CN104916713B - 一种以光子晶体作为入射窗的氮化镓基紫外探测器 - Google Patents

一种以光子晶体作为入射窗的氮化镓基紫外探测器 Download PDF

Info

Publication number
CN104916713B
CN104916713B CN201510284031.9A CN201510284031A CN104916713B CN 104916713 B CN104916713 B CN 104916713B CN 201510284031 A CN201510284031 A CN 201510284031A CN 104916713 B CN104916713 B CN 104916713B
Authority
CN
China
Prior art keywords
photonic crystal
layers
entrance window
detector
gallium nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510284031.9A
Other languages
English (en)
Other versions
CN104916713A (zh
Inventor
张�雄
赵见国
崔平
崔一平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201510284031.9A priority Critical patent/CN104916713B/zh
Publication of CN104916713A publication Critical patent/CN104916713A/zh
Application granted granted Critical
Publication of CN104916713B publication Critical patent/CN104916713B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022416Electrodes for devices characterised by at least one potential jump barrier or surface barrier comprising ring electrodes

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种以光子晶体作为入射窗的氮化镓基紫外探测器,其特征在于,包括由下而上依次设置的阴极电极101、n型Alx1Ga1‑x1N层102、Aly1Ga1‑ y1N/Aly2Ga1‑y2N多量子阱雪崩增益区103、Aly3Ga1‑y3N/Aly4Ga1‑y4N超晶格吸收区104、p型Alx2Ga1‑x2N层105、环形阳极电极107和制作于p型Alx2Ga1‑x2N层105表面、但局限于阳极电极环107内的光子禁带隙宽度可调的光子晶体入射窗106。本发明的有益效果为:极大程度地降低背景噪声,有效提高信噪比,通过设置光子晶体入射窗结构,可提高带通区光线在吸收区的进光量50%以上,而对波长位于带通区外但又落在光子禁带内的光线,则可滤掉其进光量80%以上。既保证了探测器具有高灵敏度和高增益,又有效地降低了探测器的背景噪声与暗电流,有益于提高探测器的可靠性与稳定性。

