应力增量降低,不利于n+-GaN重掺层掺杂浓度的提升。因此,厚度T1范围为30~80nm较为合适。
所述步骤(5)中的非故意掺杂GaN层,其厚度T3范围为0.5~1.2μm。为保证非故意掺杂GaN层生长期间积累足够的压应力增量,T3≥0.5μm;为保证较高的原材料利用率,T3≤1.2μm。
所述步骤(6)中的n+-GaN重掺层掺杂厚度和掺杂浓度的乘积≥1.35*1015 cm-2。在保证高质量材料的基础上,通过非故意掺杂InGaN层、AlN成核层和非故意掺杂GaN层的压应力补偿,能够平衡n+-GaN重掺层生长及降温期间的张应力增量,有效提升了重掺层的硅掺杂浓度。
除SiC单晶衬底外,本方法同样适用于硅、蓝宝石及其它常用衬底制造的GaN SBD等GaN基高频器件。
本发明与现有技术相比,其有益效果是:
(1)通过引入晶格常数更大的非故意掺杂InGaN层,同时对AlN成核层进行工艺调制以保证SiC衬底与GaN材料间较高的晶格失配应力,以此显著增加非故意掺杂InGaN层和非故意掺杂GaN层在外延期间的压应力增量,来平衡n+-GaN重掺层生长及圆片降温期间的张应力增量,在保证高的外延材料质量基础上,实现了对圆片应力的有效控制。
(2)大幅增加n+-GaN重掺层的掺杂浓度,有效降低GaN SBD等高频器件的寄生串联电阻、提升GaN SBD等高频器件的截止频率和工作效率。
附图说明
图1为本发明的GaN SBD材料示意图;
图2为现有技术的GaN SBD材料示意图;
图3为本发明提供的SBD外延材料(Str_1)与现有技术中的SBD外延材料(Str_2)的表面形貌对比图。
图中1是衬底;2是氮化铝(AlN)成核层;3是非故意掺杂铟镓氮(InGaN)层;4是非故意掺杂氮化镓(GaN)层;5是n+-GaN重掺层;6是n--GaN轻掺层。
具体实施方式
下面对本发明技术方案进行详细说明,但是本发明的保护范围包括但不局限于所述实施例。如图1所示,本发明基于硅重掺杂氮化镓异质外延的材料结构及应力控制方法,提出的GaN SBD材料结构由下而上依次包括衬底、AlN成核层、非故意掺杂InGaN层、非故意掺杂GaN层、n+-GaN重掺层和n--GaN功能层。
提出的GaN SBD应力控制方法包括以下步骤:
(1)选取SiC衬底,置于MOCVD材料生长设备内基座上;
(2)设置反应室压力100torr,通入H2流量100slm,系统升温至1075℃,在H2气氛下烘烤衬底10分钟,去除表面沾污;
(3)将反应室压力降至50torr,升温至1150℃,通入流量为4slm的NH3和三甲基铝,使得V/III比达到1500,生长50nm厚AlN成核层,关闭三甲基铝;
(4)将温度降至850℃,反应室压力升至200torr,氨气流量增至30 slm,通入流量为150sccm的三甲基镓和200sccm的三甲基铟,生长厚度为250nm的非故意掺杂InGaN层,In组分为3.0%。关闭三甲基铟和三甲基镓;
(5)将温度升至1075℃,反应室压力300 torr,其它生长条件不变,通入150sccm的三甲基镓,生长厚度为1.0μm的非故意掺杂GaN层;
(6)保持其它生长条件不变,通入浓度为200ppm的硅烷,流量为10sccm,生长厚度为1.6μm的n+-GaN重掺层,掺杂浓度为9*1018cm-3
(7)保持其它生长条件不变,将浓度为200ppm的硅烷流量降至0.5sccm,生长厚度为300nm的n--GaN轻掺层,掺杂浓度为2*1017cm-3,关闭三甲基镓和硅烷;
(8)外延生长完成后,在NH3气氛中降温,最后取出氮化镓外延片。
用现有技术生长GaN SBD材料(Str_2),结构如图2所示,由衬底向上依次生长50nm厚AlN成核层、1.0μm厚非故意掺杂GaN缓冲层、1.6μm厚掺杂浓度为6*1018cm-3的n+-GaN重掺层和300nm厚掺杂浓度为2*1017cm-3的n--GaN轻掺层。并与采用本发明方法生长的GaN SBD材料(Str_1)进行对比,材料性能对比如下表所示。
材料结构 n<sup>+</sup>-GaN重掺层掺杂浓度与掺杂厚度的乘积/cm<sup>-2</sup> 表面粗糙度/nm 弯曲度/μm (102) FWHM /arcsec
Str_1 1.44*10<sup>15</sup> 0.211 -22.1 261
Str_2 0.96*10<sup>15</sup> 4.79 -43.1 284
在Str_1比Str_2掺杂浓度更大的情况下,Str_1的表面平整、无裂纹,表面粗糙度仅为0.211nm,且圆片翘曲度bow为-22.1μm,而Str_2的表面出现较多裂纹,表面粗糙度高达4.79nm,且圆片翘曲度bow达到-43.1μm,处于高张应力状态。而要保证Str_2较好的材料质量及圆片翘曲度,同时避免裂纹的出现,n+-GaN重掺层掺杂浓度不能超过4.5*1018cm-3、n+-GaN重掺层掺杂浓度与掺杂厚度的乘积不能超过0.72*1015cm-2。说明了基于非故意掺杂InGaN层、AlN成核层和非故意掺杂GaN层的压应力补偿,能够有效平衡n+-GaN重掺层生长期间及降温期间的张应力增量,在获得更高N型掺杂浓度的同时,圆片的应力也能得到有效的控制。此外,HRXRD测得Str_1的GaN材料(102)面半高宽更小,具有较低的位错密度,表明本发明提出的材料结构及外延方法能够保证GaN材料较高的晶体质量。
在保证高质量的外延材料及有效控制圆片应力的同时,显著提升了n+-GaN重掺层的掺杂浓度,这说明本专利提供的硅重掺杂氮化镓异质外延的材料结构及应力控制方法利于降低GaN SBD等高频器件的串联寄生电阻,可以为器件截止频率和工作效率的大幅提升提供良好的材料基础。
前述内容为本发明的一些示范性实施例,在不脱离本发明的创新性和优点的情况下可以对本发明实施例进行许多调整,凡依本发明的权利要求所做的变化与修饰,均属于本发明的涵盖范围。

