CN108022985A - 延伸波长台面型雪崩光电二极管及其制备方法 - Google Patents

延伸波长台面型雪崩光电二极管及其制备方法 Download PDF

Info

Publication number
CN108022985A
CN108022985A CN201711065004.8A CN201711065004A CN108022985A CN 108022985 A CN108022985 A CN 108022985A CN 201711065004 A CN201711065004 A CN 201711065004A CN 108022985 A CN108022985 A CN 108022985A
Authority
CN
China
Prior art keywords
inp
layers
layer
type
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711065004.8A
Other languages
English (en)
Inventor
谢生
朱帅宇
毛陆虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201711065004.8A priority Critical patent/CN108022985A/zh
Publication of CN108022985A publication Critical patent/CN108022985A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属于光电检测以及图像传感器领域,为在降低器件暗电流的同时保证器件具有较高的光电流,为产业应用提供参考依据。本发明,延伸波长台面型雪崩光电二极管,自下而上结构依次为N+‑InP衬底、N‑InP缓冲层、N‑铟铝砷In(1‑x)AlxAs渐变层、N‑In0.83Ga0.17As吸收层、N‑In0.66Ga0.34As/InAs超晶格、N‑In0.83Ga0.17As吸收层、N‑铟镓砷磷In(1‑x)GaxAsyP(1‑y)组分渐变层、N‑InP电荷层、i‑InP倍增层以及P+‑InP接触层;光生载流子在倍增层不断碰撞电离,引发雪崩倍增。本发明主要应用于光电检测、光电传感器设计制造场合。

Description

延伸波长台面型雪崩光电二极管及其制备方法
技术领域
本发明属于光电检测以及图像传感器领域,具体讲,涉及降低台面型InGaAs/InP(铟镓砷/铟磷)雪崩光电二极管暗电流的方法。
背景技术
单光子探测是将单个光子信号加以放大,并通过脉冲甄别和数字计数等技术进行识别,从而达到光电探测的极限灵敏度。单光子探测在高分辨率的光谱测量、微弱光成像、高速成像以及量子通信等领域都有广泛的应用,设计出高效、可靠的单光子探测器是单光子探测技术的关键问题之一。
目前,常用的单光子探测器主要有光电倍增管(PMT)、单光子雪崩二极管(SPAD)、真空雪崩光电二极管(VAPD)和超导单光子探测器(SSPD)等。其中,光电倍增管(PMT)需要较高的工作电压,抗外磁场性能差,且体积笨重,无法进行大规模集成;单光子雪崩二极管(SPAD),即工作在盖革模式的雪崩光电二极管(GM-APD),具有灵敏度高、响应速度快、体积小、结构紧凑、集成度高等优点;真空雪崩光电二极管(VAPD)是将PMT和APD结合而产生的一种单光子探测器件,制作工艺复杂、价格昂贵且难以集成;超导光电子探测器(SSPD)对工作环境要求极其苛刻,需要冷却至低温(<4K)才能工作,故至今无法实际应用。综上所述,单光子雪崩二极管(SPAD)是目前最有应用前景的一种单光子探测器,已经成为当前的研究热点之一。
近年来,量子保密通信得到迅猛发展,尤其是远距离量子密钥分发的研究取得极大进展,这使得工作在红外波段的单光子探测器越来越受到人们的重视。与InP(铟磷)衬底晶格匹配的InGaAs(铟镓砷)探测器的长波限为1.7μm,故不能满足短波红外(1~3μm)的应用需求。因此,发展高铟组分的InGaAs探测器具有重要的研究价值。然而,随着铟组分的增加,InGaAs与InP衬底之间的晶格失配加剧,容易使材料中产生缺陷和位错,从而使InGaAs探测器的暗电流迅速增大。近年来,研究人员为提高延伸波长InGaAs探测器的器件性能,进行了多方面的研究。例如,吉林大学马军等人分别采用InP、InAsP(铟砷磷)以及InAlAs(铟铝砷)作为盖帽层制备了延伸波长的PIN型InGaAs探测器,结果表明,InAlAs盖帽层制备的器件有更低的暗电流和更高的量子效率,反偏电压为0.5V时的暗电流可降至173μA/cm2。南京大学纪晓丽等人分析了感应耦合等离子体刻蚀(ICP)技术和等离子增强化学气相沉积(PECVD)技术对延伸波长PIN型InGaAs探测器的性能影响,采用ICP技术制备器件的暗电流仅为PECVD技术制备器件的1/4。上述研究结果表明,目前降低延伸波长InGaAs探测器暗电流的主要方法是提高外延材料的生长质量,并采用先进工艺设备降低器件的缺陷,而从器件内部结构出发,通过优化器件结构降低暗电流的方式还鲜有研究。
发明内容
为克服现有技术的不足,降低延伸波长台面型InGaAs/InP雪崩光电二极管(APD)的暗电流,提高器件性能,本发明旨在提出一种吸收区加入铟镓砷In0.66Ga0.34As/铟砷InAs超晶格势垒的台面型InGaAs/InP雪崩光电二极管(APD)及其制备方法,在降低器件暗电流的同时保证器件具有较高的光电流,为产业应用提供了参考依据。本发明采用的技术方案是,延伸波长台面型雪崩光电二极管,自下而上结构依次为N+-InP衬底、N-InP缓冲层、N-铟铝砷In(1-x)AlxAs渐变层、N-In0.83Ga0.17As吸收层、N-In0.66Ga0.34As/InAs超晶格、N-In0.83Ga0.17As吸收层、N-铟镓砷磷In(1-x)GaxAsyP(1-y)组分渐变层、N-InP电荷层、i-InP倍增层以及P+-InP接触层;其中,In(1-x)AlxAs缓冲层释放晶格常数失配带来的位错缺陷和应力,In0.83Ga0.17As吸收层接收入射的光子能量,产生电子空穴对;在N-In(1-x)AlxAs渐变层与其相邻的N-In0.83Ga0.17As吸收层之间设置负极,在顶部设置正极,形成反偏电压;在反偏电压的作用下,超晶格势垒层阻挡光生电子的输运,而对光生空穴输运的影响较小,组分渐变层降低了因InP与InGaAs材料价带差而引入的空穴势垒,电荷层用于调节倍增层和吸收层之间的电场分布,保证倍增层有较高的电场,光生载流子在倍增层不断碰撞电离,引发雪崩倍增。
在一个实例中具体地,
(1)衬底材料选用N型重掺杂的InP,厚度为300μm,掺杂浓度为1×1019cm-3
(2)缓冲层选用N型掺杂的InP,厚度为1μm,掺杂浓度为2×1018cm-3
(3)N型掺杂的线性渐变In(1-x)AlxAs缓冲层,用来释放晶格常数失配带来的位错缺陷和应力,提高器件性能,缓冲层厚度为2μm,掺杂浓度为6.6×1016cm-3,铟In组分由0.52线性增加至0.87;
(4)吸收层选用高铟组分的In0.83Ga0.17As,将探测器的截止波长扩展至2.6μm,厚度均为0.7μm,掺杂浓度为1×1016cm-3
(5)超晶格选用N型掺杂的In0.66Ga0.34As/InAs材料,导带带阶△Ec=0.35eV,价带带阶△Ev=0.08eV,每层材料的厚度为10nm,生长5个周期,总厚度100nm,掺杂浓度为1×1016cm-3
(6)N型掺杂的、组分渐变的In(1-x)GaxAsyP(1-y)缓冲层,其作用是实现从In0.87Ga0.13As吸收层到InP电荷层的带隙过渡,避免因带隙差而引起异质结处的空穴积累,In(1-x)GaxAsyP(1-y)缓冲层的厚度为0.05μm,掺杂浓度为1×1016cm-3,镓Ga的组分从0.47变为0,砷As的组分从1变为0;
(7)电荷层选用N型重掺杂的InP,厚度为0.25μm,掺杂浓度为1×1017cm-3
(8)倍增层为本征掺杂的InP,厚度为0.5μm,光生载流子在此区域发生碰撞电离引发雪崩效应;
(9)P型重掺杂的InP,厚度为2.0μm,掺杂浓度1×1019cm-3
延伸波长台面型雪崩光电二极管制备方法,步骤如下:
(1)材料结构生长:利用气态源分子束外延GSMBE在N型重掺杂的InP衬底上依次外延生长N-InP缓冲层、N-In(1-x)AlxAs缓冲层、N-In0.83Ga0.17As吸收层、N-In0.66Ga0.34As/InAs超晶格、N-In0.83Ga0.17As吸收层、N-In(1-x)GaxAsyP(1-y)组分渐变层、N-InP电荷层、本征掺杂的InP倍增层以及P型重掺杂InP接触层;
(2)淀积二氧化硅二氧化硅SiO2掩模:利用等离子体增强化学气相沉积PECVD技术在器件表面淀积一层SiO2,作为反应离子刻蚀RIE的掩膜;
(3)光刻图形转移,将光刻版上的图形通过涂胶、曝光、显影等工艺步骤转移至光刻胶,然后以光刻胶为掩膜,向下刻蚀二氧化硅,最后去除光刻胶;
(4)台面刻蚀,以二氧化硅为掩膜,使用反应离子刻蚀技术对InGaAs/InP外延结构进行刻蚀,刻蚀至N-In(1-x)AlxAs缓冲层;
(5)钝化保护,利用等离子增强化学气相沉积PECVD生长SiO2钝化层,对器件侧壁和表面进行保护,然后通过光刻、刻蚀技术分别在P+-InP接触层和N-In(1-x)AlxAs缓冲层刻蚀出P型和N型接触窗口;
(6)电极制备:利用电子束蒸发在N型掺杂的N-In(1-x)AlxAs缓冲层上淀积钛Ti/铂Pt/金Au金属叠层,在P型重掺杂的InP接触层上淀积钯Pd/锌Zn/钯Pd/金Au金属叠层,使用快速热退火技术形成欧姆接触的N型和P型电极,降低接触势垒。
在一个实例中具体地:
(1)材料结构生长:利用GSMBE在N型重掺杂的InP衬底上依次外延生长1μm厚的N-InP缓冲层,掺杂浓度为2×1018cm-3;2μm厚的N-In(1-x)AlxAs线性渐变缓冲层,掺杂浓度为6.6×1016cm-3;0.7μm厚的N-In0.83Ga0.17As吸收层,掺杂浓度为1×1016cm-3;100nm厚的N-In0.66Ga0.34As/InAs超晶格,掺杂浓度为1×1016cm-3;0.7μm厚的N--In0.83Ga0.17As吸收层,掺杂浓度为1×1016cm-3;0.25μm厚的N-InP电荷层,掺杂浓度为1×1017cm-3;0.5μm厚的本征掺杂InP倍增层;2.0μm厚的P型重掺杂InP接触层,掺杂浓度为1×1019cm-3
(2)淀积二氧化硅SiO2掩模:利用等离子体增强化学气相沉积PECVD技术在器件表面淀积一层700nm厚的SiO2作为反应离子刻蚀RIE的掩膜;
(3)光刻图形转移:将光刻版上的图形通过涂胶、曝光、显影等工艺步骤转移至光刻胶,然后以光刻胶为掩膜,向下刻蚀二氧化硅,最后去除光刻胶;
(4)台面刻蚀:以二氧化硅为掩膜,使用反应离子刻蚀技术对InGaAs/InP外延结构进行刻蚀,刻蚀至N-In(1-x)AlxAs缓冲层,刻蚀深度为4.3μm;
(5)钝化保护:利用PECVD在300℃、压力1000mTorr,气源采用甲硅烷SiH4、一氧化二氮N2O的条件下生长800nm的SiO2钝化层,对器件侧壁进行保护,然后通过光刻、刻蚀技术分别在P+-InP接触层和N-In(1-x)AlxAs缓冲层刻蚀出P型和N型接触窗口,其中,P型窗口直径Φ=20μm,N型接触窗口为套在P型接触窗口外侧的同心圆,内径和外径分别为40μm和50μm;
(6)电极制备:利用电子束蒸发在N型掺杂的InP缓冲层上淀积厚度为10nm/30nm/50nm的Ti/Pt/Au金属叠层,在P型重掺杂的InP接触层上淀积厚度为10nm/5nm/20nm/60nmPd/Zn/Pd/Au金属叠层,使用快速热退火技术形成欧姆接触的N型和P型电极,降低接触势垒。
本发明的特点及有益效果是:
(1)本发明所述延伸波长台面型InGaAs/InP雪崩光电二极管(APD)利用In0.66Ga0.34As/InAs超晶格较高的导带势垒来阻挡电子输运,因而降低了InGaAs探测器的暗电流。
(2)本发明所述延伸波长台面型InGaAs/InP雪崩光电二极管(APD)In0.66Ga0.34As/InAs超晶格引入的价带势垒较低,对空穴输运影响较小,从而保证了探测器具有较高的光电流。
(3)本发明所述延伸波长台面型InGaAs/InP雪崩光电二极管(APD)的制备工艺简单、成本低廉,适合大规模生产。
附图说明:
图1为延伸波长台面型InGaAs/InP雪崩光电二极管(APD)的结构剖面图。
图2为In0.66Ga0.34As/InAs超晶格能带结构。
图3为延伸波长台面型InGaAs/InP雪崩光电二极管(APD)的I-V特性。
附图中,各标号所代表的部件列表如下:
1:N+-InP衬底 2:N-InP缓冲层
3:N-In(1-x)AlxAs渐变层 4、6:N-In0.83Ga0.17As吸收层
5:N-In0.66Ga0.34As/InAs超晶格 7:N-In(1-x)GaxAsyP(1-y)组分渐变层
8:N-InP电荷层 9:i-InP倍增层
10:P+-InP接触层。
具体实施方式
本发明提出了一种在吸收区加入超晶格势垒的延伸波长台面型InGaAs/InP雪崩光电二极管(APD)结构。所述器件结构包括N+-InP衬底、N-InP缓冲层、N-In(1-x)AlxAs缓冲层、N-In0.83Ga0.17As吸收层、N-In0.66Ga0.34As/InAs超晶格、N-In0.83Ga0.17As吸收层、N-In(1-x)GaxAsyP(1-y)组分渐变层、N-InP电荷层、i-InP倍增层以及P+-InP接触层。其中,In(1-x)AlxAs缓冲层释放晶格常数失配带来的位错缺陷和应力,In0.83Ga0.17As吸收层接收入射的光子能量,产生电子空穴对。在反偏电压的作用下,超晶格势垒层阻挡光生电子的输运,而对光生空穴输运的影响较小。组分渐变层降低了因InP与InGaAs材料价带差而引入的空穴势垒,电荷层用于调节倍增层和吸收层之间的电场分布,保证倍增层有较高的电场。光生载流子在倍增层不断碰撞电离,引发雪崩倍增。
本发明还提供用于制造所述光电探测器的方法,其主要工艺步骤包括:
(1)材料结构生长。利用气态源分子束外延(GSMBE)在N型重掺杂的InP衬底上依次外延生长N-InP缓冲层、N-In(1-x)AlxAs缓冲层、N-In0.83Ga0.17As吸收层、N-In0.66Ga0.34As/InAs超晶格、N-In0.83Ga0.17As吸收层、N-In(1-x)GaxAsyP(1-y)组分渐变层、N-InP电荷层、本征掺杂的InP倍增层以及P型重掺杂InP接触层。
(2)淀积二氧化硅(SiO2)掩模。利用等离子体增强化学气相沉积(PECVD)技术在器件表面淀积一层SiO2,作为反应离子刻蚀(RIE)的掩膜。
(3)光刻图形转移。将光刻版上的图形通过涂胶、曝光、显影等工艺步骤转移至光刻胶,然后以光刻胶为掩膜,向下刻蚀二氧化硅,最后去除光刻胶。
(4)台面刻蚀。以二氧化硅为掩膜,使用反应离子刻蚀技术对InGaAs/InP外延结构进行刻蚀,刻蚀至N-In(1-x)AlxAs缓冲层。
(5)钝化保护。利用等离子增强化学气相沉积(PECVD)生长SiO2钝化层,对器件侧壁进行保护,然后通过光刻、刻蚀技术分别在P+-InP接触层和N-In(1-x)AlxAs缓冲层刻蚀出P型和N型接触窗口。
(6)电极制备。利用电子束蒸发在N型掺杂的N-In(1-x)AlxAs缓冲层上淀积Ti/Pt/Au金属叠层,在P型重掺杂的InP接触层上淀积Pd/Zn/Pd/Au金属叠层,使用快速热退火技术形成欧姆接触的N型和P型电极,降低接触势垒。
本发明提出了一种在吸收区加入超晶格势垒的延伸波长台面型InGaAs/InP雪崩光电二极管(APD)结构。所述器件结构包括N+-InP衬底、N-InP缓冲层、N-In(1-x)AlxAs缓冲层、N-In0.83Ga0.17As吸收层、N-In0.66Ga0.34As/InAs超晶格、N-In0.83Ga0.17As吸收层、N-In(1-x)GaxAsyP(1-y)组分渐变层、N-InP电荷层、i-InP倍增层以及P+-InP接触层。其中,In(1-x)AlxAs缓冲层释放晶格常数失配带来的位错缺陷和应力,In0.83Ga0.17As吸收层接收入射的光子能量,产生电子空穴对。在反偏电压的作用下,超晶格势垒层阻挡光生电子的输运,而对光生空穴输运的影响较小。组分渐变层降低了因InP与InGaAs材料价带差而引入的空穴势垒,电荷层用于调节倍增层和吸收层之间的电场分布,保证倍增层有较高的电场。光生载流子在倍增层不断碰撞电离,引发雪崩倍增。
下面结合附图和实例对本发明作进一步的解释和说明:
本发明所述延伸波长台面型InGaAs/InP雪崩光电二极管(APD)的剖面结构如图1所示,下面对其结构做详细说明:
(1)图示中1为延伸波长台面型InGaAs/InP雪崩光电二极管(APD)的衬底,衬底材料选用N型重掺杂的InP,厚度为300μm,掺杂浓度为1×1019cm-3
(2)图示中2为缓冲层,缓冲层选用N型掺杂的InP,厚度为1μm,掺杂浓度为2×1018cm-3
(3)图示中3为N型掺杂的线性渐变In(1-x)AlxAs缓冲层,用来释放晶格常数失配带来的位错缺陷和应力,提高器件性能。缓冲层厚度为2μm,掺杂浓度为6.6×1016cm-3,In组分由0.52线性增加至0.87。
(4)图示中4和6均为吸收层,吸收层选用高铟组分的In0.83Ga0.17As,将探测器的截止波长扩展至2.62μm。图示中4和6的厚度均为0.7μm,掺杂浓度为1×1016cm-3
(5)图示中5为超晶格势垒层,超晶格选用N型掺杂的In0.66Ga0.34As/InAs材料,导带带阶△Ec=0.35eV,价带带阶△Ev=0.08eV,每层材料的厚度为10nm,生长5个周期,总厚度100nm,掺杂浓度为1×1016cm-3
(6)图示中7为N型掺杂的、组分渐变的In(1-x)GaxAsyP(1-y)缓冲层,其作用是实现从In0.87Ga0.13As吸收层到InP电荷层8的带隙过渡,避免因带隙差而引起异质结处的空穴积累。In(1-x)GaxAsyP(1-y)缓冲层的厚度为0.05μm,掺杂浓度为1×1016cm-3,Ga的组分从0.47变为0,As的组分从1变为0。
(7)图示中8为电荷层,电荷层选用N型重掺杂的InP,厚度为0.25μm,掺杂浓度为1×1017cm-3
(8)图示中9为倍增层,倍增层为本征掺杂的InP,厚度为0.5μm,光生载流子在此区域发生碰撞电离引发雪崩效应。
(9)图示中10为P型重掺杂的InP,厚度为2.0μm,掺杂浓度1×1019cm-3
本发明具体实施例如下:
(1)材料结构生长。利用GSMBE在N型重掺杂的InP衬底上依次外延生长1μm厚的N-InP缓冲层,掺杂浓度为2×1018cm-3;2μm厚的N-In(1-x)AlxAs线性渐变缓冲层,掺杂浓度为6.6×1016cm-3;0.7μm厚的N-In0.83Ga0.17As吸收层,掺杂浓度为1×1016cm-3;100nm厚的N-In0.66Ga0.34As/InAs超晶格,掺杂浓度为1×1016cm-3;0.7μm厚的N--In0.83Ga0.17As吸收层,掺杂浓度为1×1016cm-3;0.25μm厚的N-InP电荷层,掺杂浓度为1×1017cm-3;0.5μm厚的本征掺杂InP倍增层;2.0μm厚的P型重掺杂InP接触层,掺杂浓度为1×1019cm-3
(2)淀积二氧化硅(SiO2)掩模。利用等离子体增强化学气相沉积(PECVD)技术在器件表面淀积一层700nm厚的SiO2作为反应离子刻蚀(RIE)的掩膜。
(3)光刻图形转移。将光刻版上的图形通过涂胶、曝光、显影等工艺步骤转移至光刻胶,然后以光刻胶为掩膜,向下刻蚀二氧化硅,最后去除光刻胶。
(4)台面刻蚀。以二氧化硅为掩膜,使用反应离子刻蚀技术对InGaAs/InP外延结构进行刻蚀,刻蚀至N-In(1-x)AlxAs缓冲层,刻蚀深度为4.3μm。
(5)钝化保护。利用PECVD在300℃、压力1000mTorr,气源采用SiH4、N2O的条件下生长800nm的SiO2钝化层,对器件侧壁进行保护。然后通过光刻、刻蚀技术分别在P+-InP接触层和N-In(1-x)AlxAs缓冲层刻蚀出P型和N型接触窗口。其中,P型窗口直径Φ=20μm,N型接触窗口为套在P型接触窗口外侧的同心圆,内径和外径分别为40μm和50μm。
(6)电极制备。利用电子束蒸发在N型掺杂的InP缓冲层上淀积厚度为10nm/30nm/50nm的Ti/Pt/Au金属叠层,在P型重掺杂的InP接触层上淀积厚度为10nm/5nm/20nm/60nmPd/Zn/Pd/Au金属叠层,使用快速热退火技术形成欧姆接触的N型和P型电极,降低接触势垒。
图2所示为在In0.83Ga0.17As吸收层中插入In0.66Ga0.34As/InAs超晶格势垒的能带结构,此超晶格结构导带带阶△Ec=0.35eV,价带带阶△Ev=0.08eV。延伸波长台面型InGaAs/InP雪崩光电二极管(APD)是靠In0.83Ga0.17As吸收层来吸收光子,并产生光生电子和光生空穴。光电流由光生空穴的输运产生,而暗电流主要由电子输运并与复合中心复合产生。在本发明实例中,In0.66Ga0.34As/InAs超晶格在导带中形成了较高的势垒,而在价带中形成了很低的势垒,所以导带中电子的输运将被阻挡,而价带中的空穴则不会。另外,超晶格势垒也可以显著减少吸收层内的缺陷复合中心数量,因而有效地降低辅助隧穿产生的暗电流。
图3所示为In0.83Ga0.17As吸收层内插入In0.66Ga0.34As/InAs超晶格和未插入超晶格结构的光电流与暗电流对比图。其中,光照条件为2.5μm波长的光垂直照射,光强为1mW/cm2。由图可知,吸收层中插入超晶格势垒显著降低了器件的暗电流,而对光电流的影响较小。在反向偏压为35V的条件下,器件暗电流由1.25nA降至6.5pA,降低了3个数量级。
综上所述,本发明提出的吸收层插入超晶格势垒的延伸波长台面型InGaAs/InP雪崩光电二极管(APD)不仅制备工艺简单、成本低廉,而且在降低暗电流的同时仍具有较高光电流,因而具有重要的实用价值。

Claims (4)

1.一种延伸波长台面型雪崩光电二极管,其特征是,自下而上结构依次为N+-InP衬底、N-InP缓冲层、N-铟铝砷In(1-x)AlxAs渐变层、N-In0.83Ga0.17As吸收层、N-In0.66Ga0.34As/InAs超晶格、N-In0.83Ga0.17As吸收层、N-铟镓砷磷In(1-x)GaxAsyP(1-y)组分渐变层、N-InP电荷层、i-InP倍增层以及P+-InP接触层;其中,In(1-x)AlxAs缓冲层释放晶格常数失配带来的位错缺陷和应力,In0.83Ga0.17As吸收层接收入射的光子能量,产生电子空穴对;在N-In(1-x)AlxAs渐变层与其相邻的N-In0.83Ga0.17As吸收层之间设置负极,在顶部设置正极,形成反偏电压;在反偏电压的作用下,超晶格势垒层阻挡光生电子的输运,而对光生空穴输运的影响较小,组分渐变层降低了因InP与InGaAs材料价带差而引入的空穴势垒,电荷层用于调节倍增层和吸收层之间的电场分布,保证倍增层有较高的电场,光生载流子在倍增层不断碰撞电离,引发雪崩倍增。
2.如权利要求1所述的延伸波长台面型雪崩光电二极管,其特征是,在一个实例中具体地,
(1)衬底材料选用N型重掺杂的InP,厚度为300μm,掺杂浓度为1×1019cm-3
(2)缓冲层选用N型掺杂的InP,厚度为1μm,掺杂浓度为2×1018cm-3
(3)N型掺杂的线性渐变In(1-x)AlxAs缓冲层,用来释放晶格常数失配带来的位错缺陷和应力,提高器件性能,缓冲层厚度为2μm,掺杂浓度为6.6×1016cm-3,铟In组分由0.52线性增加至0.87;
(4)吸收层选用高铟组分的In0.83Ga0.17As,将探测器的截止波长扩展至2.6μm,厚度均为0.7μm,掺杂浓度为1×1016cm-3
(5)超晶格选用N型掺杂的In0.66Ga0.34As/InAs材料,导带带阶△Ec=0.35eV,价带带阶△Ev=0.08eV,每层材料的厚度为10nm,生长5个周期,总厚度100nm,掺杂浓度为1×1016cm-3
(6)N型掺杂的、组分渐变的In(1-x)GaxAsyP(1-y)缓冲层,其作用是实现从In0.87Ga0.13As吸收层到InP电荷层的带隙过渡,避免因带隙差而引起异质结处的空穴积累,In(1-x)GaxAsyP(1-y)缓冲层的厚度为0.05μm,掺杂浓度为1×1016cm-3,镓Ga的组分从0.47变为0,砷As的组分从1变为0;
(7)电荷层选用N型重掺杂的InP,厚度为0.25μm,掺杂浓度为1×1017cm-3
(8)倍增层为本征掺杂的InP,厚度为0.5μm,光生载流子在此区域发生碰撞电离引发雪崩效应;
(9)P型重掺杂的InP,厚度为2.0μm,掺杂浓度1×1019cm-3
3.一种延伸波长台面型雪崩光电二极管制备方法,其特征是,步骤如下:
(1)材料结构生长:利用气态源分子束外延GSMBE在N型重掺杂的InP衬底上依次外延生长N-InP缓冲层、N-In(1-x)AlxAs缓冲层、N-In0.83Ga0.17As吸收层、N-In0.66Ga0.34As/InAs超晶格、N-In0.83Ga0.17As吸收层、N-In(1-x)GaxAsyP(1-y)组分渐变层、N-InP电荷层、本征掺杂的InP倍增层以及P型重掺杂InP接触层;
(2)淀积二氧化硅二氧化硅SiO2掩模:利用等离子体增强化学气相沉积PECVD技术在器件表面淀积一层SiO2,作为反应离子刻蚀RIE的掩膜;
(3)光刻图形转移,将光刻版上的图形通过涂胶、曝光、显影等工艺步骤转移至光刻胶,然后以光刻胶为掩膜,向下刻蚀二氧化硅,最后去除光刻胶;
(4)台面刻蚀,以二氧化硅为掩膜,使用反应离子刻蚀技术对InGaAs/InP外延结构进行刻蚀,刻蚀至N-In(1-x)AlxAs缓冲层;
(5)钝化保护,利用等离子增强化学气相沉积PECVD生长SiO2钝化层,对器件侧壁和表面进行保护,然后通过光刻、刻蚀技术分别在P+-InP接触层和N-In(1-x)AlxAs缓冲层刻蚀出P型和N型接触窗口;
(6)电极制备:利用电子束蒸发在N型掺杂的N-In(1-x)AlxAs缓冲层上淀积钛Ti/铂Pt/金Au金属叠层,在P型重掺杂的InP接触层上淀积钯Pd/锌Zn/钯Pd/金Au金属叠层,使用快速热退火技术形成欧姆接触的N型和P型电极,降低接触势垒。
4.如权利要求3所述的延伸波长台面型雪崩光电二极管制备方法,其特征是,步骤如下:在一个实例中具体地:
(1)材料结构生长:利用GSMBE在N型重掺杂的InP衬底上依次外延生长1μm厚的N-InP缓冲层,掺杂浓度为2×1018cm-3;2μm厚的N-In(1-x)AlxAs线性渐变缓冲层,掺杂浓度为6.6×1016cm-3;0.7μm厚的N-In0.83Ga0.17As吸收层,掺杂浓度为1×1016cm-3;100nm厚的N-In0.66Ga0.34As/InAs超晶格,掺杂浓度为1×1016cm-3;0.7μm厚的N--In0.83Ga0.17As吸收层,掺杂浓度为1×1016cm-3;0.25μm厚的N-InP电荷层,掺杂浓度为1×1017cm-3;0.5μm厚的本征掺杂InP倍增层;2.0μm厚的P型重掺杂InP接触层,掺杂浓度为1×1019cm-3
(2)淀积二氧化硅SiO2掩模:利用等离子体增强化学气相沉积PECVD技术在器件表面淀积一层700nm厚的SiO2作为反应离子刻蚀RIE的掩膜;
(3)光刻图形转移:将光刻版上的图形通过涂胶、曝光、显影等工艺步骤转移至光刻胶,然后以光刻胶为掩膜,向下刻蚀二氧化硅,最后去除光刻胶;
(4)台面刻蚀:以二氧化硅为掩膜,使用反应离子刻蚀技术对InGaAs/InP外延结构进行刻蚀,刻蚀至N-In(1-x)AlxAs缓冲层,刻蚀深度为4.3μm;
(5)钝化保护:利用PECVD在300℃、压力1000mTorr,气源采用甲硅烷SiH4、一氧化二氮N2O的条件下生长800nm的SiO2钝化层,对器件侧壁进行保护,然后通过光刻、刻蚀技术分别在P+-InP接触层和N-In(1-x)AlxAs缓冲层刻蚀出P型和N型接触窗口,其中,P型窗口直径Φ=20μm,N型接触窗口为套在P型接触窗口外侧的同心圆,内径和外径分别为40μm和50μm;
(6)电极制备:利用电子束蒸发在N型掺杂的InP缓冲层上淀积厚度为10nm/30nm/50nm的Ti/Pt/Au金属叠层,在P型重掺杂的InP接触层上淀积厚度为10nm/5nm/20nm/60nm Pd/Zn/Pd/Au金属叠层,使用快速热退火技术形成欧姆接触的N型和P型电极,降低接触势垒。
CN201711065004.8A 2017-11-02 2017-11-02 延伸波长台面型雪崩光电二极管及其制备方法 Pending CN108022985A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711065004.8A CN108022985A (zh) 2017-11-02 2017-11-02 延伸波长台面型雪崩光电二极管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711065004.8A CN108022985A (zh) 2017-11-02 2017-11-02 延伸波长台面型雪崩光电二极管及其制备方法

Publications (1)

Publication Number Publication Date
CN108022985A true CN108022985A (zh) 2018-05-11

Family

ID=62080477

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711065004.8A Pending CN108022985A (zh) 2017-11-02 2017-11-02 延伸波长台面型雪崩光电二极管及其制备方法

Country Status (1)

Country Link
CN (1) CN108022985A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109473496A (zh) * 2018-10-30 2019-03-15 中国科学院上海技术物理研究所 一种雪崩探测器过渡层结构及制备方法
CN111540797A (zh) * 2020-05-13 2020-08-14 中国科学院半导体研究所 中远红外雪崩光电探测器
CN112103351A (zh) * 2020-09-22 2020-12-18 中国科学技术大学 一种倏逝波耦合的波导型探测器
CN112259632A (zh) * 2020-09-30 2021-01-22 中国电子科技集团公司第十三研究所 光电探测器及其制备方法
JP2021034644A (ja) * 2019-08-28 2021-03-01 住友電気工業株式会社 受光素子
CN113644158A (zh) * 2021-08-10 2021-11-12 苏州矩阵光电有限公司 上入光式红外传感器元件及其制造方法
WO2022041550A1 (zh) * 2020-08-31 2022-03-03 武汉光谷信息光电子创新中心有限公司 一种雪崩光电探测器及其制备方法
CN114420783A (zh) * 2022-02-10 2022-04-29 中国科学院上海技术物理研究所 一种基于双雪崩机制的台面型雪崩单光子探测器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567804A (ja) * 1991-09-05 1993-03-19 Hitachi Ltd 受光素子
CN104167458A (zh) * 2014-03-31 2014-11-26 清华大学 紫外探测器及其制备方法
CN106098836A (zh) * 2016-08-19 2016-11-09 武汉华工正源光子技术有限公司 通讯用雪崩光电二极管及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567804A (ja) * 1991-09-05 1993-03-19 Hitachi Ltd 受光素子
CN104167458A (zh) * 2014-03-31 2014-11-26 清华大学 紫外探测器及其制备方法
CN106098836A (zh) * 2016-08-19 2016-11-09 武汉华工正源光子技术有限公司 通讯用雪崩光电二极管及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YI GU等: "Dark current suppression in metamorphic In0.83Ga0.17As photodetectors with In0.66Ga0.34As/InAs superlattice electron barrier", 《APPLIED PHYSICS EXPRESS》 *
夏伟: "InGaAs/InP雪崩光电二极管的工艺研究", 《中国优秀硕士学位论文全文数据库(电子期刊) 信息科技辑》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109473496A (zh) * 2018-10-30 2019-03-15 中国科学院上海技术物理研究所 一种雪崩探测器过渡层结构及制备方法
JP2021034644A (ja) * 2019-08-28 2021-03-01 住友電気工業株式会社 受光素子
JP7347005B2 (ja) 2019-08-28 2023-09-20 住友電気工業株式会社 受光素子
CN111540797A (zh) * 2020-05-13 2020-08-14 中国科学院半导体研究所 中远红外雪崩光电探测器
WO2022041550A1 (zh) * 2020-08-31 2022-03-03 武汉光谷信息光电子创新中心有限公司 一种雪崩光电探测器及其制备方法
CN112103351A (zh) * 2020-09-22 2020-12-18 中国科学技术大学 一种倏逝波耦合的波导型探测器
CN112259632A (zh) * 2020-09-30 2021-01-22 中国电子科技集团公司第十三研究所 光电探测器及其制备方法
CN113644158A (zh) * 2021-08-10 2021-11-12 苏州矩阵光电有限公司 上入光式红外传感器元件及其制造方法
CN113644158B (zh) * 2021-08-10 2024-04-12 苏州矩阵光电有限公司 上入光式红外传感器元件及其制造方法
CN114420783A (zh) * 2022-02-10 2022-04-29 中国科学院上海技术物理研究所 一种基于双雪崩机制的台面型雪崩单光子探测器

Similar Documents

Publication Publication Date Title
CN108022985A (zh) 延伸波长台面型雪崩光电二极管及其制备方法
Miao et al. Avalanche photodetectors based on two-dimensional layered materials
CN105720130B (zh) 基于量子阱带间跃迁的光电探测器
CN106847933B (zh) 单片集成紫外-红外双色雪崩光电二极管及其制备方法
CN107611195B (zh) 吸收层变掺杂InGaAs雪崩光电二极管及制备方法
CN108305911B (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
CN102386269B (zh) GaN基p-i-p-i-n结构紫外探测器及其制备方法
CN105590971B (zh) AlGaN日盲紫外增强型雪崩光电探测器及其制备方法
CN107403848B (zh) 一种背照式级联倍增雪崩光电二极管
CN109980040A (zh) 一种氧化镓mis结构紫外探测器
CN107863403B (zh) 一种高线性增益红外雪崩光电二极管及其制备方法
Hekmatikia et al. Graphene–silicon-based high-sensitivity and broadband phototransistor
CN109494275A (zh) 一种AlGaN基日盲紫外光电晶体管探测器及其制作方法
CN206541827U (zh) 单片集成紫外‑红外双色雪崩光电二极管
Guo et al. Polarization assisted interdigital AlGaN/GaN heterostructure ultraviolet photodetectors
Li et al. High gain, broadband p-WSe2/n-Ge van der Waals heterojunction phototransistor with a Schottky barrier collector
CN105742387A (zh) AlGaN渐变组分超晶格雪崩光电二极管
Ghalamboland et al. MoS 2/Si-based heterojunction bipolar transistor as a broad band and high sensitivity photodetector
CN104979420B (zh) 一种基于微腔的量子点场效应单光子探测器
CN107342344B (zh) 一种紫外雪崩探测器及其制备方法
Dai et al. Compound semiconductor nanowire photodetectors
Chen et al. Improved performances of InGaN schottky photodetectors by inducing a thin insulator layer and mesa process
CN209675319U (zh) 一种氧化镓mis结构紫外探测器
CN108899380A (zh) 红外半导体雪崩探测器及其制备方法
Huang et al. Short/mid-wave two-band type-II superlattice infrared heterojunction phototransistor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180511