Description

一种以光子晶体作为入射窗的氮化镓基紫外探测器
技术领域
本发明涉及半导体光电子器件制造领域,具体涉及一种以光子晶体作为入射窗的氮化镓基紫外探测器。
背景技术
大气层中臭氧层对200~280nm波段的紫外线有强烈的吸收作用,所以该波段光在近地空气中几乎不存在,使用该波段光线进行传感探测几乎是零自然干扰。因此,日盲区紫外探测器无论在军用还是民用领域都有着重大的应用价值,尤其在军用方面,紫外探测在电子对抗、预警、制导等方面可发挥巨大的作用,谁掌握了精准高效稳定的紫外探测技术,谁就拥有了足够好的“眼睛”与“耳朵”。在民用领域,紫外探测在刑事侦查、医疗保健、商业监控等领域也有着巨大的应用价值。
传统紫外探测器入射窗多为晶体平面结构或者透镜结构,由于入射面为较平整的平面或近球面,入射光在入射时非常容易发生反射,使入射光线的透过率大大降低,仅有很小一部分光线能入射进入探测器吸收区继而产生雪崩效应。而探测器雪崩增益区通常具有很高的增益与灵敏度,由于杂乱光线的干扰、分子热运动等原因,探测器的热噪声、白噪声等也会被同时放大,以致探测器具有非常大的背景噪声、很高的暗电流,信噪比严重降低,有时甚至难以区分出有效信号。
目前在氮化镓衬底上制备的同质外延氮化镓紫外雪崩光电探测器,其暗电流密度在10-6A/cm2量级,线性模式时内部增益可达104,单光子探测效率约为24%;而在蓝宝石衬底上,异质外延制备氮化镓紫外雪崩光电探测器,其暗电流密度在10-4A/cm2量级,线性模式内部增益接近1000,单光子探测效率约为30%。另外,利用吸收区和倍增区分离的技术,氮化镓紫外雪崩光电探测器的雪崩增益因子可达4.12×104。而铝镓氮P-I-N型紫外雪崩光电探测器的外量子效率为37%,雪崩增益因子>2500,但暗电流也非常高。
此外,当前的紫外探测器,如图2所示,多强调大带宽,要求探测器吸收区和雪崩增益区的禁带宽度很窄,才能让较大波长范围的光线激发雪崩增益区产生光电效应。由于探测器本身的高增益与高灵敏度,稍短波长的光线也都能激发探测器发生雪崩效应,因而导致探测器暗电流较大。虽然已经有通过改变量子阱结构及其中不同元素的组分比例,以达到控制光电探测器截止波长的文献,但截止波长的限制仅仅是约束比探测范围波长更长的光线,而比探测范围波长更短的光线却无法约束,所以很难达到有效控制暗电流、提高探测器稳定性的目的。
上述这些问题的存在,严重制约了当前日盲区紫外探测器的稳定性及可靠性,如何制作既能保持较高增益又能保证不降低灵敏度,同时具有高的信噪比、小暗电流的紫外探测器,一直是相关行业的追求目标。
发明内容
发明目的:本发明提供了一种以光子晶体作为入射窗的氮化镓基紫外探测器,由于具有一定周期结构的光子晶体对落在光子禁带内某些特定波长的光具有禁止传播的作用,而对落在光子禁带外的光具有入射增强的作用,所以使用光子晶体作为探测器入射窗,能将带通区外的光线滤掉,同时使波长位于带通区内的入射光吸收增强,这样可以很大程度上抑制背景噪声,减小暗电流,大幅提高探测器性能。配合改变探测器吸收区与雪崩增益区AlGaN化合物中Al与Ga的组分比例,可人为控制带通区的波长范围,实现对不同波长范围的光线进行选择性探测。
技术方案:为实现上述目的,本发明采用下述的技术方案:
一种以光子晶体作为入射窗的氮化镓基紫外探测器,其特征在于,包括由下而上依次设置的阴极电极101、n型Alx1Ga1-x1N层102、Aly1Ga1-y1N/Aly2Ga1-y2N多量子阱雪崩增益区103、Aly3Ga1-y3N/Aly4Ga1-y4N超晶格吸收区104、p型Alx2Ga1-x2N层105、环形阳极电极107和制作于p型Alx2Ga1-x2N层105表面、但局限于阳极电极环107内的光子禁带隙宽度可调的光子晶体入射窗106。
优选的,探测器入射窗106是制作于p型Alx2Ga1-x2N层105表面,具有周期性结构的光子禁带隙宽度可调的纳米光子晶体,光子晶体的周期可根据所需带通区波长范围进行调节。
优选的,探测器入射窗的光子晶体结构106,是二维或三维的周期性纳米微结构,其厚度在10~300nm之间,光子晶体周期在150~600nm之间。
优选的,在光子晶体入射窗106外围是对紫外光线不透明的环形阳极电极107,其形状为圆环状或多边形状,电极表面积不小于探测器表面积的5%,不大于50%。
优选的,Aly3Ga1-y3N/Aly4Ga1-y4N超晶格吸收区104中超晶格的重复周期数设置为2~10,总厚度在10~100nm之间,y3与y4可根据带通区波长范围进行调节,并满足:0<y3<1,0<y4<1,且y3≠y4
优选的,Aly3Ga1-y3N/Aly4Ga1-y4N超晶格吸收区104下方为Aly1Ga1-y1N/Aly2Ga1-y2N多量子阱雪崩增益区103,多量子阱的重复周期数设置为2~10,单周期厚度在2~15nm之间,y1与y2可根据带通区波长范围进行调节,并满足:0<y1<1,0<y2<1,且y1≠y2
优选的,Aly1Ga1-y1N/Aly2Ga1-y2N多量子阱雪崩增益区103中Aly1Ga1-y1N层和Aly2Ga1-y2N层的禁带宽度均大于Aly3Ga1-y3N/Aly4Ga1-y4N超晶格吸收区104中Aly3Ga1-y3N层与Aly4Ga1-y4N层的禁带宽度。
优选的,阳极电极107下面设置有p型Alx2Ga1-x2N层105,厚度在3~300nm之间,并满足:0<x2<1。该层使用Mg元素进行掺杂,其中的载流子浓度在1×1017~1×1020之间。