Claims (6)

1.一种硅重掺杂氮化镓异质外延的材料结构,其特征是材料结构由下而上依次为衬底、AlN成核层、非故意掺杂InGaN层、非故意掺杂GaN层、n+-GaN重掺层和n--GaN功能层。
2.根据权利要求1所述的一种硅重掺杂氮化镓异质外延的材料结构的应力控制方法,其特征是包括以下步骤:
a)选取衬底,置于金属有机物化学气相沉积(MOCVD)等气相外延生长的设备内基座上;
b)反应室升温至1000~1100℃,设定反应室压力50~150torr,在氢气(H2)氛围下烘烤衬底5~15min,去除表面沾污;
c)升温至1100~1200℃,设定反应室压力为30~200torr,通入氨气(NH3)和铝源,保证V/III比达到R,生长厚度为T1的AlN成核层,关闭铝源;
d)在氨气氛围中将温度降至700~1000℃,设定反应室压力为100~400torr,通入镓源和铟源,生长厚度为T2的非故意掺杂InxGa1-xN层,其中In组分为x,再关闭铟源和镓源;
e)温度升至1000~1100℃,反应室压力为100~400torr,通入镓源,生长厚度为T3的非故意掺杂GaN层;
f)保持其它生长条件不变,通入硅烷生长n+-GaN重掺层;
g)生长n--GaN轻掺层等为电子提供漂移路径的n--GaN功能层,关闭镓源等金属有机化合物源和硅烷;
h)在氨气保护下降至室温,取出外延片。
3.根据权利要求2所述的一种硅重掺杂氮化镓异质外延的材料结构的应力控制方法,其特征是所述步骤(4)中的非故意掺杂InGaN层,其厚度T2范围为200~500nm,其In组分x范围为2~10%。
4.根据权利要求2所述的一种硅重掺杂氮化镓异质外延的材料结构的应力控制方法,其特征是所述步骤(3)中的AlN成核层V/III比R范围为1000~2400,厚度T1范围为30~80nm。
5.根据权利要求2所述的一种硅重掺杂氮化镓异质外延的材料结构的应力控制方法,其特征是所述步骤(5)中的非故意掺杂GaN层,其厚度T3范围为0.5~1.2μm。
6.根据权利要求2所述的一种硅重掺杂氮化镓异质外延的材料结构的应力控制方法,其特征是所述步骤(6)中的n+-GaN重掺层的掺杂厚度和掺杂浓度的乘积≥1.35*1015 cm-2
CN201911166845.7A 2019-11-25 2019-11-25 一种硅重掺杂氮化镓异质外延的材料结构及应力控制方法 Active CN110957354B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911166845.7A CN110957354B (zh) 2019-11-25 2019-11-25 一种硅重掺杂氮化镓异质外延的材料结构及应力控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911166845.7A CN110957354B (zh) 2019-11-25 2019-11-25 一种硅重掺杂氮化镓异质外延的材料结构及应力控制方法

Publications (2)

Publication Number Publication Date
CN110957354A true CN110957354A (zh) 2020-04-03
CN110957354B CN110957354B (zh) 2022-09-09

Family

ID=69976714

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911166845.7A Active CN110957354B (zh) 2019-11-25 2019-11-25 一种硅重掺杂氮化镓异质外延的材料结构及应力控制方法

Country Status (1)

Country Link
CN (1) CN110957354B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113808916A (zh) * 2021-07-30 2021-12-17 中国电子科技集团公司第五十五研究所 一种n型重掺杂薄层氮化镓材料的二次外延方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104392916A (zh) * 2014-11-17 2015-03-04 中国科学院半导体研究所 制备低比接触电阻率的p-GaN欧姆接触的方法
CN105470294A (zh) * 2015-12-08 2016-04-06 北京华进创威电子有限公司 一种垂直型氮化镓功率开关器件及其制备方法
CN105742399A (zh) * 2016-02-22 2016-07-06 中山大学 一种三族氮化物基双异质结光电晶体管
CN107195709A (zh) * 2017-05-19 2017-09-22 中山大学 一种三族氮化物基异质结光电晶体管

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104392916A (zh) * 2014-11-17 2015-03-04 中国科学院半导体研究所 制备低比接触电阻率的p-GaN欧姆接触的方法
CN105470294A (zh) * 2015-12-08 2016-04-06 北京华进创威电子有限公司 一种垂直型氮化镓功率开关器件及其制备方法
CN105742399A (zh) * 2016-02-22 2016-07-06 中山大学 一种三族氮化物基双异质结光电晶体管
CN107195709A (zh) * 2017-05-19 2017-09-22 中山大学 一种三族氮化物基异质结光电晶体管

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113808916A (zh) * 2021-07-30 2021-12-17 中国电子科技集团公司第五十五研究所 一种n型重掺杂薄层氮化镓材料的二次外延方法
CN113808916B (zh) * 2021-07-30 2024-03-08 中国电子科技集团公司第五十五研究所 一种n型重掺杂薄层氮化镓材料的二次外延方法

Also Published As

Publication number Publication date
CN110957354B (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
CN110211865B (zh) 一种降低氮化镓高电子迁移率场效应管界面热阻的外延生长方法
CN109065438B (zh) AlN薄膜的制备方法
JP2008522447A (ja) シリコン基板からなるiii族窒化物材料構造体
JP2005167275A (ja) 半導体素子
JP2023543022A (ja) 窒化物エピタキシャル構造および半導体デバイス
CN114664642B (zh) 基于iii族氮化物同质外延的hemt结构、其制备方法及应用
CN112071897B (zh) 一种高频氮化镓肖特基二极管外延片及其制备方法
CN107887255B (zh) 一种高阻GaN薄膜外延生长的方法
CN112687525B (zh) 一种提高超薄氮化镓场效应管晶体质量的外延方法
CN110957354B (zh) 一种硅重掺杂氮化镓异质外延的材料结构及应力控制方法
CN111681953B (zh) 一种提升氮化镓异质外延的界面质量的生长方法
US11201217B2 (en) Nitride semiconductor substrate
CN111009468A (zh) 一种半导体异质结构制备方法及其用途
CN116646248B (zh) 一种外延片制备方法及其外延片、高电子迁移率晶体管
CN110797394B (zh) 一种高电子迁移率晶体管的外延结构及其制备方法
CN114914296B (zh) 一种外延片、外延片制备方法及高电子迁移率晶体管
US20130171811A1 (en) Method for manufacturing compound semiconductor
CN116666196A (zh) 无旋转畴的κ-Ga2O3薄膜及κ-(AlxGa1-x)2O3/κ-Ga2O3异质结的制备方法
CN113140620B (zh) 宽禁带半导体BPN/GaN异质结材料及外延生长方法
CN110246890A (zh) Hemt器件的外延结构
CN111009579A (zh) 半导体异质结构及半导体器件
CN115663020A (zh) 一种基于硅衬底的GaN HEMT外延结构
JP2004289005A (ja) エピタキシャル基板、半導体素子および高電子移動度トランジスタ
CN111312585B (zh) 一种低位错密度氮化物的外延层生长方法
CN114005728A (zh) 一种低应力高质量氮化物材料外延方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant