CN104779316B - 一种新型GaN基PIN结构紫外探测器 - Google Patents
一种新型GaN基PIN结构紫外探测器 Download PDFInfo
- Publication number
- CN104779316B CN104779316B CN201510149432.3A CN201510149432A CN104779316B CN 104779316 B CN104779316 B CN 104779316B CN 201510149432 A CN201510149432 A CN 201510149432A CN 104779316 B CN104779316 B CN 104779316B
- Authority
- CN
- China
- Prior art keywords
- type
- layer
- nanometers
- produced
- ohmic contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000004888 barrier function Effects 0.000 claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 229910002601 GaN Inorganic materials 0.000 claims description 31
- 239000000463 material Substances 0.000 claims description 29
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 3
- 238000000407 epitaxy Methods 0.000 claims description 3
- 229910016920 AlzGa1−z Inorganic materials 0.000 claims description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 2
- 229910052594 sapphire Inorganic materials 0.000 claims description 2
- 239000010980 sapphire Substances 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 2
- -1 wherein 0≤x≤1 Substances 0.000 claims 1
- 230000008901 benefit Effects 0.000 abstract description 4
- 239000004065 semiconductor Substances 0.000 abstract description 3
- 230000001629 suppression Effects 0.000 abstract description 2
- 238000010521 absorption reaction Methods 0.000 abstract 3
- 230000005693 optoelectronics Effects 0.000 abstract 1
- 230000004044 response Effects 0.000 description 8
- 238000005036 potential barrier Methods 0.000 description 5
- 230000003595 spectral effect Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 229910002704 AlGaN Inorganic materials 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000000825 ultraviolet detection Methods 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 229910000661 Mercury cadmium telluride Inorganic materials 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000012742 biochemical analysis Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/101—Devices sensitive to infrared, visible or ultraviolet radiation
- H01L31/102—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
- H01L31/105—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0352—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Light Receiving Elements (AREA)
Abstract
本发明公开了一种新型GaN基PIN结构紫外探测器,属于半导体光电子器件技术领域,该器件包括衬底、缓冲层、N型短波过滤层、I型吸收层、P型欧姆接触层、P型欧姆接触电极、N型欧姆接触电极以及N型阻挡层,缓冲层外延在衬底上,N型短波过滤层制作在缓冲层上,P型欧姆接触层制作在I型吸收层之上,P型欧姆接触电极制作在P型欧姆接触层之上,N型欧姆接触电极为环形结构,且制作在N型短波过滤层上,N型阻挡层制作在N型短波过滤层上,I型吸收层制作在N型阻挡层上。本发明的优点在于能够有效地提高探测器的短波抑制比,通过调节不同外延层组份可以选择探测器波段,同时阻挡层能够降低探测器暗电流,从而提高探测器性能。
Description
技术领域:
本发明属于半导体光电子器件技术领域,具体讲是一种具有窄光谱响应、可选择窄带通、高短波抑制比和低暗电流特性的新型GaN基PIN结构紫外探测器。
背景技术:
紫外探测技术是继红外探测和激光探测技术之后的又一军民两用光电探测技术。作为红外探测技术的重要补充,紫外探测技术具有广泛的应用,例如导弹预警、精确制导、紫外保密通信、生化分析、明火探测、生物医药分析、海上油监、臭氧浓度监测、太阳指数监测等领域。GaN基三元系合金AlGaN,属于直接带隙半导体,随着合金材料中Al组分的变化,带隙在3.4eV–6.2eV之间连续变化,其带隙对应的峰值响应波长范围是200nm–365nm,因此是AlGaN制作紫外探测器的理想材料之一。
近年来,已经有多种结构的GaN基紫外探测器被研制出来,这些结构包括光电导结构、MSM(金属-半导体-金属)结构、肖特基结构、PIN等。其中,PIN型结构由于量子效率高、暗电流低、响应速度快和能工作在光伏模式下等优点,受到了人们的关注。通常情况下,紫外探测器工作在一个较宽的探测波段范围,然而在实际应用中,需要探测器能够只对特定的较窄紫外波段范围内敏感,而对其余紫外波段没有响应,能够将被探测紫外线与背景紫外辐射区分开来,避免外界紫外辐射的干扰。
目前,研究最多的窄波段GaN基紫外光探测器采用PIN背照射结构,包括Alx1Ga1-x1N吸收层和Alx2Ga1-x2N短波过滤层(x2>x1)。Alx2Ga1-x2N短波过滤层吸收掉背照射进来的短波紫外光,而光子能量低于Alx2Ga1-x2N带隙的紫外波进入吸收层被探测器探测。但是,由于短波过滤层产生的光生载流子很容易通过扩散进入耗尽吸收区,这部分扩散进入耗尽区的载流子被探测器探测,从而使探测器的短波抑制比降低。而通过增加短驳过滤层厚度虽然能够有效地提高短波抑质比,但同时也会降低探测器的量子效率。
发明内容:
本发明要解决的技术问题是,提供一种具有窄光谱响应、可选择窄带通、高短波抑制比和低暗电流特性的新型GaN基PIN结构紫外探测器。
本发明的技术解决方案是,提供一种具有以下结构的新型GaN基PIN结构紫外探测器,该紫外探测器包括:
一衬底;
一缓冲层,该缓冲层外延在衬底上;
一N型短波过滤层,该N型短波过滤层制作在缓冲层上;
一I型吸收层;
一P型欧姆接触层,该P型欧姆接触层制作在I型吸收层之上
一P型欧姆接触电极,该P型欧姆接触电极制作在P型欧姆接触层之上;
一N型欧姆接触电极,该N型欧姆接触电极为环形结构,且制作在N型短波过滤层上;
其中,该紫外探测器还包括一N型阻挡层,N型阻挡层制作在N型短波过滤层上,I型吸收层制作在N型阻挡层上。
根据本发明所述的一种新型GaN基PIN结构紫外探测器,其中,衬底可为蓝宝石、硅、碳化硅、氮化镓或砷化镓材料。
根据本发明所述的一种新型GaN基PIN结构紫外探测器,其中,
缓冲层可为低温外延的AlN材料;
N型短波过滤层可为高电子浓度的N型AlxGa1-xN材料,其中0≤x≤1,掺杂浓度大于1×1018cm-3;
N型阻挡层可为高电阻浓度的N型AlyGa1-yN材料,其中0≤y≤1,y>x,掺杂浓度大于1×1018cm-3;
I型吸收层可为非故意掺杂的N型AlzGa1-zN材料,其中0≤z≤1,z<x;
P型欧姆接触层可为高浓度的P型GaN材料,其自由空穴浓度大于1×1017cm-3。
根据本发明所述的一种新型GaN基PIN结构紫外探测器,其中,缓冲层的厚度可为100纳米~300纳米,N型短波过滤层的厚度可为300纳米~500纳米,N型阻挡层的厚度可为100纳米~200纳米,I型吸收层的厚度可为150纳米~500纳米,P型欧姆接触层厚度可为70纳米。
根据本发明所述的一种新型GaN基PIN结构紫外探测器,其中,N型AlxGa1-xN材料中的x=0.1,N型AlyGa1-yN材料中的y=0.3,N型AlzGa1-zN材料中的z=0。
采用以上结构后,与现有技术相比,本发明一种新型GaN基PIN结构紫外探测器的优点是在保证具有窄光谱响应的同时可以通过调节不同外延层组份来选择不同的探测器波段,调节所选探测波段的带宽。与此同时,探测器中的阻挡层不但能够有效地提高探测器的短波抑制比,还能够降低紫外探测器暗电流,从而提高紫外探测器的性能。
附图说明:
图1是本发明一种新型GaN基PIN结构紫外探测器的结构示意图;
图2是本发明一种新型GaN基PIN结构紫外探测器的工作原理图;
图3是本发明一种新型GaN基PIN结构紫外探测器的光谱响应与传统结构紫外探测器的光谱响应的比较示意图。
具体实施例:
下面结合附图和具体实施例对本发明一种新型GaN基PIN结构紫外探测器作进一步说明:
如图1所示,在本具体实施例中,本发明一种新型GaN基PIN结构紫外探测器包括一个衬底101、一个缓冲层102、一个N型短波过滤层103、一个I型吸收层105、一个P型欧姆接触层106、一个P型欧姆接触电极107、一个环形结构的N型欧姆接触电极108以及一各N型阻挡层104。缓冲层102外延在衬底101上,N型短波过滤层103制作在缓冲层102上,P型欧姆接触层106制作在I型吸收层105之上,P型欧姆接触电极107制作在P型欧姆接触层106之上;N型欧姆接触电极108制作在N型短波过滤层103上,N型阻挡层104制作在N型短波过滤层103上,I型吸收层105制作在N型阻挡层104上。衬底101为砷化镓材料,缓冲层102为低温外延的AlN材料,N型短波过滤层103为高电子浓度的N型Al0.1Ga0.9N材料,其掺杂浓度大于1×1018cm-3,N型阻挡层104为高电阻浓度的N型Al0.3Ga0.7N材料,其掺杂浓度大于1×1018cm-3,I型吸收层105为非故意掺杂的N型GaN材料,P型欧姆接触层106为高浓度的P型GaN材料,其自由空穴浓度大于1×1017cm-3。缓冲层102的厚度为100纳米,N型短波过滤层103的厚度为500纳米,N型阻挡层104的厚度为100纳米,I型吸收层105的厚度为500纳米,P型欧姆接触层106厚度为70纳米。理论上是p型欧姆接触层106的厚度越薄越好,但过薄会导致p电极工艺上无法控制。阻挡层104需优化N型掺杂,使势垒层(阻挡层104)的能带偏移尽量降落在价带上,从而保持导带偏移越低越好。这里的阻挡层104需优化N型掺杂是指需要根据N型短波过滤层的掺杂浓度来确定该层的掺杂,同时又要保证该掺杂浓度不会导致价带有较大的偏移,掺杂浓度大于1×1018cm-3是优化后的结果。
如图2和图3,所示本发明一种新型GaN基PIN结构紫外探测器的工作原理是,当采用背照射入光方式进行工作时,在小反偏压条件下,当紫外光从衬底101入射到N型短波过滤层103时,光子能量大于短波过滤层禁带宽度的紫外光将被吸收。光生空穴为少子,在反向偏压的作用下将有一部分向耗尽区(I型吸收层105)漂移或扩散,剩余部分被复合。所加偏压较小不足以将短波过滤层耗尽,因此光生载流子主要是靠扩散进入吸收区,由于N型阻挡层104的存在,空穴必须要经过势垒层(N型阻挡层104)才能进入耗尽区,而阻挡层材料形成的势垒阻挡了光生空穴进入耗尽区,因此能够更为有效的抑制短波响应,从而提高短波抑制比。入射紫外光中只有光子能量小于Al0.3Ga0.7N材料禁带宽度的紫外线成分才能进入耗尽区(I型吸收层105),光生空穴很容易通过有源区(P型欧姆接触层106)到达P型欧姆接触电极107被吸收,而光生电子由于运动在耗尽区的强电场中具有较高的能量,很容易越过较小的导带势垒被N型欧姆接触电极108接收,有源区的光信号几乎不会受到势垒的影响,这部分窄带宽的紫外线将被吸收形成探测信号。同时,由于势垒的存在,表面漏电通道将被势垒阻挡,在外加小偏压的作用下无法通过隧穿通过势垒,因此该结构具有较低的暗电流。
本发明提出的一种新型GaN基PIN新结构紫外探测器,相比于传统背照射PIN结构紫外探测器来说,本发明提出的采取高铝组分的宽带隙阻挡层结构能有效的提高短波抑制比,降低暗电流,器件性能明显改善。此外,本发明新型GaN基PIN新结构紫外探测器该探测器的结构优势可被用于红外及其它窄波段探测器,所用半导体材料可以是InGaAs、HgCdTe等窄直接带隙或其它化合物可调直接带隙材料。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。
Claims (5)
1.一种新型GaN基PIN结构紫外探测器,该紫外探测器包括:
一衬底(101);
一缓冲层(102),该缓冲层(102)外延在衬底(101)上;
一N型短波过滤层(103),该N型短波过滤层(103)制作在缓冲层(102)上;
一I型吸收层(105);
一P型欧姆接触层(106),该P型欧姆接触层(106)制作在I型吸收层(105)之上
一P型欧姆接触电极(107),该P型欧姆接触电极(107)制作在P型欧姆接触层(106)之上;
一N型欧姆接触电极(108),该N型欧姆接触电极(108)为环形结构,且制作在N型短波过滤层(103)上;其特征在于:该紫外探测器还包括一N型阻挡层(104),所述N型阻挡层(104)制作在N型短波过滤层(103)上,所述I型吸收层(105)制作在N型阻挡层(104)上;
所述缓冲层(102)为低温外延的AlN材料;
所述N型短波过滤层(103)为高电子浓度的N型AlxGa1-xN材料,其中0≤x≤1,掺杂浓度大于1×1018cm-3;
所述N型阻挡层(104)为高电子浓度的N型AlyGa1-yN材料,其中0≤y≤1,y>x,掺杂浓度大于1×1018cm-3;
所述I型吸收层(105)为非故意掺杂的N型AlzGa1-zN材料,其中0≤z≤1,z<x;
所述P型欧姆接触层(106)为高浓度的P型GaN材料,其自由空穴浓度大于1×1017cm-3。
2.根据权利要求1所述的新型GaN基PIN结构紫外探测器,其特征在于:所述衬底(101)为蓝宝石、硅、碳化硅、氮化镓或砷化镓材料。
3.根据权利要求1所述的新型GaN基PIN结构紫外探测器,其特征在于:所述N型AlxGa1-xN材料中的x=0.1,所述N型AlyGa1-yN材料中的y=0.3,所述N型AlzGa1-zN材料中的z=0。
4.根据权利要求1所述的新型GaN基PIN结构紫外探测器,其特征在于:所述缓冲层(102)的厚度为100纳米~300纳米,所述N型短波过滤层(103)的厚度为300纳米~500纳米,所述N型阻挡层(104)的厚度为100纳米~200纳米,所述I型吸收层(105)的厚度为150纳米~500纳米,所述P型欧姆接触层(106)厚度为70纳米。
5.根据权利要求4所述的新型GaN基PIN结构紫外探测器,其特征在于:所述缓冲层(102)的厚度为100纳米,所述N型短波过滤层(103)的厚度为500纳米,所述N型阻挡层(104)的厚度为100纳米,所述I型吸收层(105)的厚度为500纳米。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510149432.3A CN104779316B (zh) | 2015-03-30 | 2015-03-30 | 一种新型GaN基PIN结构紫外探测器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510149432.3A CN104779316B (zh) | 2015-03-30 | 2015-03-30 | 一种新型GaN基PIN结构紫外探测器 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104779316A CN104779316A (zh) | 2015-07-15 |
CN104779316B true CN104779316B (zh) | 2017-01-11 |
Family
ID=53620679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510149432.3A Active CN104779316B (zh) | 2015-03-30 | 2015-03-30 | 一种新型GaN基PIN结构紫外探测器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104779316B (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105679779B (zh) * | 2016-03-22 | 2019-06-21 | 中国电子科技集团公司第三十八研究所 | 一种红斑响应探测器 |
CN105845696A (zh) * | 2016-04-01 | 2016-08-10 | 中国电子科技集团公司第三十八研究所 | 用于监测燃气火焰温度的紫外探测器芯片及其制备方法 |
CN106206832B9 (zh) * | 2016-08-26 | 2017-09-15 | 中国电子科技集团公司第三十八研究所 | 一种单极阻挡结构窄带通紫外探测器 |
CN107342346A (zh) * | 2017-07-03 | 2017-11-10 | 京东方科技集团股份有限公司 | 一种光电二极管、x射线探测器及其制备方法 |
CN107452820B (zh) * | 2017-08-15 | 2019-04-30 | 中国电子科技集团公司第三十八研究所 | 一种同质界面二维δ掺杂型PIN紫外探测器 |
CN109301024A (zh) * | 2018-09-29 | 2019-02-01 | 镇江镓芯光电科技有限公司 | 一种新型p-i-n紫外光电二极管及其制备方法 |
CN110098271A (zh) * | 2019-05-24 | 2019-08-06 | 电子科技大学 | 一种自滤光硅肖特基单色探测器 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101494244A (zh) * | 2009-03-04 | 2009-07-29 | 中国科学院上海技术物理研究所 | 背照射平面型PIN结构GaN基紫外探测器及制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200642101A (en) * | 2005-05-18 | 2006-12-01 | Univ Southern Taiwan Tech | Photodetector |
-
2015
- 2015-03-30 CN CN201510149432.3A patent/CN104779316B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101494244A (zh) * | 2009-03-04 | 2009-07-29 | 中国科学院上海技术物理研究所 | 背照射平面型PIN结构GaN基紫外探测器及制备方法 |
Non-Patent Citations (1)
Title |
---|
Design and performance of an AlGaN-based p-i-n ultraviolet photodetector;Xing-Li Zhou;《Journal Of Electronic Science and Technology of China》;20090930;第7卷(第3期);第272-276页 * |
Also Published As
Publication number | Publication date |
---|---|
CN104779316A (zh) | 2015-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104779316B (zh) | 一种新型GaN基PIN结构紫外探测器 | |
US11302835B2 (en) | Semiconductor photodetector assembly | |
Yang et al. | Back-illuminated GaN/AlGaN heterojunction photodiodes with high quantum efficiency and low noise | |
CN108305911B (zh) | 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器 | |
CN107403848B (zh) | 一种背照式级联倍增雪崩光电二极管 | |
WO2000057485A3 (en) | Back-illuminated heterojunction photodiode | |
CN105097964B (zh) | 一种有源区高斯掺杂型pπn紫外探测器 | |
CN101872798B (zh) | 一种紫外红外双色探测器及制作方法 | |
CN107452820B (zh) | 一种同质界面二维δ掺杂型PIN紫外探测器 | |
CN102237416A (zh) | 一种用于紫外探测的雪崩光电二极管及其制备方法和工作方法 | |
CN106206832B9 (zh) | 一种单极阻挡结构窄带通紫外探测器 | |
CN104882510A (zh) | 一种新型小倾角半台面结构的碳化硅雪崩光电二极管 | |
WO2007135739A1 (ja) | 紫外受光素子 | |
CN108630779B (zh) | 碳化硅探测器及其制备方法 | |
CN110459627B (zh) | 一种紫外-可见双波段光电探测器 | |
Xie et al. | Large-area solar-blind AlGaN-based MSM photodetectors with ultra-low dark current | |
US8143648B1 (en) | Unipolar tunneling photodetector | |
CN112490305B (zh) | 一种可见-紫外双色探测器 | |
CN108305907B (zh) | 一种新型同质结pin紫外探测器 | |
CN210349846U (zh) | 一种吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器 | |
US10686091B2 (en) | Semiconductor device | |
CN116799092A (zh) | 一种基于氧化镓基的日盲紫外探测器及其制备方法 | |
Hwang et al. | Base-width modulation effects on the optoelectronic characteristics of n-ITO/p-NiO/n-ZnO heterojunction bipolar phototransistors | |
KR20030054665A (ko) | 저온성장 화합물반도체를 이용한 hemt 구조의 msm광검출기 제조방법 | |
CN207165584U (zh) | 一种背照式级联倍增雪崩光电二极管 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |