CN104051561B - 一种氮化镓基紫外雪崩光电探测器 - Google Patents

一种氮化镓基紫外雪崩光电探测器 Download PDF

Info

Publication number
CN104051561B
CN104051561B CN201410317327.1A CN201410317327A CN104051561B CN 104051561 B CN104051561 B CN 104051561B CN 201410317327 A CN201410317327 A CN 201410317327A CN 104051561 B CN104051561 B CN 104051561B
Authority
CN
China
Prior art keywords
shell
pit structure
quantum pit
multiplication region
uptake zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410317327.1A
Other languages
English (en)
Other versions
CN104051561A (zh
Inventor
张�雄
杨洪权
崔平
崔一平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201410317327.1A priority Critical patent/CN104051561B/zh
Publication of CN104051561A publication Critical patent/CN104051561A/zh
Application granted granted Critical
Publication of CN104051561B publication Critical patent/CN104051561B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种氮化镓基紫外雪崩光电探测器,包括由下至上依次设置的蓝宝石衬底、低温成核层、n型Al组分渐变AlxInyGa1‑x‑yN层、Alx1Iny1Ga1‑x1‑y1N/Alx2Iny2Ga1‑x2‑y2N多量子阱结构吸收区、Al组分渐变Alx3Iny3Ga1‑x3‑y3N层和Alx4Iny4Ga1‑x4‑y4N/Alx5Iny5Ga1‑x5‑y5N多量子阱结构倍增区;由于多量子阱具有高吸收系数、高横向载流子迁移率和强极化效应等优点,因此将氮化镓基紫外雪崩光电探测器的吸收区和倍增区设计为多量子阱结构,既可以提高氮化镓基紫外雪崩光电探测器的量子效率和响应度、自由调谐其截止波长,又能有效降低其雪崩击穿电压阈值,对于制备高性能的紫外光电探测器具有重要的意义。

Description

一种氮化镓基紫外雪崩光电探测器
技术领域
本发明涉及一种具有多量子阱结构吸收区和倍增区的氮化镓基紫外雪崩光电探测器,属于半导体光电子材料与器件制造技术领域。
背景技术
氮化镓基材料主要包括III族和V族元素的二元化合物GaN、InN、AlN,三元化合物InGaN、AlGaN、AlInN和四元化合物AlInGaN,具有禁带宽度大、热导率高、耐高温、抗辐射、耐酸碱、高强度和高硬度等特性,在高亮度蓝、绿、紫、紫外和白光二极管,蓝、紫色激光器以及抗辐射、耐高温、大功率微波器件等领域有着广泛的应用潜力和良好的市场前景。三元化合物AlxGa1-xN的带隙可以通过改变Al组分进行调节,使其对应的吸收波长在200~365nm之间,恰好覆盖由于臭氧层吸收紫外光而产生的太阳光谱盲区(220~290nm)。四元化合物AlxInyGa1-x-yN(0≤x≤1,0≤y≤1)的带隙范围为0.7~6.2eV,可通过改变Al和In组分进行连续的调节,使其吸收光谱的波长范围可以从200nm(深紫外)到1770nm(近红外)。
紫外光电探测器在军用和民用方面都具有重要的应用价值和发展前景,如紫外告警与制导、碳氢化合物燃烧火焰的探测、生化基因的检测、紫外天文学的研究、短距离的通信以及皮肤病的治疗等。氮化镓基紫外雪崩光电探测器具有体积小、重量轻、寿命长、抗震性好、工作电压低、耐高温、耐腐蚀、抗辐照、量子效率高和无需滤光片等优点,成为光电探测领域的研究热点。AlGaN在制备紫外雪崩光电探测器方面具有显著的优势,如AlGaN紫外雪崩光电探测器可以省去昂贵的滤波片,并且AlGaN比SiC具有更高的光吸收效率。在GaN衬底上制备的同质外延GaN紫外雪崩光电探测器,其暗电流密度在10-6A/cm2量级,线性模式内部增益>104,单光子探测效率~24%;而在蓝宝石衬底上外延制备的GaN紫外雪崩光电探测器,其暗电流密度在10-4A/cm2量级,线性模式内部增益接近1000,单光子探测效率~30%[参考文献K.Minder,J.L.Pau,R.McClintock,P.Kung,C.Bayram,and M.Razeghi,Applied Physics Letters,91,073513,(2007).]。利用吸收区和倍增区分离的技术,GaN紫外雪崩光电探测器的雪崩增益因子高达4.12×104[参考文献J.L.Pau,C.Bayram,R.McClintock,M.Razeghi,and D.Silversmith,Applied Physics Letters,92,101120(2008).]。目前,AlGaN p-i-n型紫外雪崩光电探测器的外量子效率为37%,雪崩倍增因子>2500,但暗电流也非常高[参考文献R.McClintock,A.Yasan,K.Minder,P.Kung,and M.Razeghi,Applied Physics Letters,87,241123(2005).L.Sun,J.Chen,J.Li,and H.Jiang,Applied Physics Letters,97,191103(2010).]。AlGaN肖特基势垒型紫外雪崩光电探测器的增益因子为1560,但其稳定性和可靠性还有待于进一步提高[参考文献T.Tut,M.Gokkavas,A.Inal,and E.Ozbay,Applied Physics Letters,90,163506(2007).]。江灏等公开了一种PIN结构紫外雪崩光电探测器[参见专利:一种PIN结构紫外雪崩光电探测器及其制备方法,申请号:201210314750.7]和基于异质结构吸收、倍增层分离氮化镓基雪崩光电探测器[参见专利:基于异质结构吸收、倍增层分离GaN基雪崩光电探测器,申请号:201210333832.6],将四元化合物AlxInyGa1-x-yN(0≤x≤1,0≤y≤1)运用于制备氮化镓基紫外雪崩光电探测器,实现了高性能的光电探测。
基于GaN/Al0.27Ga0.73N多量子阱结构的紫外光电探测器,实现了对紫外波段(297~352nm)光谱的探测[参考文献S.K.Zhang,W.B.Wang,F.Yun,L.He,H.X.Zhou,M.Tamargo,and R.R.Alfano,Applied Physics Letters,81(24),4628-4630(2002).]。通过改变多量子阱结构的阱层宽度、垒层高度和阱层的Al组分,可以调谐GaN/AlGaN多量子阱结构光电探测器的截止波长[参考文献A.Teke,S.Dogan,F.Yun,M.A.Reshchikov,H.Le,X.Q.Liu,H.Morkoc,S.K.Zhang,W.B.Wang,and R.R.Alfano,Solid-State Electronics,47,1401-1408(2003).]。而以Al0.1Ga0.9N/Al0.15Ga0.85N多量子阱作p-i-n型AlGaN紫外光电探测器的有源区,显著提高了载流子的电离系数和降低了器件的雪崩击穿电压阈值[参考文献S.K.Zhang,W.B.Wang,A.M.Dabiran,A.Osinsky,A.M.Wowchak,B.Hertog,C.Plaut,P.P.Chow,S.Gundry,E.O.Troudt,and R.R.Alfano,Applied Physics Letters,87,262113(2005).]。同时,优化AlGaN/GaN多量子阱的结构参数,如多量子阱的重复周期数目、阱层宽度、垒层高度和Al组分,可以提高基于AlGaN/GaN多量子阱结构的紫外光电探测器的响应度[参考文献A.Rostami,N.Ravanbaksh,S.Golmohammadi,and K.Abedi,International Journal of Numerical Modeling:Electronic Networks,Devices and Fields,27,309-317(2014).]。
但是,由于层状有源区在控制增益机制方面的局限性,基于层状有源区的氮化镓基紫外雪崩光电探测器的性能,如量子效率、响应度、载流子电离系数和雪崩击穿电压阈值等,有待于进一步提高,而且器件的截止波长不易调谐。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供一种具有多量子阱结构吸收区和倍增区的氮化镓基紫外雪崩光电探测器;由于多量子阱的高吸收系数、高横向载流子迁移率和强极化效应,因此多量子阱结构的有源区能够提高氮化镓基紫外雪崩光电探测器的量子效率、响应度和载流子电离系数,降低其雪崩击穿电压阈值,而且能够通过设置不同的阱层宽度、垒层高度和Al组分以调谐其截止波长。
技术方案:为实现上述目的,本发明采用的技术方案为:
一种氮化镓基紫外雪崩光电探测器,包括由下至上依次设置的蓝宝石衬底、低温成核层、n型Al组分渐变AlxInyGa1-x-yN层、Alx1Iny1Ga1-x1-y1N/Alx2Iny2Ga1-x2-y2N多量子阱结构吸收区、Al组分渐变Alx3Iny3Ga1-x3-y3N层和Alx4Iny4Ga1-x4-y4N/Alx5Iny5Ga1-x5-y5N多量子阱结构倍增区,其中Alx1Iny1Ga1-x1-y1N/Alx2Iny2Ga1-x2-y2N多量子阱结构吸收区和Alx4Iny4Ga1-x4-y4N/Alx5Iny5Ga1-x5-y5N多量子阱结构倍增区分别作为氮化镓基紫外雪崩光电探测器的吸收区和倍增区,吸收区和倍增区被Al组分渐变Alx3Iny3Ga1-x3-y3N层所分离。
优选的,所述Alx1Iny1Ga1-x1-y1N/Alx2Iny2Ga1-x2-y2N多量子阱结构吸收区和Alx4Iny4Ga1-x4-y4N/Alx5Iny5Ga1-x5-y5N多量子阱结构倍增区分别为具有一定重复周期长度和数量的非掺杂或低掺杂型Alx1Iny1Ga1-x1-y1N/Alx2Iny2Ga1-x2-y2N多量子阱结构吸收区和非掺杂或低掺杂Alx4Iny4Ga1-x4-y4N/Alx5Iny5Ga1-x5-y5N多量子阱结构倍增区。
优选的,所述Alx1Iny1Ga1-x1-y1N/Alx2Iny2Ga1-x2-y2N多量子阱结构吸收区和Alx4Iny4Ga1-x4-y4N/Alx5Iny5Ga1-x5-y5N多量子阱结构倍增区中,多量子阱的重复周期数均为1~20个;Alx1Iny1Ga1-x1-y1N层、Alx2Iny2Ga1-x2-y2N层、Alx4Iny4Ga1-x4-y4N层和Alx5Iny5Ga1-x5-y5N层的厚度均在3~10nm之间。
优选的,所述Alx1Iny1Ga1-x1-y1N/Alx2Iny2Ga1-x2-y2N多量子阱结构吸收区中,下标x1,y1,x2,y2满足如下要求:0≤x1≤1,0≤y1≤1,0≤x2≤1,0≤y2≤1;所述Alx4Iny4Ga1-x4-y4N/Alx5Iny5Ga1-x5-y5N多量子阱结构倍增区(106)中,下标x4,y4,x5,y5满足如下要求:0≤x4≤1,0≤y4≤1,0≤x5≤1,0≤y5≤1。
优选的,所述Alx4Iny4Ga1-x4-y4N/Alx5Iny5Ga1-x5-y5N多量子阱结构倍增区中Alx4Iny4Ga1-x4-y4N层和Alx5Iny5Ga1-x5-y5N层的禁带宽度,均大于Alx1Iny1Ga1-x1-y1N/Alx2Iny2Ga1-x2-y2N多量子阱结构吸收区中Alx1Iny1Ga1-x1-y1N层和Alx2Iny2Ga1-x2-y2N层的禁带宽度。
优选的,所述Al组分渐变Alx3Iny3Ga1-x3-y3N层的禁带宽度在Alx1Iny1Ga1-x1-y1N/Alx2Iny2Ga1-x2-y2N多量子阱结构吸收区的禁带宽度和Alx4Iny4Ga1-x4-y4N/Alx5Iny5Ga1-x5-y5N多量子阱结构倍增区的禁带宽度之间;具体为Al组分渐变Alx3Iny3Ga1-x3-y3N层的禁带宽度在下述两个禁带宽度范围之间:Alx1Iny1Ga1-x1-y1N/Alx2Iny2Ga1-x2-y2N多量子阱结构吸收区中Alx1Iny1Ga1-x1-y1N层和Alx2Iny2Ga1-x2-y2N层的禁带宽度较大者,Alx4Iny4Ga1-x4-y4N/Alx5Iny5Ga1-x5-y5N多量子阱结构倍增区中Alx4Iny4Ga1-x4-y4N层和Alx5Iny5Ga1-x5-y5N层的禁带宽度较小者。
优选的,所述n型Al组分渐变AlxInyGa1-x-yN层利用Si进行掺杂,其中Si的掺杂浓度在1×1017~1×1020cm-3之间。
优选的,所述n型Al组分渐变AlxInyGa1-x-yN层的厚度在100~3000nm之间,其下标x,y满足如下要求:0≤x≤1,0≤y≤1;所述Al组分渐变Alx3Iny3Ga1-x3-y3N层的厚度在10~200nm之间,其下标x3,y3满足如下要求:0≤x3≤1,0≤y3≤1。
优选的,所述n型Al组分渐变AlxInyGa1-x-yN层中,Al组分从低到高连续或均匀梯度线性变化;所述Al组分渐变Alx3Iny3Ga1-x3-y3N层中,Al组分从低到高连续或均匀梯度线性变化。
优选的,所述蓝宝石衬底为抛光的C面晶体或具有纳米量级图形的C面晶体。
多量子阱具有高吸收系数、高横向载流子迁移率和强极化效应。在基于多量子阱结构有源区的氮化镓基紫外雪崩光电探测器中,如果垒层的极化诱导电场方向与外加电场方向相同,其载流子将会被极化诱导电场加速,并穿越垒层和阱层的界面,在阱层产生碰撞电离,从而显著地增加载流子的电离系数;如果阱层的极化诱导电场方向与外加电场相同,其载流子也会被极化诱导电场加速,进而提高载流子的电离系数。同时,基于多量子阱结构有源区的氮化镓基紫外雪崩光电探测器的雪崩击穿电压阈值也会降低。随着量子阱阱层宽度的增加,电子和空穴之间的跃迁能量将降低;随着量子阱重复周期数目的增加,量子阱的有效吸收系数和吸收效率将增大;随着量子阱垒层高度的减小,光生载流子对垒层的隧穿效应会增强,光电流密度也将增大;随着Al组分的增加,极化效应增强,电子和空穴分别所在的导带底和价带顶的能量将降低,它们之间的跃迁能量也将减小,因此基于多量子阱结构有源区的氮化镓基紫外雪崩光电探测器的探测灵敏度将提高。同时,随着量子阱阱层宽度的增加和Al组分的增加,由于极化效应的影响,基于多量子阱结构有源区的氮化镓基紫外雪崩光电探测器的截止波长将增大。
有益效果:本发明提供的氮化镓基紫外雪崩光电探测器,由于具有多量子阱的高吸收系数、高横向载流子迁移率和强极化效应等优点,将多量子阱Alx1Iny1Ga1-x1-y1N/Alx2Iny2Ga1-x2-y2N和多量子阱Alx4Iny4Ga1-x4-y4N/Alx5Iny5Ga1-x5-y5N分别作为氮化镓基紫外雪崩光电探测器的吸收区和倍增区,既可以提高氮化镓基紫外雪崩光电探测器的量子效率和响应度、自由调谐其截止波长,又能有效降低其雪崩击穿电压阈值,对于制备高性能的紫外光电探测器具有重要的意义。
附图说明
图1为本发明的结构示意图。
具体实施方式
下面结合附图对本发明作更进一步的说明。
如图1所示为一种氮化镓基紫外雪崩光电探测器,包括由下至上依次设置的蓝宝石衬底101、低温成核层102、n型Al组分渐变AlxInyGa1-x-yN层103、Alx1Iny1Ga1-x1-y1N/Alx2Iny2Ga1-x2-y2N多量子阱结构吸收区104、Al组分渐变Alx3Iny3Ga1-x3-y3N层105和Alx4Iny4Ga1-x4-y4N/Alx5Iny5Ga1-x5-y5N多量子阱结构倍增区106,其中Alx1Iny1Ga1-x1-y1N/Alx2Iny2Ga1-x2-y2N多量子阱结构吸收区104和Alx4Iny4Ga1-x4-y4N/Alx5Iny5Ga1-x5-y5N多量子阱结构倍增区106分别作为氮化镓基紫外雪崩光电探测器的吸收区和倍增区,吸收区和倍增区被Al组分渐变Alx3Iny3Ga1-x3-y3N层105所分离。
所述蓝宝石衬底101为抛光的C面晶体或具有纳米量级图形的C面晶体。
所述n型Al组分渐变AlxInyGa1-x-yN层103利用Si进行掺杂,其中Si的掺杂浓度大于1×1017cm-3,最高可达1×1020cm-3;本领域的技术人员还可以根据需要,具体设置n型Al组分渐变AlxInyGa1-x-yN层103中Si的掺杂浓度。
所述n型Al组分渐变AlxInyGa1-x-yN层103的厚度在100~3000nm之间;本领域的技术人员还可以根据需要,具体设置n型Al组分渐变AlxInyGa1-x-yN层103的厚度。
所述n型Al组分渐变AlxInyGa1-x-yN层103中,Al组分从低到高连续或均匀梯度线性变化;本领域的技术人员还可以根据需要,具体设置n型Al组分渐变AlxInyGa1-x-yN层103中Al组分的渐变方式。
所述Alx1Iny1Ga1-x1-y1N/Alx2Iny2Ga1-x2-y2N多量子阱结构吸收区104为具有一定重复周期长度和数量的非掺杂或低掺杂型多量子阱结构吸收区,其中多量子阱的重复周期为1~20个,Alx1Iny1Ga1-x1-y1N层和Alx2Iny2Ga1-x2-y2N层的厚度均在3~10nm之间;本领域的技术人员还可以根据需要,具体设置多量子阱的重复周期数量、Alx1Iny1Ga1-x1-y1N层和Alx2Iny2Ga1-x2-y2N层的厚度等。
所述Al组分渐变Alx3Iny3Ga1-x3-y3N层105的厚度在10~200nm之间;本领域的技术人员还可以根据需要,具体设置Al组分渐变Alx3Iny3Ga1-x3-y3N层105的厚度。
所述Al组分渐变Alx3Iny3Ga1-x3-y3N层105中,Al组分从低到高连续或均匀梯度线性变化;本领域的技术人员还可以根据需要,具体设置Al组分渐变Alx3Iny3Ga1-x3-y3N层105中Al组分的渐变方式。
所述Alx4Iny4Ga1-x4-y4N/Alx5Iny5Ga1-x5-y5N多量子阱结构倍增区106为具有一定重复周期长度和数量的非掺杂或低掺杂型多量子阱结构倍增区,其中多量子阱的重复周期为1~20个,Alx4Iny4Ga1-x4-y4N层和Alx5Iny5Ga1-x5-y5N层的厚度均在3~10nm之间;本领域的技术人员还可以根据需要,具体设置多量子阱的重复周期数量、Alx4Iny4Ga1-x4-y4N层和Alx5Iny5Ga1-x5-y5N层的厚度等。
所述Alx4Iny4Ga1-x4-y4N/Alx5Iny5Ga1-x5-y5N多量子阱结构倍增区106中Alx4Iny4Ga1-x4-y4N层和Alx5Iny5Ga1-x5-y5N层的禁带宽度,均大于Alx1Iny1Ga1-x1-y1N/Alx2Iny2Ga1-x2-y2N多量子阱结构吸收区104中Alx1Iny1Ga1-x1-y1N层和Alx2Iny2Ga1-x2-y2N层的禁带宽度;所述Al组分渐变Alx3Iny3Ga1-x3-y3N层105的禁带宽度在下述两个禁带宽度范围之间:Alx1Iny1Ga1-x1-y1N/Alx2Iny2Ga1-x2-y2N多量子阱结构吸收区104中Alx1Iny1Ga1-x1-y1N层和Alx2Iny2Ga1-x2-y2N层的禁带宽度较大者,Alx4Iny4Ga1-x4-y4N/Alx5Iny5Ga1-x5-y5N多量子阱结构倍增区106中Alx4Iny4Ga1-x4-y4N层和Alx5Iny5Ga1-x5-y5N层的禁带宽度较小者。
一种具体的组分设计方案如下:所述n型Al组分渐变AlxInyGa1-x-yN层103中,下标x,y满足如下要求:0≤x≤1,0≤y≤1,x、y的值可根据实际需要调整;所述Alx1Iny1Ga1-x1-y1N/Alx2Iny2Ga1-x2-y2N多量子阱结构吸收区104中,下标x1,y1,x2,y2满足如下要求:0≤x1≤1,0≤y1≤1,0≤x2≤1,0≤y2≤1,x1、y1、x2、y2的值可根据实际需要调整;所述Al组分渐变Alx3Iny3Ga1-x3-y3N层105中,下标x3,y3满足如下要求:0≤x3≤1,0≤y3≤1,x3、y3的值可根据需要调整;所述Alx4Iny4Ga1-x4-y4N/Alx5Iny5Ga1-x5-y5N多量子阱结构倍增区106中,下标x4,y4,x5,y5满足如下要求:0≤x4≤1,0≤y4≤1,0≤x5≤1,0≤y5≤1,x4、y4、x5、y5的值可根据实际需要调整。
必须指出的是:本发明不仅适用于金属-半导体-金属型氮化镓基紫外雪崩光电探测器,对于肖特基势垒型氮化镓基紫外雪崩光电探测器也同样适用。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种氮化镓基紫外雪崩光电探测器,其特征在于:包括由下至上依次设置的蓝宝石衬底(101)、低温成核层(102)、n型Al组分渐变AlxInyGa1-x-yN层(103)、Alx1Iny1Ga1-x1-y1N/Alx2Iny2Ga1-x2-y2N多量子阱结构吸收区(104)、Al组分渐变Alx3Iny3Ga1-x3-y3N层(105)和Alx4Iny4Ga1-x4-y4N/Alx5Iny5Ga1-x5-y5N多量子阱结构倍增区(106),其中Alx1Iny1Ga1-x1-y1N/Alx2Iny2Ga1-x2-y2N多量子阱结构吸收区(104)和Alx4Iny4Ga1-x4-y4N/Alx5Iny5Ga1-x5-y5N多量子阱结构倍增区(106)分别作为氮化镓基紫外雪崩光电探测器的吸收区和倍增区,吸收区和倍增区被Al组分渐变Alx3Iny3Ga1-x3-y3N层(105)所分离;
所述Alx1Iny1Ga1-x1-y1N/Alx2Iny2Ga1-x2-y2N多量子阱结构吸收区(104)和Alx4Iny4Ga1-x4-y4N/Alx5Iny5Ga1-x5-y5N多量子阱结构倍增区(106)分别为具有一定重复周期长度和数量的非掺杂或低掺杂型Alx1Iny1Ga1-x1-y1N/Alx2Iny2Ga1-x2-y2N多量子阱结构吸收区和非掺杂或低掺杂Alx4Iny4Ga1-x4-y4N/Alx5Iny5Ga1-x5-y5N多量子阱结构倍增区;
所述Alx4Iny4Ga1-x4-y4N/Alx5Iny5Ga1-x5-y5N多量子阱结构倍增区(106)中Alx4Iny4Ga1-x4-y4N层和Alx5Iny5Ga1-x5-y5N层的禁带宽度,均大于Alx1Iny1Ga1-x1-y1N/Alx2Iny2Ga1-x2-y2N多量子阱结构吸收区(104)中Alx1Iny1Ga1-x1-y1N层和Alx2Iny2Ga1-x2-y2N层的禁带宽度;
所述Al组分渐变Alx3Iny3Ga1-x3-y3N层(105)的禁带宽度在下述两个禁带宽度范围之间:Alx1Iny1Ga1-x1-y1N/Alx2Iny2Ga1-x2-y2N多量子阱结构吸收区(104)中Alx1Iny1Ga1-x1-y1N层和Alx2Iny2Ga1-x2-y2N层的禁带宽度较大者,Alx4Iny4Ga1-x4-y4N/Alx5Iny5Ga1-x5-y5N多量子阱结构倍增区(106)中Alx4Iny4Ga1-x4-y4N层和Alx5Iny5Ga1-x5-y5N层的禁带宽度较小者。
2.根据权利要求1所述的氮化镓基紫外雪崩光电探测器,其特征在于:所述Alx1Iny1Ga1-x1-y1N/Alx2Iny2Ga1-x2-y2N多量子阱结构吸收区(104)和Alx4Iny4Ga1-x4-y4N/Alx5Iny5Ga1-x5-y5N多量子阱结构倍增区(106)中,多量子阱的重复周期数均为1~20个;Alx1Iny1Ga1-x1-y1N层、Alx2Iny2Ga1-x2-y2N层、Alx4Iny4Ga1-x4-y4N层和Alx5Iny5Ga1-x5-y5N层的厚度均在3~10nm之间。
3.根据权利要求1所述的氮化镓基紫外雪崩光电探测器,其特征在于:所述Alx1Iny1Ga1-x1-y1N/Alx2Iny2Ga1-x2-y2N多量子阱结构吸收区(104)中,下标x1,y1,x2,y2满足如下要求:0≤x1≤1,0≤y1≤1,0≤x2≤1,0≤y2≤1;所述Alx4Iny4Ga1-x4-y4N/Alx5Iny5Ga1-x5-y5N多量子阱结构倍增区(106)中,下标x4,y4,x5,y5满足如下要求:0≤x4≤1,0≤y4≤1,0≤x5≤1,0≤y5≤1。
4.根据权利要求1所述的氮化镓基紫外雪崩光电探测器,其特征在于:所述n型Al组分渐变AlxInyGa1-x-yN层(103)利用Si进行掺杂,其中Si的掺杂浓度在1×1017~1×1020cm-3之间。
5.根据权利要求1所述的氮化镓基紫外雪崩光电探测器,其特征在于:所述n型Al组分渐变AlxInyGa1-x-yN层(103)的厚度在100~3000nm之间,其下标x,y满足如下要求:0≤x≤1,0≤y≤1;所述Al组分渐变Alx3Iny3Ga1-x3-y3N层(105)的厚度在10~200nm之间,其下标x3,y3满足如下要求:0≤x3≤1,0≤y3≤1。
6.根据权利要求1所述的氮化镓基紫外雪崩光电探测器,其特征在于:所述蓝宝石衬底(101)为抛光的C面晶体或具有纳米量级图形的C面晶体。
CN201410317327.1A 2014-07-04 2014-07-04 一种氮化镓基紫外雪崩光电探测器 Expired - Fee Related CN104051561B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410317327.1A CN104051561B (zh) 2014-07-04 2014-07-04 一种氮化镓基紫外雪崩光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410317327.1A CN104051561B (zh) 2014-07-04 2014-07-04 一种氮化镓基紫外雪崩光电探测器

Publications (2)

Publication Number Publication Date
CN104051561A CN104051561A (zh) 2014-09-17
CN104051561B true CN104051561B (zh) 2016-08-24

Family

ID=51504174

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410317327.1A Expired - Fee Related CN104051561B (zh) 2014-07-04 2014-07-04 一种氮化镓基紫外雪崩光电探测器

Country Status (1)

Country Link
CN (1) CN104051561B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916713B (zh) * 2015-05-28 2017-04-05 东南大学 一种以光子晶体作为入射窗的氮化镓基紫外探测器
CN105742387B (zh) * 2016-02-29 2017-08-11 清华大学 AlGaN渐变组分超晶格雪崩光电二极管
CN106653896B (zh) * 2017-01-04 2018-05-18 广东省半导体产业技术研究院 一种用于可见光通信的InGaN量子点光电探测器及其制备方法
CN107863403B (zh) * 2017-11-28 2023-10-20 中国工程物理研究院电子工程研究所 一种高线性增益红外雪崩光电二极管及其制备方法
CN108305907B (zh) * 2018-01-26 2019-10-11 中国电子科技集团公司第三十八研究所 一种新型同质结pin紫外探测器
CN111834489B (zh) * 2019-04-17 2022-04-19 中国科学院苏州纳米技术与纳米仿生研究所 硅基深紫外雪崩光电二极管及其制备方法
CN111540797A (zh) * 2020-05-13 2020-08-14 中国科学院半导体研究所 中远红外雪崩光电探测器
US11456577B2 (en) * 2020-07-28 2022-09-27 Raytheon Company Monolithic quantum cascade laser (QCL)/avalanche photodiode (APD) infrared transceiver

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009023722A1 (en) * 2007-08-14 2009-02-19 Nitek, Inc. Micro-pixel ultraviolet light emitting diode
CN101872798A (zh) * 2010-05-19 2010-10-27 中国科学院半导体研究所 一种紫外红外双色探测器及制作方法
CN102820367A (zh) * 2012-09-11 2012-12-12 中山大学 基于异质结构吸收、倍增层分离GaN基雪崩光电探测器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI271877B (en) * 2002-06-04 2007-01-21 Nitride Semiconductors Co Ltd Gallium nitride compound semiconductor device and manufacturing method
KR101081129B1 (ko) * 2009-11-30 2011-11-07 엘지이노텍 주식회사 발광소자 및 그 제조방법
CN103400888A (zh) * 2013-08-22 2013-11-20 南京大学 高增益的AlGaN紫外雪崩光电探测器及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009023722A1 (en) * 2007-08-14 2009-02-19 Nitek, Inc. Micro-pixel ultraviolet light emitting diode
CN101872798A (zh) * 2010-05-19 2010-10-27 中国科学院半导体研究所 一种紫外红外双色探测器及制作方法
CN102820367A (zh) * 2012-09-11 2012-12-12 中山大学 基于异质结构吸收、倍增层分离GaN基雪崩光电探测器

Also Published As

Publication number Publication date
CN104051561A (zh) 2014-09-17

Similar Documents

Publication Publication Date Title
CN104051561B (zh) 一种氮化镓基紫外雪崩光电探测器
CN104362213B (zh) 一种铝镓氮基日盲紫外探测器及其制备方法
Shi et al. Status and outlook of metal–inorganic semiconductor–metal photodetectors
Liang et al. Recent advances in the fabrication of graphene–ZnO heterojunctions for optoelectronic device applications
CN106960887B (zh) 一种铝镓氮基日盲紫外探测器及其制备方法
Alaie et al. Recent advances in ultraviolet photodetectors
CN108305911B (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
CN106409968B (zh) AlGaN基超晶格雪崩型紫外探测器及其制备方法
CN108878547B (zh) 基于纳米孔阵式超短周期超晶格的深紫外msm光电探测器
JP2013239690A (ja) 超格子構造、前記超格子構造を備えた半導体装置および半導体発光装置、ならびに前記超格子構造の製造方法
Gorji et al. The effects of recombination lifetime on efficiency and J–V characteristics of InxGa1− xN/GaN quantum dot intermediate band solar cell
CN104966768B (zh) 一种具有量子点结构的紫外发光二极管
CN106960885B (zh) 一种pin结构紫外光电探测器及其制备方法
Liu et al. Optoelectronic devices based on the integration of halide perovskites with silicon-based materials
CN107240615B (zh) 一种具有非极性吸收层的紫外探测器
CN105590971B (zh) AlGaN日盲紫外增强型雪崩光电探测器及其制备方法
CN106098880B (zh) 一种p区结构的紫外发光二极管
Nguyen et al. Recent advances in self‐powered and flexible UVC photodetectors
Chen et al. Upconversion of low-energy photons in semiconductor nanostructures for solar energy harvesting
JP6055619B2 (ja) 太陽電池
CN105742387B (zh) AlGaN渐变组分超晶格雪崩光电二极管
CN106410001B (zh) 一种AlGaN基紫外发光二极管
Liu et al. Progress on photovoltaic AlGaN photodiodes for solar-blind ultraviolet photodetection
CN103474503B (zh) 一种基于二维晶格的紫外单波长msm光电探测器
You et al. Fine control of the electric field distribution in the heterostructure multiplication region of AlGaN avalanche photodiodes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160824

Termination date: 20210704