优选的,多量子阱雪崩增益区103下面的n型Alx1Ga1-x1N层102厚度在3~300nnm之间,其中的Al组分x1满足:0<x1<1。该层使用Si元素进行掺杂,其中载流子浓度在1×1018~1×1021之间。
有益效果:由于使用了光子晶体作为探测器的入射窗,能将落在光子禁带内的某种特定波长的光线滤掉,同时使落在光子禁带外且位于所需的带通区内的光线的入射效果得以增强,这样可以极大程度地降低背景噪声,有效提高信噪比。保守估计,通过设置光子晶体入射窗结构,可提高带通区光线在吸收区的进光量50%以上,而对波长位于带通区外但又落在光子禁带内的光线,则可滤掉其进光量80%以上。通过改变探测器雪崩增益区与吸收区中的AlGaN化合物中Al与Ga的组分比例,可根据需要人为控制带通区的波长范围,实现选择性探测。对本发明提供的探测器而言,波长不在带通区内的光线是“不可见”的,这样既保证了探测器具有高灵敏度和高增益,又有效地降低了探测器的背景噪声与暗电流,有益于提高探测器的可靠性与稳定性。
附图说明
图1为本发明的紫外探测器的断面结构示意图。其中,阴极电极101、n型Alx1Ga1-x1N层102、Aly1Ga1-y1N/Aly2Ga1-y2N多量子阱雪崩增益区103、Aly3Ga1-y3N/Aly4Ga1-y4N超晶格吸收区104、p型Alx2Ga1-x2N层105、环形阳极电极107、光子晶体入射窗106。
图2为现有技术制备的紫外探测器的断面结构示意图。其中,阴极电极201、n型Alx1Ga1-x1N层202、Alx2Ga1-x2N雪崩增益区203、Alx3Ga1-x3N吸收区204、p型Alx4Ga1-x4N层205、探测器入射窗206以及阳极电极207。
具体实施方式
如图1所示,本发明提供的一种以光子晶体作为入射窗的氮化镓基紫外探测器,包括由下而上依次设置的阴极电极101、n型Alx1Ga1-x1N层102、Aly1Ga1-y1N/Aly2Ga1-y2N多量子阱雪崩增益区103、Aly3Ga1-y3N/Aly4Ga1-y4N超晶格吸收区104、p型Alx2Ga1-x2N层105、环形阳极电极107和制作于p型Alx2Ga1-x2N层105表面、但局限于阳极电极环107内的光子禁带隙宽度可调的光子晶体入射窗106。
所述的阴极电极101为探测器的阴极,其特点是与n型Alx1Ga1-x1N层102具有良好的欧姆接触,以保证良好的导电性能。器件制作时需将n型Alx1Ga1-x1N层102下面导电性差的衬底、成核层、缓冲层等剥离后再作抛光处理。
所述的n型Alx1Ga1-x1N层102是探测器PN结的N区,该层的Al组分可根据带通区波长范围作相应地调节,n型掺杂使用Si元素进行掺杂,载流子浓度在1×1018~1×1021之间。
所述的Aly1Ga1-y1N/Aly2Ga1-y2N多量子阱雪崩增益区103的禁带宽度可根据带通区波长范围通过改变y1和y2的数值进行调节,目的是使在吸收区吸收的光子产生雪崩增益效应。为了获得足够高的倍增系数,多量子阱的重复周期数设置为2~10,单周期厚度在2~15nm之间。
所述的Aly3Ga1-y3N/Aly4Ga1-y4N超晶格吸收区104的作用是吸收从光子晶体入射窗进入的、波长位于带通区内光线的光子能量,并将其传递到雪崩增益区以激发雪崩效应,获得增益。超晶格吸收区104的重复周期数设置为2~10,总厚度在10~80nm之间,y3与y4可根据带通区波长范围进行调节。
Aly3Ga1-y3N/Aly4Ga1-y4N超晶格吸收区104下方设置有Aly1Ga1-y1N/Aly2Ga1-y2N多量子阱雪崩增益区103,多量子阱的重复周期数设置为2~10,单周期厚度在2~15nm之间,y1与y2可根据所需带通区宽度与波长范围进行调节,并且满足:0<y1<1,0<y2<1,y1≠y2,y3+y4≤y1+y2,即Aly1Ga1-y1N/Aly2Ga1-y2N多量子阱雪崩增益区103中的Aly1Ga1-y1N层和Aly2Ga1-y2N层的禁带宽度均大于Aly3Ga1-y3N/Aly4Ga1-y4N超晶格吸收区104中的Aly3Ga1-y3N层与Aly4Ga1-y4N层的禁带宽度。
所述的环形阳极电极107下面设置有p型Alx2Ga1-x2N层105,该层作为探测器PN结的P区,其Al组分可根据带通区波长范围进行调节,其厚度在3~300nm之间,使用Mg元素进行掺杂,载流子浓度在1×1017~1×1020之间。
所述的环形阳极电极107为对于紫外光线不透明且与p型Alx2Ga1-x2N层105有良好的欧姆接触,其表面积不小于探测器表面积的5%,不大于50%,阳极电极环107内设置有光子晶体入射窗106。
所述的光子晶体入射窗106为二维或三维的周期性纳米微结构,其制作于p型Alx2Ga1-x2N层105表面、但局限于阳极电极环107内,厚度在10~300nm之间,光子晶体的周期在150~600nm之间,周期长度可根据带通区的波长范围进行调节。
本发明的紫外探测器的核心部分包括光子晶体入射窗106、禁带宽度可调的Aly3Ga1-y3N/Aly4Ga1-y4N超晶格吸收区104和禁带宽度可调的Aly1Ga1-y1N/Aly2Ga1-y2N多量子阱雪崩增益区103。该三部分是实现高灵敏度、高增益、低暗电流带通探测器的关键。此外,为保证器件具有优异的稳定性与可靠性,探测器的环形阳极电极107为对于紫外光不透明的电极,这样可以更加可靠地保证波长位于带通区外的光线无法入射进入探测器,从而大幅度地降低噪音。
尽管本发明就优选实施方式进行了示意和描述,但本领域的技术人员应当理解,只要不超出本发明的权利要求所限定的范围,可以对本发明进行各种变化和修改。

Claims (8)

1.一种以光子晶体作为入射窗的氮化镓基紫外探测器,其特征在于:包括由下而上依次设置的阴极电极(101)、n型Alx1Ga1-x1N层(102)、Aly1Ga1-y1N/Aly2Ga1-y2N多量子阱雪崩增益区(103)、Aly3Ga1-y3N/Aly4Ga1-y4N超晶格吸收区(104)、p型Alx2Ga1-x2N层(105)、环形阳极电极(107)和制作于p型Alx2Ga1-x2N层(105)表面、但局限于阳极电极环(107)内的光子禁带隙宽度可调的光子晶体入射窗(106);所述的探测器入射窗(106)是制作于p型Alx2Ga1-x2N层(105)表面,具有周期性结构的光子禁带隙宽度可调的纳米光子晶体,光子晶体的周期可根据所需带通区波长范围进行调节。
2.如权利要求1所述的以光子晶体作为入射窗的氮化镓基紫外探测器,其特征在于:所述的探测器入射窗的光子晶体结构(106),是二维或三维的周期性纳米微结构,其厚度在10~300nm之间,光子晶体周期在150~600nm之间。
3.如权利要求1所述的以光子晶体作为入射窗的氮化镓基紫外探测器,其特征在于:在光子晶体入射窗(106)外围是对紫外光线不透明的环形阳极电极(107),其形状为圆环状或多边形状,电极表面积不小于探测器表面积的5%,不大于50%。
4.如权利要求1所述的以光子晶体作为入射窗的氮化镓基紫外探测器,其特征在于:所述的Aly3Ga1-y3N/Aly4Ga1-y4N超晶格吸收区(104)中超晶格的重复周期数设置为2~10,总厚度在10~100nm之间,y3与y4可根据带通区波长范围进行调节,并满足:0<y3<1,0<y4<1,且y3≠y4
5.如权利要求1所述的以光子晶体作为入射窗的氮化镓基紫外探测器,其特征在于:所述的Aly3Ga1-y3N/Aly4Ga1-y4N超晶格吸收区(104)下方为Aly1Ga1-y1N/Aly2Ga1-y2N多量子阱雪崩增益区(103),多量子阱的重复周期数设置为2~10,单周期厚度在2~15nm之间,y1与y2可根据带通区波长范围进行调节,并满足:0<y1<1,0<y2<1,且y1≠y2
6.如权利要求1所述的以光子晶体作为入射窗的氮化镓基紫外探测器,其特征在于:所述的Aly1Ga1-y1N/Aly2Ga1-y2N多量子阱雪崩增益区(103)中Aly1Ga1-y1N层和Aly2Ga1-y2N层的禁带宽度均大于Aly3Ga1-y3N/Aly4Ga1-y4N超晶格吸收区(104)中Aly3Ga1-y3N层与Aly4Ga1-y4N层的禁带宽度。
7.如权利要求1所述的以光子晶体作为入射窗的氮化镓基紫外探测器,其特征在于:阳极电极(107)下面设置有p型Alx2Ga1-x2N层(105),厚度在3~300nm之间,并满足:0<x2<1,该层使用Mg元素进行掺杂,其中的载流子浓度在1×1017~1×1020之间。
8.如权利要求1所述的以光子晶体作为入射窗的氮化镓基紫外探测器,其特征在于:多量子阱雪崩增益区(103)下面的n型Alx1Ga1-x1N层(102)厚度在3~300nnm之间,其中的Al组分x1满足:0<x1<1,该层使用Si元素进行掺杂,其中载流子浓度在1×1018~1×1021之间。
CN201510284031.9A 2015-05-28 2015-05-28 一种以光子晶体作为入射窗的氮化镓基紫外探测器 Active CN104916713B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510284031.9A CN104916713B (zh) 2015-05-28 2015-05-28 一种以光子晶体作为入射窗的氮化镓基紫外探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510284031.9A CN104916713B (zh) 2015-05-28 2015-05-28 一种以光子晶体作为入射窗的氮化镓基紫外探测器

Publications (2)

Publication Number Publication Date
CN104916713A CN104916713A (zh) 2015-09-16
CN104916713B true CN104916713B (zh) 2017-04-05

Family

ID=54085606

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510284031.9A Active CN104916713B (zh) 2015-05-28 2015-05-28 一种以光子晶体作为入射窗的氮化镓基紫外探测器

Country Status (1)

Country Link
CN (1) CN104916713B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113299775B (zh) * 2021-05-14 2023-02-17 北京工业大学 一种高速短波通信探测器
CN115101606B (zh) * 2022-05-16 2023-10-03 西安电子科技大学芜湖研究院 一种紫外光探测器
CN116598369B (zh) * 2023-07-18 2023-09-22 北京邮电大学 低噪声单光子探测器及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020179936A1 (en) * 2001-06-01 2002-12-05 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices which include quaternary chalcogenides
CN100382335C (zh) * 2004-09-23 2008-04-16 璨圆光电股份有限公司 基于氮化镓半导体的紫外线光检测器
CN100365829C (zh) * 2005-06-14 2008-01-30 中国科学院上海技术物理研究所 氮化镓基紫外-红外双色集成探测器
WO2008048704A2 (en) * 2006-03-10 2008-04-24 Stc.Unm Pulsed growth of gan nanowires and applications in group iii nitride semiconductor substrate materials and devices
CN101494243A (zh) * 2009-03-04 2009-07-29 中国科学院上海技术物理研究所 光子晶体耦合窄带响应量子阱红外探测器
CN102097520A (zh) * 2010-11-29 2011-06-15 中国科学院苏州纳米技术与纳米仿生研究所 光子晶体耦合型多色量子阱红外探测器
CN202103077U (zh) * 2011-05-12 2012-01-04 昆明物理研究所 基于光子晶体和超晶格雪崩光电二极管的太赫兹探测器结构
CN104167458A (zh) * 2014-03-31 2014-11-26 清华大学 紫外探测器及其制备方法
CN104051561B (zh) * 2014-07-04 2016-08-24 东南大学 一种氮化镓基紫外雪崩光电探测器
CN104362213B (zh) * 2014-09-11 2016-06-15 东南大学 一种铝镓氮基日盲紫外探测器及其制备方法

Also Published As

Publication number Publication date
CN104916713A (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
CN106711249B (zh) 一种基于铟砷锑(InAsSb)材料的双色红外探测器的制备方法
CN108305911B (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
JP2011077165A (ja) 光検出素子、光検出装置及び赤外線検出素子、赤外線検出装置
Klem et al. Mesa-isolated InGaAs photodetectors with low dark current
CN104916713B (zh) 一种以光子晶体作为入射窗的氮化镓基紫外探测器
CN105789364A (zh) 一种无铝型ii类超晶格长波双势垒红外探测器
CN102790100B (zh) 一种基于中间能带的InSb量子点多色红外探测器
CN103904152B (zh) 光电探测器及其制造方法和辐射探测器
CN105590971B (zh) AlGaN日盲紫外增强型雪崩光电探测器及其制备方法
CN106684200A (zh) 一种三色红外探测器的制备方法
CN109494275A (zh) 一种AlGaN基日盲紫外光电晶体管探测器及其制作方法
CN107403848A (zh) 一种背照式级联倍增雪崩光电二极管
CN110047955A (zh) 一种AlGaN紫外雪崩光电二极管探测器及其制备方法
CN106206832B9 (zh) 一种单极阻挡结构窄带通紫外探测器
CN105957908A (zh) 倍增区控制的雪崩光电二极管及其制造方法
CN110459627A (zh) 一种紫外-可见双波段光电探测器
CN106340553B (zh) 电子输运通道为斜跃迁‑微带型的量子级联红外探测器
Zhu et al. Influence of the depletion region in GaAs/AlGaAs quantum well nanowire photodetector
CN102832289B (zh) 基于光子频率上转换的太赫兹成像器件、转换方法
CN207320147U (zh) 一种具有二维电子气去噪屏蔽环的AlGaN紫外探测器
CN105679779B (zh) 一种红斑响应探测器
CN102074609B (zh) 一种紫外雪崩光电二极管探测器及其制作方法
CN113964224A (zh) 一种半导体紫外探测器芯片的外延结构及其制备方法、半导体紫外探测器芯片
CN207165584U (zh) 一种背照式级联倍增雪崩光电二极管
JP2006228994A (ja) 光検知器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant