CN106409968B - AlGaN基超晶格雪崩型紫外探测器及其制备方法 - Google Patents

AlGaN基超晶格雪崩型紫外探测器及其制备方法 Download PDF

Info

Publication number
CN106409968B
CN106409968B CN201611025249.3A CN201611025249A CN106409968B CN 106409968 B CN106409968 B CN 106409968B CN 201611025249 A CN201611025249 A CN 201611025249A CN 106409968 B CN106409968 B CN 106409968B
Authority
CN
China
Prior art keywords
layer
type
superlattices
types
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611025249.3A
Other languages
English (en)
Other versions
CN106409968A (zh
Inventor
汪莱
郑纪元
郝智彪
罗毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Publication of CN106409968A publication Critical patent/CN106409968A/zh
Application granted granted Critical
Publication of CN106409968B publication Critical patent/CN106409968B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier working in avalanche mode, e.g. avalanche photodiode
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier working in avalanche mode, e.g. avalanche photodiode in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • H01L31/1812Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System including only AIVBIV alloys, e.g. SiGe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明提供了一种AlGaN基超晶格雪崩型紫外探测器,所述AlGaN基超晶格雪崩型紫外探测器包括衬底,所述衬底上依次设有n型层、i型超晶格倍增层、i型光敏吸收层和p型层;所述n型层上设有n型欧姆电极,所述p型层上设有p型欧姆电极;所述i型超晶格倍增层为AlN/GaN超晶格。本发明提供的紫外探测器,不但具有体积小易于集成的优点,更为重要的是还具有线性可控、高增益和低噪声的优点。

Description

AlGaN基超晶格雪崩型紫外探测器及其制备方法
本申请是申请日为2014年07月25日、申请号为201410360909.8、名称为“紫外探测器及其制备方法”的中国发明专利申请的分案申请。
技术领域
本发明涉及紫外线探测领域,具体涉及一种AlGaN基超晶格雪崩型紫外探测器及其制备方法。
背景技术
紫外探测在民用和军事领域具有广泛的应用,包括化学和生物分析(臭氧,污染物以及大部分有机化合物的吸收线在紫外光谱范围),火焰探测(包括火灾报警,导弹预警和制导,燃烧监测等),光通信(特别是卫星间采用波长小于280nm的紫外光进行通信),紫外光源的校准(仪器,紫外线光刻等),以及天文学研究。在这些应用中往往需要探测极微弱的紫外线,需要高灵敏探测器来实现探测任务。
其中,最常用的紫外高灵敏光电探测器件是紫外光电倍增管(PMT)和基于半导体材料的雪崩探测器光电二极管,紫外PMT具有高增益、低噪声和线性可控的优点,但是它是真空器件,体积大,玻璃外壳易碎,所以应用比较受限。半导体雪崩探测器体积小,易于集成,但是增益不高、噪声大,并且往往无法稳定工作在线性可控模式下,应用也比较受限。
发明内容
针对现有技术中的缺陷,本发明提供一种AlGaN基超晶格雪崩型紫外探测器及其制备方法,本发明提供的紫外探测器,不但具有体积小易于集成的优点,更为重要的是还具有线性可控、高增益和低噪声的优点。
第一方面,本发明提供一种AlGaN基超晶格雪崩型紫外探测器,所述AlGaN基超晶格雪崩型紫外探测器包括:衬底,所述衬底上依次设有n型层、i型超晶格倍增层、i型光敏吸收层和p型层;
所述n型层上设有n型欧姆电极,所述p型层上设有p型欧姆电极;
所述i型超晶格倍增层为AlN/GaN超晶格;所述AlN/GaN超晶格表示AlN和GaN两种不同组元以几个纳米到几十个纳米的薄层交替生长并保持严格周期性形成的超晶格。
进一步地,所述n型层、i型光敏吸收层和p型层的材料均为AlxGa1-xN,其中,0≤x≤1。
进一步地,所述n型层的厚度为1~10μm。
进一步地,所述i型超晶格倍增层的周期数为1~100,势垒或势阱的宽度为1~100nm。
进一步地,所述i型光敏吸收层的厚度为10~1000nm。
进一步地,所述p型层的厚度为10~1000nm。
第二方面,本发明还提供了一种上面所述的探测器的制备方法,包括以下步骤:
S1.在衬底上生长n型层;
S2.在所述n型层上生长i型超晶格倍增层;
S3.在所述i型超晶格倍增层上生长i型光敏吸收层;
S4.在所述i型光敏吸收层上生长p型层;
S5在所述p型层上设置p型欧姆电极,在所述n型层上设置n型欧姆电极;
其中,步骤S2中所述i型超晶格倍增层为AlN/GaN超晶格;所述AlN/GaN超晶格表示AlN和GaN两种不同组元以几个纳米到几十个纳米的薄层交替生长并保持严格周期性形成的超晶格。
进一步地,所述n型层、i型光敏吸收层和p型层材料为AlxGa1-xN,其中,0≤x≤1。
由上述技术方案可知,本发明的紫外探测器,通过设置i型超晶格倍增层,增强了电子离化系数、降低了空穴离化系数,使得电子离化系数远大于空穴离化系数,从而降低了紫外探测器的噪声功率,提高了紫外探测器的灵敏度,有助于紫外线探测器对于弱光探测。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例一提供的AlGaN基超晶格雪崩型紫外探测器的结构示意图;
图2是本发明实施例二提供的AlGaN基超晶格雪崩型紫外探测器的制作方法流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1示出了本发明实施例一提供的AlGaN基超晶格雪崩型紫外探测器的结构示意图,如图1所示,本实施例的AlGaN基超晶格雪崩型紫外探测器包括:
衬底,所述衬底上依次设有n型层、i型超晶格倍增层、i型光敏吸收层和p型层;所述n型层上设有n型欧姆电极,所述p型层上设有p型欧姆电极;所述i型超晶格倍增层为AlN/GaN超晶格;所述AlN/GaN超晶格表示AlN和GaN两种不同组元以几个纳米到几十个纳米的薄层交替生长并保持严格周期性形成的超晶格。
由此,本实施例的紫外探测器,通过设置i型超晶格倍增层,利用超晶格结构,增强电子离化系数、降低空穴离化系数,使得雪崩增益提高,雪崩过剩噪声降低,由于超晶格结构增强了电子和空穴的离化系数差异,避免了载流子反复离化碰撞,缩短了雪崩恢复时间,并且降低了紫外探测器的噪声功率,提高了紫外探测器的灵敏度,有助于紫外线探测器对于弱光探测。另外,本实施例所述AlGaN基超晶格雪崩型紫外探测器中的超晶格结构可以降低器件的雪崩阈值电压,从而降低了器件的击穿概率,也就是说提高了器件的成品率。
为了使AlGaN基超晶格雪崩型紫外探测器的质量得到提高,所述衬底在设置n型层之前,还可设置一层低温缓冲层。
此外,所述所述i型超晶格倍增层除了可以为AlN/GaN超晶格倍增层以外,还可以是AlxGa1-xN/AlyGa1-yN超晶格倍增层,其中0≤x<y≤1。其原理基本类似,此处不再详述。
此外,所述n型层、i型光敏吸收层和p型层材料可以为AlxGa1-xN,其中,0≤x≤1。
所述AlxGa1-xN为宽禁带半导体材料,利用AlxGa1-xN制作n型层、i型光敏吸收层和p型层,可以使得AlGaN基超晶格雪崩型紫外探测器在室温工作,同时对可见光不响应。另外,宽禁带半导体材料AlxGa1-xN击穿场强高、物理和化学性质稳定,十分适合在高温和大功率条件下工作。它抗紫外辐照能力强,一般也不需要钝化处理,因此可以提高在紫外波段的响应度和稳定性。另外,由于AlxGa1-xN属于直接带隙半导体,且禁带宽度随组分可调,从而有利于制作探测波长可调谐的探测器,并且方便使用能带工程手段获得更好的探测性能。
其中,所述n型层的厚度为1~10μm。
其中,所述i型超晶格倍增层的周期数为1~100,势垒或势阱的宽度为1~100nm。
其中,所述i型光敏吸收层的厚度为10~1000nm。
其中,所述p型层的厚度为10~1000nm。
图2示出了实施例二提供的AlGaN基超晶格雪崩型紫外探测器制备方法的流程图,如图2所示,本实施例的AlGaN基超晶格雪崩型紫外探测器制备方法如下所述。
步骤201:在衬底上生长n型层。
步骤202:在所述n型层上生长i型超晶格倍增层。
步骤203:在所述i型超晶格倍增层上生长i型光敏吸收层。
步骤204:在所述i型光敏吸收层上生长p型层。
步骤205:在所述p型层上设置p型欧姆电极,在所述n型层上设置n型欧姆电极。
其中,步骤202中所述i型超晶格倍增层为AlN/GaN超晶格;所述AlN/GaN超晶格表示AlN和GaN两种不同组元以几个纳米到几十个纳米的薄层交替生长并保持严格周期性形成的超晶格。
由此,本实施例的紫外探测器制备方法,通过在n型层上生长i型超晶格倍增层,使得光敏吸收层在吸收紫外光后,在超晶格倍增层发生雪崩,利用超晶格倍增层中导带带阶大于价带带阶的优点,使电子离化系数远大于空穴离化系数,使得雪崩增益提高,雪崩过剩噪声降低,由于超晶格结构增强了电子和空穴的离化系数差异,避免了载流子反复离化碰撞,缩短了雪崩恢复时间,并且降低了紫外探测器的噪声功率,提高了紫外探测器的灵敏度,有助于紫外线探测器对于弱光探测。
下面实施例三至六提供了四种AlxGa1-xN/AlyGa1-yN超晶格紫外探测器制备方法,其中,0≤x<y≤1。
实施三提供了一种AIN/GaN超晶格紫外探测器制备方法,如下所示,本实施例的AlGaN基超晶格雪崩型紫外探测器制备方法如下所述。其中,AIN/GaN表示AIN和GaN两种不同组元以几个纳米到几十个纳米的薄层交替生长并保持严格周期性形成的超晶格,类似地,后续实施例提到的AIN/AlGaN、GaN/AlGaN和Al0.2Ga0.8N/Al0.5Ga0.5N都代表同样的含义。
步骤301:采用金属有机化合物化学气相沉淀(MOCVD)技术,以三甲基镓(TMGa)作镓源,高纯NH3作为氮源,硅烷做n型掺杂剂,在蓝宝石衬底上生长20nm的n型GaN低温缓冲层。所述GaN为AlxGa1-xN当x=0时的材料。
在本步骤中,所述衬底材料为蓝宝石、氧化锌、硅、碳化硅、硅上生长的氮化铝复合衬底、硅上生长的氧化锌复合衬底或AlxGa1-xN,其中,0≤x≤1。
步骤302:在所述低温缓冲层上生成一层3μm的n型CaN,掺杂浓度为1019cm-3
步骤303:在所述n型层上生长20个周期的AIN(20nm)/GaN(10nm)的i型超晶格倍增层,即超晶格雪崩区。
在本步骤中,AIN为AlxGa1-xN当x=1时的材料,GaN为AlyGa1-yN当y=0时的材料,所述AIN(20nm)/GaN(10nm)表示AIN和GaN两种不同组元以AIN为20纳米和GaN为10纳米的薄层交替生长并保持严格周期性形成的超晶格。
步骤304:在所述超晶格倍增层上生长一层300nm的i型CaN光敏吸收层。
步骤305:在所述i型光敏吸收层上生长一层100nm的p型CaN层,掺杂浓度为1019cm-3
步骤306:使用感应耦合等离子体(ICP)刻蚀技术在从p型层的上表面刻蚀至n型层,形成台面。
步骤307:使用电子束蒸发(EB)技术在所述p型层上沉积一层Ni/Au电极,在所述n型层上沉积一层Cr/Au电极。
步骤308:使用等离子体增强化学气相沉积法(PECVD)技术在台面上沉积200nm的SiO2钝化层。
在本步骤中,为了减少漏电流,提高探测微弱信号的灵敏度,可以在台面上沉积一层钝化层。
实施四提供了一种AIN/AlGaN超晶格紫外探测器制备方法,如下所示,本实施例的紫外探测器制备方法如下所述。
步骤401:采用金属有机化合物化学气相沉淀(MOCVD)技术,以三甲基镓(TMGa)作镓源,高纯NH3作为氮源,硅烷做n型掺杂剂,在氧化锌衬底上生长100nm的n型Al0.4Ga0.6N低温缓冲层。
步骤402:在所述低温缓冲层上生成一层5μm的n型Al0.4Ga0.6N,掺杂浓度为1019cm-3
步骤403:在所述n型层上生长30个周期的AlN(30nm)/Al0.4Ga0.6N(40nm)的i型超晶格倍增层,即超晶格雪崩区。
在本步骤中,AIN为AlxGa1-xN当x=1时的材料,Al0.4Ga0.6N为AlyGa1-yN当y=0.4时的材料,所述AlN(30nm)/Al0.4Ga0.6N(40nm)表示AIN和Al0.4Ga0.6N两种不同组元以AIN为30纳米和Al0.4Ga0.6N为40纳米的薄层交替生长并保持严格周期性形成的超晶格。
步骤404:使用三甲基铝(TMAl)作铝源,在所述i型超晶格倍增层上生长一层400nm的i型Al0.4Ga0.6N光敏吸收层。
步骤405:在所述i型光敏吸收层上生长一层200nm的p型Al0.4Ga0.6N层,掺杂浓度为1019cm-3
步骤406:使用反应离子(RIE)刻蚀技术在从p型层的上表面刻蚀至n型层,形成台面。
步骤407:使用电子束蒸发(EB)技术在所述p型层上沉积一层ITO透明电极,在所述n型层上沉积一层Ti/Al电极。
步骤408:使用等离子体增强化学气相沉积法(PECVD)技术在台面上沉积300nm的SiO2钝化层。
实施五提供了一种GaN/AlGaN超晶格紫外探测器制备方法,如下所示,本实施例的紫外探测器制备方法如下所述。
步骤501:采用金属有机化合物化学气相沉淀(MOCVD)技术,以三甲基镓(TMGa)作镓源,高纯NH3作为氮源,硅烷做n型掺杂剂,在碳化硅衬底上生长200nm的n型Al0.1Ga0.9N低温缓冲层。
步骤502:在所述低温缓冲层上生成一层6μm的n型Al0.1Ga0.9N,掺杂浓度为1019cm-3
步骤503:在所述n型层上生长60个周期的GaN(50nm)/Al0.1Ga0.9N(60nm)的i型超晶格倍增层,即超晶格雪崩区。
在本步骤中,GaN为AlxGa1-xN当x=0时的材料,Al0.1Ga0.9N为AlyGa1-yN当y=0.1时的材料,所述GaN(50nm)/Al0.1Ga0.9N(60nm)表示GaN和Al0.1Ga0.9N两种不同组元以GaN为50纳米和Al0.1Ga0.9N为60纳米的薄层交替生长并保持严格周期性形成的超晶格。
步骤504:使用三甲基铝(TMAl)作铝源,在所述i型超晶格倍增层上生长一层500nm的i型Al0.1Ga0.9N光敏吸收层。
步骤505:在所述i型光敏吸收层上生长一层300nm的p型Al0.1Ga0.9N层,掺杂浓度为1019cm-3
步骤506:使用湿法刻蚀技术在从p型层的上表面刻蚀至n型层,形成台面。
步骤507:使用电子束蒸发(EB)技术在所述p型层上沉积一层ZnO透明电极,在所述n型层上沉积一层Cr/Au电极。
步骤508:使用等离子体增强化学气相沉积法(PECVD)技术在台面上沉积400nm的SiN2钝化层。
实施六提供了一种Al0.2Ga0.8N/Al0.5Ga0.5N超晶格紫外探测器制备方法,如下所示,本实施例的紫外探测器制备方法如下所述。
步骤601:采用金属有机化合物化学气相沉淀(MOCVD)技术,以三甲基镓(TMGa)作镓源,高纯NH3作为氮源,硅烷做n型掺杂剂,在硅衬底上生长60nm的n型Al0.5Ga0.5N低温缓冲层。
步骤602:在所述低温缓冲层上生成一层2μm的n型Al0.5Ga0.5N,掺杂浓度为1019cm-3
步骤603:在所述n型层上生长90个周期的Al0.2Ga0.8N(70nm)/Al0.5Ga0.5N(80nm)的i型超晶格倍增层,即超晶格雪崩区。
在本步骤中,Al0.2Ga0.8N为AlxGa1-xN当x=0.2时的材料,Al0.5Ga0.5N为AlyGa1-yN当y=0.5时的材料,所述Al0.2Ga0.8N(70nm)/Al0.5Ga0.5N(80nm)表示Al0.2Ga0.8N和Al0.5Ga0.5N两种不同组元以Al0.2Ga0.8N为70纳米和Al0.5Ga0.5N为80纳米的薄层交替生长并保持严格周期性形成的超晶格。
步骤604:使用三甲基铝(TMAl)作铝源,在所述i型超晶格倍增层上生长一层200nm的i型Al0.5Ga0.5N光敏吸收层。
步骤605:在所述i型光敏吸收层上生长一层80nm的p型Al0.5Ga0.5N层,掺杂浓度为1019cm-3
步骤606:使用感应耦合等离子体(ICP)刻蚀技术在从p型层的上表面刻蚀至n型层,形成台面。
步骤607:使用电子束蒸发(EB)技术在所述p型层上沉积一层Ni/Au电极,在所述n型层上沉积一层Cr/Au电极。
步骤608:使用等离子体增强化学气相沉积法(PECVD)技术在台面上沉积100nm的苯并环丁烯(BCB)钝化层。
实施例三至六所述的紫外探测器制备方法,可以用于制备图1所示的紫外探测器。
以上实施例仅用于说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (8)

1.一种AlGaN基超晶格雪崩型紫外探测器,其特征在于,所述AlGaN基超晶格雪崩型紫外探测器包括:衬底,所述衬底上依次设有低温缓冲层、n型层、i型超晶格倍增层、i型光敏吸收层和p型层;
所述n型层上设有n型欧姆电极,所述p型层上设有p型欧姆电极;
所述i型超晶格倍增层为AlN/GaN超晶格;所述AlN/GaN超晶格表示AlN和GaN两种不同组元以几个纳米到几十个纳米的薄层交替生长并保持严格周期性形成的超晶格。
2.根据权利要求1所述的探测器,其特征在于,所述n型层、i型光敏吸收层和p型层的材料均为AlxGa1-xN,其中,0≤x≤1。
3.根据权利要求1所述的探测器,其特征在于,所述n型层的厚度为1~10μm。
4.根据权利要求1所述的探测器,其特征在于,所述i型超晶格倍增层的周期数为1~100,势垒或势阱的宽度为1~100nm。
5.根据权利要求1所述的探测器,其特征在于,所述i型光敏吸收层的厚度为10~1000nm。
6.根据权利要求1所述的探测器,其特征在于,所述p型层的厚度为10~1000nm。
7.一种权利要求1-6任一所述探测器的制备方法,其特征在于,包括以下步骤:
S1.在衬底上生长低温缓冲层,在所述低温缓冲层上生长n型层;
S2.在所述n型层上生长i型超晶格倍增层;
S3.在所述i型超晶格倍增层上生长i型光敏吸收层;
S4.在所述i型光敏吸收层上生长p型层;
S5在所述p型层上设置p型欧姆电极,在所述n型层上设置n型欧姆电极;
其中,步骤S2中所述i型超晶格倍增层为AlN/GaN超晶格;所述AlN/GaN超晶格表示AlN和GaN两种不同组元以几个纳米到几十个纳米的薄层交替生长并保持严格周期性形成的超晶格。
8.根据权利要求7所述的方法,其特征在于,所述n型层、i型光敏吸收层和p型层材料为AlxGa1-xN,其中,0≤x≤1。
CN201611025249.3A 2014-03-31 2014-07-25 AlGaN基超晶格雪崩型紫外探测器及其制备方法 Active CN106409968B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2014101270883 2014-03-31
CN201410127088 2014-03-31
CN201410360909.8A CN104167458A (zh) 2014-03-31 2014-07-25 紫外探测器及其制备方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201410360909.8A Division CN104167458A (zh) 2014-03-31 2014-07-25 紫外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN106409968A CN106409968A (zh) 2017-02-15
CN106409968B true CN106409968B (zh) 2018-02-09

Family

ID=51911198

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201410360909.8A Pending CN104167458A (zh) 2014-03-31 2014-07-25 紫外探测器及其制备方法
CN201611025249.3A Active CN106409968B (zh) 2014-03-31 2014-07-25 AlGaN基超晶格雪崩型紫外探测器及其制备方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201410360909.8A Pending CN104167458A (zh) 2014-03-31 2014-07-25 紫外探测器及其制备方法

Country Status (1)

Country Link
CN (2) CN104167458A (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104752532B (zh) * 2015-01-17 2017-01-25 王宏兴 一种半导体器件的三维电极结构及其制备方法和应用
CN104916713B (zh) * 2015-05-28 2017-04-05 东南大学 一种以光子晶体作为入射窗的氮化镓基紫外探测器
CN105742387B (zh) * 2016-02-29 2017-08-11 清华大学 AlGaN渐变组分超晶格雪崩光电二极管
CN106129166B (zh) * 2016-06-28 2017-07-21 深圳大学 一种GaN‑MoS2分波段探测器及其制备方法
CN107240615B (zh) * 2017-05-15 2019-03-12 东南大学 一种具有非极性吸收层的紫外探测器
CN107342344B (zh) * 2017-07-10 2019-09-20 清华大学 一种紫外雪崩探测器及其制备方法
CN108022985A (zh) * 2017-11-02 2018-05-11 天津大学 延伸波长台面型雪崩光电二极管及其制备方法
CN107863403B (zh) * 2017-11-28 2023-10-20 中国工程物理研究院电子工程研究所 一种高线性增益红外雪崩光电二极管及其制备方法
CN109980039A (zh) * 2019-04-04 2019-07-05 南通大学 一种高温度稳定性紫外雪崩光电探测器及其制备方法
CN110763344B (zh) * 2019-10-30 2021-04-09 广东先导稀材股份有限公司 一种GaN基光热探测薄膜元件
CN113284972B (zh) * 2021-05-14 2022-08-26 长春理工大学 一种量子阱雪崩光电二极管
CN114068741B (zh) * 2022-01-17 2022-04-19 至善时代智能科技(北京)有限公司 一种紫外探测器芯片

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1753191A (zh) * 2004-09-23 2006-03-29 璨圆光电股份有限公司 基于氮化镓半导体的紫外线光检测器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255282A (ja) * 1988-04-05 1989-10-12 Fujitsu Ltd 超格子構造を用いた受光素子の製造方法
JP2819629B2 (ja) * 1989-07-06 1998-10-30 日本電気株式会社 アバランシェ・フォトダイオード

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1753191A (zh) * 2004-09-23 2006-03-29 璨圆光电股份有限公司 基于氮化镓半导体的紫外线光检测器

Also Published As

Publication number Publication date
CN106409968A (zh) 2017-02-15
CN104167458A (zh) 2014-11-26

Similar Documents

Publication Publication Date Title
CN106409968B (zh) AlGaN基超晶格雪崩型紫外探测器及其制备方法
CN106847933B (zh) 单片集成紫外-红外双色雪崩光电二极管及其制备方法
CN102386269B (zh) GaN基p-i-p-i-n结构紫外探测器及其制备方法
CN105590971B (zh) AlGaN日盲紫外增强型雪崩光电探测器及其制备方法
CN106960885B (zh) 一种pin结构紫外光电探测器及其制备方法
WO2018082251A1 (zh) 一种带有GaN纳米线阵列的紫外探测器及其制作方法
CN105655437A (zh) 一种紫外雪崩光电探测器
US20150287871A1 (en) Solution-processed ultraviolet light detector based on p-n junctions of metal oxides
CN109935655B (zh) 一种AlGaN/SiC双色紫外探测器
CN109285914B (zh) 一种AlGaN基紫外异质结光电晶体管探测器及其制备方法
CN105742387B (zh) AlGaN渐变组分超晶格雪崩光电二极管
CN109980040A (zh) 一种氧化镓mis结构紫外探测器
Suvarna et al. Design and growth of visible-blind and solar-blind III-N APDs on sapphire substrates
CN109698250B (zh) 栅极调控AlGaN基金属-半导体-金属紫外探测器及制备方法
CN109326659B (zh) 一种高响应度低暗电流PIN结构的4H-SiC紫外探测器及其制备方法
CN107342344B (zh) 一种紫外雪崩探测器及其制备方法
CN206541827U (zh) 单片集成紫外‑红外双色雪崩光电二极管
CN111524995B (zh) β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器及其制备方法
CN111834489B (zh) 硅基深紫外雪崩光电二极管及其制备方法
Ku et al. Mg x Zn 1− x O Thin-Film Transistor-Based UV Photodetector with Enhanced Photoresponse
Wen et al. High performance foreign-dopant-free ZnO/AlxGa1− xN ultraviolet phototransistors using atomic-layer-deposited ZnO emitter layer
CN114678439B (zh) 一种对称叉指结构的2deg紫外探测器及制备方法
CN108899380A (zh) 红外半导体雪崩探测器及其制备方法
CN102074609B (zh) 一种紫外雪崩光电二极管探测器及其制作方法
Jang et al. Photoresponsivity enhancement of AlGaN/GaN heterojunction phototransistor with ZnO nanodot coating layer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant