CN105679779B - 一种红斑响应探测器 - Google Patents

一种红斑响应探测器 Download PDF

Info

Publication number
CN105679779B
CN105679779B CN201610171213.XA CN201610171213A CN105679779B CN 105679779 B CN105679779 B CN 105679779B CN 201610171213 A CN201610171213 A CN 201610171213A CN 105679779 B CN105679779 B CN 105679779B
Authority
CN
China
Prior art keywords
layer
type
probe unit
contact electrode
nanometers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610171213.XA
Other languages
English (en)
Other versions
CN105679779A (zh
Inventor
王俊
郭进
吴浩然
宋曼
易媛媛
谢峰
王国胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ACADEMY OF PUBLIC SECURITY TECHNOLOGY HEFEI
CETC 38 Research Institute
Original Assignee
ACADEMY OF PUBLIC SECURITY TECHNOLOGY HEFEI
CETC 38 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ACADEMY OF PUBLIC SECURITY TECHNOLOGY HEFEI, CETC 38 Research Institute filed Critical ACADEMY OF PUBLIC SECURITY TECHNOLOGY HEFEI
Priority to CN201610171213.XA priority Critical patent/CN105679779B/zh
Publication of CN105679779A publication Critical patent/CN105679779A/zh
Application granted granted Critical
Publication of CN105679779B publication Critical patent/CN105679779B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • H01L31/02165Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors using interference filters, e.g. multilayer dielectric filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PIN type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Abstract

本发明公开一种红斑响应探测器,一种用于太阳紫外线指数监测的芯片,属于半导体器件技术领域。该芯片横向集成了两个不同结构的探测单元,其一为传统PIN紫外光电二极管,其二为新结构的窄带通PIN紫外光电二极管,两光电二极管具有相同的感光面积。本发明探测器材料的结构为依次外延衬底层、缓冲层、N型层、I型吸收层、P型层、势垒层,短波滤波层,并利用标准半导体微加工工艺实现两不同结构探测器的单片集成。本发明的优点在于巧妙地采用双二极管集成芯片获得精确的红斑响应探测器,可以避免采用昂贵复杂的滤波装置以及滤波装置对器件响应率的影响,同时避免采用高铝组分作为吸收层所面临的材料生长困难和高暗电流问题。

Description

一种红斑响应探测器
技术领域
本发明专利涉及半导体光电子器件技术领域,具体是指用于太阳紫外线指数监测的红斑响应探测器。
背景技术
太阳紫外辐射是寻常辐射的主要来源,适量强度及谱段的辐射对人类是有利的,地球的臭氧(O3)层是抵制过量有害紫外辐射的天然屏障。然而地球大气层的臭氧量正在减少,过量紫外线辐射特别是UV-B波段的辐射对人类构成极大的威胁,皮肤晒伤及皮肤癌的发病率增加。研究表明:太阳的紫外辐射对农作物、森林、草原以及江河湖海中的植物都有很大的影响,这些影响对于全球生态环境、人类生存可能会带来严重后果。因此对太阳紫外辐射的监测十分重要,最常见的就是大气环境的紫外线指数的监测。
紫外线指数(Ultraviolet Index,简写为UV Index或UVI)是由世界卫生组织(WHO)根据紫外线对人类皮肤的损害所确定的标准,显示地球表面太阳紫外线辐射伤害人类皮肤的程度。紫外线指数越高,表示紫外线强度越强,对皮肤造成的伤害越高。传统用于紫外线指数监测的紅斑响应探测器使用滤波片来匹配红斑响应曲线会带来一系列问题,如匹配的准确性难以控制,使用复杂滤光片体积增大、价格昂贵,一些干扰光谱段难以滤除,响应灵敏度降低,导致测量的准确性降低。而采用高铝组分的AlGaN材料作为吸收层的红斑响应探测器,由于生长高质量外延材料的困难,以及材料本身在UVB波段的吸收限制,导致光谱响应与红斑曲线在UVB段匹配性不好,同时带来漏电流过高等问题。
发明内容
针对上述现有技术中存在的缺陷和不足,本发明解决的技术问题是提供一种体积小、量子效率高、无需外加滤波装置、高精度的能够监测太阳紫外线指数的红斑响应探测器。
本发明是通过以下技术方案来实现上述技术目的:
一种红斑响应探测器,包括衬底;在所述衬底上横向集成有第一探测单元和第二探测单元;所述第一探测单元和第二探测单元自所述衬底向上分别依次包括下列外延层:
一缓冲层;所述缓冲层外延在所述衬底上;
一N型层;所述N型层制作在所述缓冲层上;
一I型吸收层;所述吸收层制作在所述N型层之上;
一P型层;所述P型层制作在所述I型吸收层上;
在所述第一探测单元的P型层上还制作有一势垒层;在所述势垒层上还制作有一短波滤波层。
优选的,所述第一探测单元还包括上欧姆接触电极和下欧姆接触电极;所述上欧姆接触电极制作在所述第探测单元的P型层上;所述下欧姆接触电极制作在所述第一探测单元的N型层上。
优选的,所述第二探测单元还包括上欧姆接触电极和下欧姆接触电极;所述上欧姆接触电极制作在所述第二探测单元的P型层上;所述下欧姆接触电极制作在所述第二探测单元的N型层上。
优选的,所述上欧姆接触电极和上欧姆接触电极的尺寸与形状相同;所述下欧姆接触电极和下欧姆接触电极的尺寸与形状相同。
优选的,所述衬底为蓝宝石、碳化硅、氮化镓、砷化镓的任一材料制成。
优选的,所述缓冲层的厚度为100纳米~300纳米,所述N型层的厚度为1~2微米,所述I型吸收层的厚度为300纳米~500纳米,所述P型层的厚度为100纳米,所述势垒层的厚度为100纳米~200纳米,所述短波滤波层厚度为300纳米~500纳米。
优选的,所述缓冲层为低温外延的AlN材料制成;
所述N型层为N型GaN材料制成;所述N型GaN材料的掺杂浓度大于1×1018cm-3
所述I型吸收层为弱N型GaN材料制成;所述弱N型GaN材料的掺杂浓度约为1×1016cm-3
所述P型层为P型GaN材料制成;所述P型GaN材料的掺杂浓度大于1×1017cm-3
所述势垒层为P型AlxGa1-xN材料制成,其中0.35≤x≤1;所述P型AlxGa1-xN的掺杂浓度大于1×1017cm-3
所述短波滤波层为P型Al0.33Ga0.67N材料制;所述P型Al0.33Ga0.67N材料的掺杂浓度大于1×1017cm-3
优选的,所述第一探测单元和第二探测单元的感光面积相同。
优选的,光线从所述第一探测单元和第二探测单元的前端入射。
本发明与现有技术相比,具有以下有益效果:
巧妙地采用双二极管集成芯片获得精确的红斑响应探测器,可以避免采用昂贵复杂的滤波装置以及滤波装置对器件响应率的影响,避免采用高铝组分作为吸收层所面临的材料生长困难和高暗电流问题。同时可以通过调节短波滤波层的厚度和组分调节第一探测单元的短波响应边线型,间接获得精确匹配红斑响应曲线的探测器;
采用双探测单元集成芯片模式,优势表现在(I)能获得与世界卫生组织所确定的红斑光谱曲线十分接近的光谱响应;(II)通过双探测器单元匹配,吸收层全部采用容易外延的GaN材料,避免高铝组分作为吸收层所面临的材料生长困难和高暗电流问题。(III)短波滤波层采用高铝组分材料,仅仅用于对短波紫外线的吸收,信号电流不通过该层材料,所以对该层材料的晶体质量要求不高;(IV)不需要采用复杂的滤波片。
附图说明
图1是本发明一种红斑响应探测器的整体结构示意图;
图2是本发明一种红斑响应探测器中第一探测单元和第二探测单元的光谱响应曲线图;
图3是本发明一种红斑响应探测器的合成光谱响应同红斑曲线的比较曲线图。
具体实施方式
为使对本发明的结构特征及所达成的功效有更进一步的了解与认识,用以较佳的实施例及附图配合详细的说明,说明如下:
如图1所示,在本具体实施例中,本发明一种红斑响应探测器外延结构包括一衬底1。在衬底1上横向集成有第一探测单元100和第二探测单元200。
第一探测单元100和第二探测单元200自衬底1向上分别依次包括下列外延层:
一缓冲层2、一N型层3,一I型吸收层4,一P型层5。缓冲层2外延在衬底1上,N型层3制作在缓冲层2上,I型吸收层4制作在N型层3之上,P型层5制作在I型吸收层4上。
其中第一探测单元100还包括一势垒层6和一短波滤波层7。势垒层6制作在P型层5之上;短波滤波层7制作在势垒层6之上。
第一探测单元100还包括上欧姆接触电极8和下欧姆接触电极9;上欧姆接触电极8制作在第一探测单元100的P型层5上;下欧姆接触电极9制作在第一探测单元100的N型层3上。
第二探测单元(200)还包括上欧姆接触电极10和下欧姆接触电极11;上欧姆接触电极10制作在第二探测单元(200)的P型层5上;下欧姆接触电极11制作在第二探测单元(200)的N型层3上。
上述的第一探测单元100和第二探测单元200上的电极均完全覆盖刻蚀区域且足够厚,能够完全阻挡照射在刻蚀区域的紫外线。且上欧姆接触电极10和上欧姆接触电极8的尺寸与形状相同,下欧姆接触电极11和上欧姆接触电极9的尺寸与形状相同。
作为上述实施例的优选方案,本发明提供的衬底1为蓝宝石、碳化硅、氮化镓、砷化镓的其中一种材料制成的衬底。缓冲层2为低温外延的AlN材料,N型层3为掺杂的GaN材料,掺杂浓度约为1×1018cm-3,I型吸收层4为非故意掺杂的GaN材料,本征掺杂浓度为1×1016cm-3,P形层5为P型掺杂的GaN材料,掺杂浓度为1×1017cm-3,势垒层6为P型AlxGa1-xN材料,x=0.4,掺杂浓度为1×1017cm-3,短波滤波层7为P型Al0.33Ga0.67N材料,其掺杂浓度约为1×1017cm-3
本实施例采用前端照射模式,即自图1的上方向下照射。优化的,缓冲层2的厚度为200纳米,N型层3的厚度为1微米,I型吸收层4厚度为450纳米,P型层5的厚度为100纳米,势垒层6的厚度为100纳米,短波滤波层7的厚度为400纳米。
探测器通过刻蚀分离形成两个不同结构单元,第一探测单元100包含六层外延材料结构,即传统PIN紫外探测器。第二探测单元200包含四层外延结构,即窄带通PIN紫外探测器。两探测单元具有相同的感光面积,刻蚀深度进入衬底。
如图2所示,为本发明探测器两个探测单元的光谱响应曲线,图3为两个探测单元光谱响应曲线合成后的曲线同红斑响应的比较。本发明光谱响应曲线合成由第二探测单元200各探测波长对应光谱响应减去第一探测单元100的对应值。
世界卫生组织所建议的计算紫外线指数的标准方法[WHO,2002]为:
上式积分上下限为250nm~400nm,Eλ太阳辐射强度,红斑作用光谱曲线Ser(λ)光谱响应曲线Ri(λ),单位波长对探测器输出电流贡献i(λ)=Eλ*Ri(λ),可以得到:
本发明探测器的光谱响应与红斑作用光谱曲线非常匹配,则可略去上式中的Ser(λ)和Ri(λ),两者的比值只相差一个系数A,探测器输出电流与紫外线指数一一对应,即:
本发明一种红斑响应探测器,采用双探测单元集成芯片模式,优势表现在(I)能获得与世界卫生组织所确定的红斑光谱曲线十分接近的光谱响应;(II)通过双探测器单元匹配,吸收层全部采用容易外延的GaN材料,避免高铝组分作为吸收层所面临的材料生长困难和高暗电流问题。(III)短波滤波层采用高铝组分材料,仅仅用于对短波紫外线的吸收,信号电流不通过该层材料,所以对该层材料的晶体质量要求不高;(IV)不需要采用复杂的滤波片。
本发明提出的一种红斑响应探测器,以上的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (8)

1.一种红斑响应探测器,包括衬底(1);其特征在于:在所述衬底(1)上横向集成有第一探测单元(100)和第二探测单元(200);所述第一探测单元(100)和第二探测单元(200)自所述衬底(1)向上分别依次包括下列外延层:
一缓冲层(2);所述缓冲层(2)外延在所述衬底(1)上;
一N型层(3);所述N型层(3)制作在所述缓冲层(2)上;
一I型吸收层(4);所述吸收层(4)制作在所述N型层(3)之上;
一P型层(5);所述P型层制作在所述I型吸收层(4)上;
在所述第一探测单元(100)的P型层(5)上还制作有一势垒层(6);在所述势垒层(6)上还制作有一短波滤波层(7);所述P型层(5)为P型GaN材料制成;所述P型GaN材料的掺杂浓度大于1×1017cm-3
所述势垒层(6)为P型AlxGa1-xN材料制成,其中0.35≤x≤1;所述P型AlxGa1-xN的掺杂浓度大于1×1017cm-3
所述第一探测单元(100)还包括上欧姆接触电极(8)和下欧姆接触电极(9);所述上欧姆接触电极(8)制作在所述第一探测单元的P型层(5)上;所述下欧姆接触电极(9)制作在所述第一探测单元(100)的N型层(3)上。
2.根据权利要求1所述的一种红斑响应探测器,其特征在于:所述第二探测单元(200)还包括上欧姆接触电极(10)和下欧姆接触电极(11);所述上欧姆接触电极(10)制作在所述第二探测单元(200)的P型层(5)上;所述下欧姆接触电极(11)制作在所述第二探测单元(200)的N型层(3)上。
3.根据权利要求2所述的一种红斑响应探测器,其特征在于:所述第二探测单元(200)的上欧姆接触电极(10)和所述第一探测单元(100)的上欧姆接触电极(8)的尺寸与形状相同;所述第二探测单元(200)的下欧姆接触电极(11)和第一探测单元(100)的下欧姆接触电极(9)的尺寸与形状相同。
4.根据权利要求1至3任一所述的一种红斑响应探测器,其特征在于:所述衬底(1)为蓝宝石、碳化硅、氮化镓、砷化镓的任一材料制成。
5.根据权利要求1至3任一所述的一种红斑响应探测器,其特征在于:所述缓冲层(2)的厚度为100纳米~300纳米,所述N型层(3)的厚度为1~2微米,所述I型吸收层(4)的厚度为300纳米~500纳米,所述P型层(5)的厚度为100纳米,所述势垒层(6)的厚度为100纳米~200纳米,所述短波滤波层(7)厚度为300纳米~500纳米。
6.根据权利要求1至3任一 所述的一种红斑响应探测器,其特征在于:
所述缓冲层(2)为低温外延的AlN材料制成;
所述N型层(3)为N型GaN材料制成;所述N型GaN材料的掺杂浓度大于1×1018cm-3
所述I型吸收层(4)为弱N型GaN材料制成;所述弱N型GaN材料的掺杂浓度约为1×1016cm-3
所述短波滤波层(7)为P型Al0.33Ga0.67N材料制;所述P型Al0.33Ga0.67N材料的掺杂浓度大于1×1017cm-3
7.根据权利要求1至3任一 所述的一种红斑响应探测器,其特征在于:所述第一探测单元(100)和第二探测单元(200)的感光面积相同。
8.根据权利要求1至3任一 所述的一种红斑响应探测器,其特征在于:光线从所述第一探测单元(100)和第二探测单元(200)的前端入射。
CN201610171213.XA 2016-03-22 2016-03-22 一种红斑响应探测器 Active CN105679779B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610171213.XA CN105679779B (zh) 2016-03-22 2016-03-22 一种红斑响应探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610171213.XA CN105679779B (zh) 2016-03-22 2016-03-22 一种红斑响应探测器

Publications (2)

Publication Number Publication Date
CN105679779A CN105679779A (zh) 2016-06-15
CN105679779B true CN105679779B (zh) 2019-06-21

Family

ID=56311609

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610171213.XA Active CN105679779B (zh) 2016-03-22 2016-03-22 一种红斑响应探测器

Country Status (1)

Country Link
CN (1) CN105679779B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110544727A (zh) * 2019-09-05 2019-12-06 中国电子科技集团公司第十三研究所 一种集成滤光膜层的紫外探测器及其制备方法
CN113948604A (zh) * 2021-10-18 2022-01-18 中国科学院长春光学精密机械与物理研究所 一种三维结构高增益AlGaN日盲紫外探测器及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010009268A1 (en) * 1999-02-08 2001-07-26 General Electric Company Optical spectrometer and method for combustion flame temperature determination
CN104779316A (zh) * 2015-03-30 2015-07-15 中国电子科技集团公司第三十八研究所 一种新型GaN基PIN结构紫外探测器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182670A (en) * 1991-08-30 1993-01-26 Apa Optics, Inc. Narrow band algan filter
CN101101934A (zh) * 2006-07-06 2008-01-09 中国科学院半导体研究所 提高GaN基pin结构性能的紫外探测器及制作方法
US20150243825A1 (en) * 2014-02-27 2015-08-27 Raytheon Company Simultaneous dual-band detector
WO2015151651A1 (ja) * 2014-04-04 2015-10-08 シャープ株式会社 受光器及び携帯型電子機器
CN104900747B (zh) * 2015-06-24 2017-03-22 成都海威华芯科技有限公司 基于GaN的光电集成器件及其制备方法、外延结构
CN205564748U (zh) * 2016-03-22 2016-09-07 中国电子科技集团公司第三十八研究所 一种红斑响应探测器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010009268A1 (en) * 1999-02-08 2001-07-26 General Electric Company Optical spectrometer and method for combustion flame temperature determination
CN104779316A (zh) * 2015-03-30 2015-07-15 中国电子科技集团公司第三十八研究所 一种新型GaN基PIN结构紫外探测器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GaN基pin光探测器的结构设计与优化;周兴利;《中国优秀硕士学位论文全文数据库 信息科技辑》;20091115;第2009卷(第11期);第1-2,23-32页 *

Also Published As

Publication number Publication date
CN105679779A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
Varshney et al. Current advances in solar-blind photodetection technology: Using Ga 2 O 3 and AlGaN
CN104576805B (zh) 一种基于InAs/GaSbⅡ类超晶格材料的短波/中波/长波三色红外探测器
CN106684200B (zh) 一种三色红外探测器的制备方法
CN109285911A (zh) 一种短波/中波/长波三波段红外探测器及其制备方法
CN105590971B (zh) AlGaN日盲紫外增强型雪崩光电探测器及其制备方法
Sheoran et al. High performance of zero-power-consumption MOCVD-grown β-Ga2O3-based solar-blind photodetectors with ultralow dark current and high-temperature functionalities
Reine et al. Solar-blind AlGaN 256× 256 pin detectors and focal plane arrays
Brown et al. Solar-blind AlGaN heterostructure photodiodes
CN105355701B (zh) 一种新型的光电导探测器
CN105679779B (zh) 一种红斑响应探测器
CN205564748U (zh) 一种红斑响应探测器
JP2010050432A (ja) 紫外検出装置
Dalapati et al. Bias-controlled photocurrent generation process in GaN-based ultraviolet p–i–n photodetectors fabricated with a thick Al2O3 passivation layer
CN102201482A (zh) 量子阱红外探测器
KR100788834B1 (ko) 가시광 및 자외선 감지용 센서
CN106340553B (zh) 电子输运通道为斜跃迁‑微带型的量子级联红外探测器
CN104916713B (zh) 一种以光子晶体作为入射窗的氮化镓基紫外探测器
KR101573559B1 (ko) 광전자 복사 검출기 및 다수의 검출 소자를 제조하기 위한 방법
Wang et al. Surface state induced filterless SWIR narrow-band Si photodetector
Averin et al. Wavelength selective UV/visible metal-semiconductor-metal photodetectors
Gu et al. High-temperature forward and reverse current transport mechanisms of AlGaN-based solar-blind UV photodetector
Ngu et al. Array of two UV-wavelength detector types
Cao et al. Fabrication of high quantum efficiency pin AlGaN detector and optimization of p-layer and i-layer thickness
Yuan et al. Development of solar-blind AlGaN 128× 128 ultraviolet focal plane arrays
JP2003142721A (ja) 受光素子

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant