CN107863403B - 一种高线性增益红外雪崩光电二极管及其制备方法 - Google Patents

一种高线性增益红外雪崩光电二极管及其制备方法 Download PDF

Info

Publication number
CN107863403B
CN107863403B CN201711215411.2A CN201711215411A CN107863403B CN 107863403 B CN107863403 B CN 107863403B CN 201711215411 A CN201711215411 A CN 201711215411A CN 107863403 B CN107863403 B CN 107863403B
Authority
CN
China
Prior art keywords
layer
electrode contact
avalanche photodiode
infrared
contact layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711215411.2A
Other languages
English (en)
Other versions
CN107863403A (zh
Inventor
康健彬
李沫
李倩
王旺平
陈飞良
张健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electronic Engineering of CAEP
Original Assignee
Institute of Electronic Engineering of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electronic Engineering of CAEP filed Critical Institute of Electronic Engineering of CAEP
Priority to CN201711215411.2A priority Critical patent/CN107863403B/zh
Publication of CN107863403A publication Critical patent/CN107863403A/zh
Application granted granted Critical
Publication of CN107863403B publication Critical patent/CN107863403B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • H01L31/0323Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属于半导体光电探测器领域,提供了一种高线性增益红外雪崩光电二极管及其制备方法,该二极管结构包括下电极接触层、周期性异质结构倍增层、电荷层、周期性异质结构吸收层和上电极接触层。周期性异质结构吸收层利用导带内子带能级跃迁实现对红外光子的吸收,周期性异质结构倍增层利用GaN/AlN异质结材料特有的能带特性促使光生电子发生单极碰撞离化。本发明提供的红外探测器能够保证器件在线性模式工作下获得高的雪崩增益,适用于各种需要进行微弱红外信号探测的应用场景。

Description

一种高线性增益红外雪崩光电二极管及其制备方法
技术领域
本发明属于半导体光电探测器领域,具体涉及一种高线性增益红外雪崩光电二极管及其制备方法。
背景技术
在长距离光纤通信、量子保密通信、生物分子探测、深空探测等技术中,到达红外探测器光敏元上的有效光信号非常微弱,这就要求探测器具有极高的响应灵敏度。相比于普通的光电探测器,雪崩光电二极管(Avalanche Photodiode, APD)通过倍增效应能够进行增益模式探测,响应灵敏度能得到较大提升,因此特别适用于微弱信号甚至单光子级别信号检测。
雪崩光电二极管的工作原理是载流子在强电场作用下与晶格原子碰撞使其电离产生新的电子-空穴对,从而形成电流倍增效应。根据器件施加工作电压的不同,增益模式可分为线性增益和盖革模式增益。传统的体材料雪崩光电二极管在线性模式下增益通常不超过数百量级,要实现微弱信号检测就必须工作于具有高增益的盖革模式,但不足之处是需要使用较为复杂的淬灭电路避免持续的雪崩过程对器件造成永久性损坏,这就限制了在很多领域的应用。以长距离光纤通信通信为例,毫瓦数量级的光功率从光发射机输出经过光纤的传输衰减后仅有十分微弱的光信号到达光接收机处,虽然使用雪崩光电二极管作为光接收器件可以提高信号响应强度,但由于信息传输的持续性其只能工作于线性模式,使得对信号强度的提升非常有限。
为了获得器件在线性模式下高的增益特性,专利CN106409968 A公开了一种基于GaN/AlGaN周期性异质结构作为雪崩区的吸收倍增分离式紫外雪崩探测器件,GaN/AlGaN异质结大的导带带阶和两种材料深的导带Γ能谷从理论上能够保证电子在低散射的情况下发生高效离化碰撞,而同时空穴的离化碰撞由于受到强的散射作用被抑制。这种只有单极载流子发生离化碰撞的情况类似于光电倍增管的工作原理,使得雪崩模式变得可控,但该器件结构吸收区采用AlGaN体材料,只能够对紫外光产生响应。对于在红外波段能线性模式工作的高增益雪崩探测器件目前几乎未见报道。
发明内容
本发明提供了一种具有高线性增益的红外雪崩光电二极管及其制备方法,解决了目前红外波段的雪崩光电二极管不能在线性模式进行高增益探测的问题,以此方式工作的器件摒弃了传统的盖革模式淬灭电路,大大扩展了器件的可应用领域。
本发明的技术方案如下:
高线性增益红外雪崩光电二极管,其特征在于,材料结构自下至上包括:衬底、缓冲层、下电极接触层、周期性异质结构倍增层、电荷层、周期性异质结构吸收层和上电极接触层。
所述衬底可以为Al2O3、GaN、AlN、Si等材料中的任意一种,用于探测器材料结构生长。
所述缓冲层、下电极接触层、电荷层和上电极接触层所选材料均为AlxGa1-xN,0≤x≤1。
所述缓冲层的厚度为0.01 µm至10 µm,用于提高生长材料的质量。
所述下电极接触层的n型掺杂浓度在1×1017 cm-3至5×1019 cm-3之间,厚度为0.05µm至10 µm,用于制作n型欧姆接触电极;
所述周期性异质结构倍增层采用GaN/AlN材料结构,周期数为1至200,GaN或AlN层的厚度为0.001 µm至0.2 µm,为载流子发生单极碰撞离化的区域;
所述电荷层的p型掺杂浓度在1×1017 cm-3至1×1019 cm-3之间,厚度为0.01 µm至0.15 µm,用于吸收层和倍增层电场的调节;
所述周期性异质结构吸收层采用AlyGa1-yN/AlzGa1-zN材料系,其中0≤y<z≤1,形成周期数为1至200的量子阱或超晶格结构,电子从导带基态能级到激发态能级的跃迁对应于红外光子的吸收。AlyGa1-yN材料n型掺杂,掺杂浓度在5×1017cm-3至5×1019 cm-3之间,厚度为0.001 µm至0.02 µm,AlyGa1-yN厚度为0.001 µm至0.1 µm;
所述上电极接触层p型掺杂浓度在1×1017 cm-3至1×1019 cm-3之间,厚度为0.05 µm至0.2 µm,用于制作p型欧姆接触电极。
本发明还提供了一种制备该高线性增益红外雪崩光电二极管的方法,其步骤如下:
(1)在衬底上生长缓冲层;
(2)在缓冲层上生长下电极接触层,在其之上制作n型欧姆接触电极;
(3)在下电极接触层上生长周期性异质结构倍增层;
(4)在倍增层之上生长电荷层;
(5)在电荷层之上生长周期性异质结构吸收层;
(6)在吸收层之上生长上电极接触层,在其之上制作p型欧姆电极;
(7)根据子带跃迁的选择性定则,将制作完成后的器件衬底一侧面制成斜面或者在上电极接触层上制作一维光栅或二维光栅以实现对红外光的耦合。
基于以上的技术方案,本发明的有益之处是在吸收倍增分离式雪崩探测器件中将吸收区和倍增区均设置为周期性异质结材料,以实现在红外波段的高线性增益模式探测。该技术方案的提出一是考虑到GaN/AlN异质结作为雪崩区可以大幅度提高电子和空穴的离化系数比,即可认为只有电子才能发生碰撞离化,这种单方向的倍增过程使得器件能够在线性模式下高增益的工作,其饱和增益大小与异质结材料的参数和周期数有关;其次是考虑到AlyGa1-yN/AlzGa1-zN异质结材料的导带带阶从0-2 eV连续可调,因而其子带跃迁的吸收波长可覆盖光通信所关注的近红外波段甚至到中、远红外波段,而且子带跃迁的载流子寿命只有皮秒量级,理论上对入射信号具有极快的响应速度;另一方面从材料体系来看,吸收区和倍增区都属于AlGaN基材料,材料上的兼容性能够保证外延过程的顺利实施。因此通过合理设计吸收区导带量子能级位置和倍增区能带结构,同时利用子带能级跃迁和光生电子的高效单极碰撞离化则可实现特定红外波段的高线性增益模式探测。
为进一步说明本发明的特征和作用,下面结合附图及具体实施例对本发明做进一步的说明。
附图说明
图1为本发明雪崩光电二极管在反向工作电压下的能带结构示意图及载流子输运示意图。
图2 为实施例中雪崩光电二极管的截面结构示意图I。
图3 为实施例中雪崩光电二极管的截面结构示意图II。
图4为实施例雪崩光电二极管的周期性异质结构吸收层的导带能带结构和电子波函数分布。
图5为实施例雪崩光电二极管的周期性异质结构倍增层在1 MV/cm电场作用下的能带结构示意图。
其中,101-n型下电极接触层,103-周期性异质结构倍增层,105-电荷层,107-周期性异质结构吸收层,109-p型上电极接触层,201-衬底,203-缓冲层,205-n型欧姆接触电极,207-p型欧姆接触电极,301-光栅结构,401-吸收区导带分布,403-吸收层电子基态能级波函数,405-吸收层电子激发态能级波函数,501-倍增区导带分布,503-倍增区价带分布。
具体实施方式
为了更清晰地展示本发明器件的工作原理,图1给出了器件在反向工作电压下的能带结构及载流子动力学过程。器件工作状态下需要在n型下电极接触层和p型上电极接触层之间施加较大的反向偏压,这时电势差主要加载到非掺杂的周期性异质结构倍增层上,该层的电场强度远大于其他各层的电场强度,表现为能带的大角度倾斜。同时可以看出由于电荷层对电场的调控作用,周期性异质结构吸收层的能带基本处于平带状态,以保证基态能级上的电子不会被耗尽,有足够的电子填充。
当有红外光入射时,周期性异质结构吸收层基态能级上的电子跃迁到激发态能级成为光生电子,光生电子通过共振隧穿或在连续态中直接迁移到电荷层,然后再输运到周期性异质结构倍增层中发生碰撞离化。倍增层采用GaN/AlN材料结构,其导带带阶达到2eV,而价带带阶只有约0.8 eV。光生电子先在AlN层加速运动获得一定的能量,再回到GaN层中时释放势能,这时电子获得的总能量将大于GaN材料的禁带宽度,由此可以高效的触发电子碰撞离化。对于空穴,价带较高的态密度使其在AlN层加速时受到大量散射,且较小的价带带阶提供的势能也非常有限,其离化碰撞几乎被完全抑制。器件探测红外光的波长由周期性异质结构吸收层基态能级和激发态能级的能量差决定,而能级的相对位置本质上是由材料的结构参数(如势阱/势垒层的厚度、Al组分)决定,因此通过合理吸收层的材料参数可实现从近红外波段到远红外波段的响应调节。
图2和图3所示为本实例所述器件结构的截面示意图,两者的区别在于对入射红外光的耦合方式不同。由于子带跃迁具有偏振选择性,即入射的红外光要有垂直于外延生长平面的电场分量,因此不能直接吸收垂直入射的光波。图2是采用侧面耦合的方式,即将制作完成后器件的一侧面磨成一定的倾斜角度,红外光从该斜面入射。图3是采用光栅耦合的方式,在上电极接触层上制作出与入射光波长匹配的一维或二维光栅结构,红外光从上表面垂直入射。
该结构采用分子束外延技术(MBE)或金属有机化合物气相沉积技术(MOCVD)在蓝宝石衬底上生长,材料生长和器件制备流程如下:
(1)在蓝宝石衬底上先生长2 µm 的AlN缓冲层;
(2)在AlN缓冲层上接着生长500 nm的n型GaN下电极接触层,掺杂浓度为5×1018cm-3
(3)在n型GaN下电极接触层上再生长10个周期GaN(20 nm)/AlN(20 nm)异质结构倍增层,两种材料交替生长并保持严格周期性;
(4)在倍增层之上生长20 nm的p型GaN电荷层,p型掺杂浓度为1×1018 cm-3
(5)在p型GaN电荷层之上生长40个周期GaN(1.5 nm)/AlN(1.5 nm)异质结构吸收层,GaN层n型掺杂,掺杂浓度为1×1019 cm-3
(6)在吸收层之上再生长100 nm的p型GaN上电极接触层,掺杂浓度为1×1019 cm-3
(7)生长完成后的外延片在空气氛围中600℃高温退火半小时以激活p型掺杂的杂质;
(8)若采用图3所示的红外光耦合结构,则先采用全息曝光技术和ICP刻蚀技术在外延片表面制作出一维或二维光栅结构;
(9)采用光刻工艺和ICP刻蚀工艺将材料样品的部分区域刻蚀至n型GaN下电极接触层,形成直径为数十微米至数百微米的圆形或正方形台面结构;
(10)采用电子束蒸发技术在台面结构之上沉积厚度为2.5 nm/5 nm的Ni/Au透明电极或200 nm的氧化铟锡(ITO)透明电极,然后在刻蚀后露出的n型GaN表面采用溅射的方法沉积厚度为20 nm/300 nm的Ti/Au电极;
(11)制作电极后的样品在氧气氛围中500℃退火3 min;
(12)再采用等离子体化学气相沉积技术(PECVD)在样品表面沉积300 nm SiO2或SiNx钝化保护层,采用反应离子刻蚀(RIE)技术将金属电极上的钝化保护层刻蚀掉;
(13)若采用图2所示的红外光耦合结构,则还需将衬底的底面一侧用砂纸磨成45°角。
图4所示为计算得到的周期性异质结构吸收层(只给出5个周期)导带示意图和电子波函数分布。根据计算结果,在该材料结构参数下基态能级和激发态能级的能量差约为0.81 eV,意味着将对峰值波长1.53 µm的近红外光产生响应,该波段刚好对应于光通信所关注的波段。从图中可以看出激发态能级波函数在吸收层的各个量子阱之间有较强的相互耦合,有助于光生电子高效的迁移到倍增层中。
图5所示为仿真的周期性异质结构倍增层在1 MV/cm电场下的能带结构,在强电场的作用下能带整体发生了倾斜。在没有外加电场或外加电场作用很小时,GaN势阱层和AlN势垒层内由于自身的极化效应导致电场方向相反,如图4中导带所示,但在强电场作用下势阱层和势垒层的电场方向变得趋于一致,这时AlN势垒层中存在的极化效应有助于增加载流子动能,这对于减小器件的雪崩电压有帮助。根据前面对器件工作原理的描述,光生电子每次从AlN势垒层中进入到GaN势阱时都能发生一次碰撞离化,则电子碰撞离化的次数与异质结构的周期数相关,实施例中十个周期的GaN/AlN结构理论上约有210次碰撞离化,即器件饱和增益在103量级。

Claims (7)

1.一种高线性增益红外雪崩光电二极管,其特征在于,所述二极管的材料结构自下至上包括:衬底、缓冲层、下电极接触层、周期性异质结构倍增层、电荷层、周期性异质结构吸收层和上电极接触层;所述缓冲层、下电极接触层、电荷层和上电极接触层所选材料均为AlxGa1-xN,0≤x≤1;
所述周期性异质结构倍增层由GaN和AlN两种材料交替生长而成,形成周期数为1至200的异质结构,GaN或AlN的厚度为0.001 µm至0.2 µm;所述周期性异质结构吸收层由两种不同组分的AlyGa1-yN和AlzGa1-zN材料交替生长而成,形成周期数为1至200的量子阱或超晶格结构,其中0≤y<z≤1;所述AlyGa1-yN势阱n型掺杂,掺杂浓度在5×1017cm-3至5×1019 cm-3之间,厚度为0.001 µm至0.02 µm;所述AlyGa1-yN势垒厚度为0.001 µm至0.1 µm。
2.根据权利要求1所述的高线性增益红外雪崩光电二极管,其特征在于:所述衬底为Al2O3、GaN、AlN、Si材料中的任意一种。
3.根据权利要求1所述的高线性增益红外雪崩光电二极管,其特征在于:所述缓冲层的厚度为0.01 µm至10 µm。
4.根据权利要求1所述的高线性增益红外雪崩光电二极管,其特征在于:所述下电极接触层的n型掺杂浓度在1×1017 cm-3至5×1019 cm-3之间,厚度为0.05 µm至10 µm。
5.根据权利要求1所述的高线性增益红外雪崩光电二极管,其特征在于:所述电荷层的p型掺杂浓度在1×1017 cm-3至1×1019 cm-3之间,厚度为0.01 µm至0.15 µm。
6.根据权利要求1所述的高线性增益红外雪崩光电二极管,其特征在于:所述上电极接触层p型掺杂浓度在1×1017 cm-3至1×1019 cm-3之间,厚度为0.05 µm至0.2 µm。
7.制备权利要求1-6中任意一项所述的高线性增益红外雪崩光电二极管的方法,其特征在于:1)在衬底上生长缓冲层;2)在缓冲层上生长下电极接触层;3)在下电极接触层上生长周期性异质结构倍增层;4)在倍增层之上生长电荷层;5)在电荷层之上生长周期性异质结构吸收层;6)在吸收层之上生长上电极接触层;7)在下电极接触层上制作n型欧姆接触电极,在上电极接触层之上制作p型欧姆接触电极;8)为了实现对红外光的耦合,将制作完成后的器件的衬底一侧面制成斜面或者在制作p型欧姆接触电极之前在上电极接触层上制作一维光栅或二维光栅。
CN201711215411.2A 2017-11-28 2017-11-28 一种高线性增益红外雪崩光电二极管及其制备方法 Active CN107863403B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711215411.2A CN107863403B (zh) 2017-11-28 2017-11-28 一种高线性增益红外雪崩光电二极管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711215411.2A CN107863403B (zh) 2017-11-28 2017-11-28 一种高线性增益红外雪崩光电二极管及其制备方法

Publications (2)

Publication Number Publication Date
CN107863403A CN107863403A (zh) 2018-03-30
CN107863403B true CN107863403B (zh) 2023-10-20

Family

ID=61703633

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711215411.2A Active CN107863403B (zh) 2017-11-28 2017-11-28 一种高线性增益红外雪崩光电二极管及其制备方法

Country Status (1)

Country Link
CN (1) CN107863403B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108899380B (zh) * 2018-06-08 2020-05-12 清华大学 红外半导体雪崩探测器及其制备方法
CN109148637B (zh) * 2018-09-20 2020-10-02 南京邮电大学 具有阶梯光栅结构的单光子雪崩二极管探测器及制作方法
CN110311000B (zh) * 2019-07-17 2021-04-02 中国科学院半导体研究所 二类超晶格雪崩光电探测器及其制作方法
CN112420860A (zh) * 2020-12-11 2021-02-26 武汉光谷量子技术有限公司 一种平面型apd的外延结构、apd及其制作方法
CN114093741B (zh) * 2021-11-25 2024-01-16 上海集成电路研发中心有限公司 光敏传感器及其制备工艺

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204539A (en) * 1991-01-28 1993-04-20 Nec Corporation Avalanche photodiode with hetero-periodical structure
JP2005244072A (ja) * 2004-02-27 2005-09-08 Toshiba Corp 半導体装置
CN101599512A (zh) * 2009-06-26 2009-12-09 中山大学 一种雪崩放大长波量子阱红外探测器
CN104051561A (zh) * 2014-07-04 2014-09-17 东南大学 一种氮化镓基紫外雪崩光电探测器
CN104362213A (zh) * 2014-09-11 2015-02-18 东南大学 一种铝镓氮基日盲紫外探测器及其制备方法
CN105261668A (zh) * 2015-11-23 2016-01-20 南京大学 异质结倍增层增强型AlGaN日盲雪崩光电二极管及其制备方法
CN105374896A (zh) * 2015-11-27 2016-03-02 中国电子科技集团公司第五十五研究所 一种电子轰击型雪崩二极管
CN106409968A (zh) * 2014-03-31 2017-02-15 清华大学 AlGaN基超晶格雪崩型紫外探测器及其制备方法
CN106847933A (zh) * 2017-01-16 2017-06-13 中国工程物理研究院电子工程研究所 单片集成紫外‑红外双色雪崩光电二极管及其制备方法
CN106960887A (zh) * 2017-05-02 2017-07-18 常熟理工学院 一种铝镓氮基日盲紫外探测器及其制备方法
CN207705208U (zh) * 2017-11-28 2018-08-07 中国工程物理研究院电子工程研究所 一种高线性增益红外雪崩光电二极管

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045833B2 (en) * 2000-09-29 2006-05-16 Board Of Regents, The University Of Texas System Avalanche photodiodes with an impact-ionization-engineered multiplication region
US20160300973A1 (en) * 2013-05-24 2016-10-13 U.S. Army Research Laboratory Attn: Rdrl-Loc-I Variable range photodetector with enhanced high photon energy response and method thereof
US9379271B2 (en) * 2013-05-24 2016-06-28 The United States Of America As Represented By The Secretary Of The Army Variable range photodetector and method thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204539A (en) * 1991-01-28 1993-04-20 Nec Corporation Avalanche photodiode with hetero-periodical structure
JP2005244072A (ja) * 2004-02-27 2005-09-08 Toshiba Corp 半導体装置
CN101599512A (zh) * 2009-06-26 2009-12-09 中山大学 一种雪崩放大长波量子阱红外探测器
CN106409968A (zh) * 2014-03-31 2017-02-15 清华大学 AlGaN基超晶格雪崩型紫外探测器及其制备方法
CN104051561A (zh) * 2014-07-04 2014-09-17 东南大学 一种氮化镓基紫外雪崩光电探测器
CN104362213A (zh) * 2014-09-11 2015-02-18 东南大学 一种铝镓氮基日盲紫外探测器及其制备方法
CN105261668A (zh) * 2015-11-23 2016-01-20 南京大学 异质结倍增层增强型AlGaN日盲雪崩光电二极管及其制备方法
CN105374896A (zh) * 2015-11-27 2016-03-02 中国电子科技集团公司第五十五研究所 一种电子轰击型雪崩二极管
CN106847933A (zh) * 2017-01-16 2017-06-13 中国工程物理研究院电子工程研究所 单片集成紫外‑红外双色雪崩光电二极管及其制备方法
CN106960887A (zh) * 2017-05-02 2017-07-18 常熟理工学院 一种铝镓氮基日盲紫外探测器及其制备方法
CN207705208U (zh) * 2017-11-28 2018-08-07 中国工程物理研究院电子工程研究所 一种高线性增益红外雪崩光电二极管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AlGaN/GaN异质结单片集成紫外/红外双色探测器;齐利芳等;《半导体技术》;第39卷(第08期);第575-578页 *

Also Published As

Publication number Publication date
CN107863403A (zh) 2018-03-30

Similar Documents

Publication Publication Date Title
CN106847933B (zh) 单片集成紫外-红外双色雪崩光电二极管及其制备方法
CN107863403B (zh) 一种高线性增益红外雪崩光电二极管及其制备方法
CN105720130B (zh) 基于量子阱带间跃迁的光电探测器
Alaie et al. Recent advances in ultraviolet photodetectors
US10886325B2 (en) Infrared detector devices and focal plane arrays having a transparent common ground structure and methods of fabricating the same
CN101872798B (zh) 一种紫外红外双色探测器及制作方法
CN108305911B (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
WO2014175128A1 (ja) 半導体素子およびその製造方法
US8659053B2 (en) Semiconductor light detecting element
CN104167458A (zh) 紫外探测器及其制备方法
JP3287458B2 (ja) 超高速・低電圧駆動アバランシェ増倍型半導体受光素子
CN109285914B (zh) 一种AlGaN基紫外异质结光电晶体管探测器及其制备方法
CN102820367A (zh) 基于异质结构吸收、倍增层分离GaN基雪崩光电探测器
CN111403505A (zh) 一种双极型可见光探测器及其制备方法
CN113169244A (zh) 具有稀释氮化物层的光电子装置
CN206541827U (zh) 单片集成紫外‑红外双色雪崩光电二极管
CN207705208U (zh) 一种高线性增益红外雪崩光电二极管
CN107393983B (zh) 含极化调控层的氮化物量子阱红外探测器及其制备方法
Liu et al. Progress on photovoltaic AlGaN photodiodes for solar-blind ultraviolet photodetection
CN107342344B (zh) 一种紫外雪崩探测器及其制备方法
CN104979420A (zh) 一种基于微腔的量子点场效应单光子探测器
KR101663644B1 (ko) 변형된 도핑 및 조성 흡수층을 이용한 애벌랜치 포토다이오드
JP2014154816A (ja) 受光素子および受光素子を備えた太陽電池
CN112635615B (zh) 具有多吸收量子阱的光伏型氮化物子带跃迁红外探测器
US11495707B2 (en) AlGaN unipolar carrier solar-blind ultraviolet detector and manufacturing method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant