WO2014175128A1 - 半導体素子およびその製造方法 - Google Patents

半導体素子およびその製造方法 Download PDF

Info

Publication number
WO2014175128A1
WO2014175128A1 PCT/JP2014/060775 JP2014060775W WO2014175128A1 WO 2014175128 A1 WO2014175128 A1 WO 2014175128A1 JP 2014060775 W JP2014060775 W JP 2014060775W WO 2014175128 A1 WO2014175128 A1 WO 2014175128A1
Authority
WO
WIPO (PCT)
Prior art keywords
adjustment layer
layer
substrate
quantum well
inp
Prior art date
Application number
PCT/JP2014/060775
Other languages
English (en)
French (fr)
Inventor
馨 柴田
秋田 勝史
慧 藤井
貴司 石塚
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013090478A external-priority patent/JP2014216382A/ja
Priority claimed from JP2013140001A external-priority patent/JP2015015306A/ja
Priority claimed from JP2013166656A external-priority patent/JP2015035550A/ja
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201480022894.2A priority Critical patent/CN105144410A/zh
Priority to US14/784,817 priority patent/US9680040B2/en
Publication of WO2014175128A1 publication Critical patent/WO2014175128A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • H01L27/14652Multispectral infrared imagers, having a stacked pixel-element structure, e.g. npn, npnpn or MQW structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34306Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/173The laser chip comprising special buffer layers, e.g. dislocation prevention or reduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3422Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers comprising type-II quantum wells or superlattices

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof, and more specifically to a semiconductor device having a band gap energy corresponding to the near infrared to infrared region and a manufacturing method thereof.
  • III-V group compound semiconductors such as ⁇ InP correspond to the near-infrared to infrared band gap energy
  • research and development of light-receiving elements for communication, biopsy, night imaging, etc. are being conducted.
  • the near-infrared to infrared wavelength region the absorption spectrum of substances related to living organisms and the environment is located. Therefore, it is important to increase the light-receiving sensitivity of the light-receiving element using InP or the like to the longer wavelength region. ing.
  • Non-Patent Document 1 discloses a mesa-type single pixel including an InGaAs / GaAsSb type 2 multiple quantum well structure (MQW: Multiple Quantum Well) light-receiving layer on an InP substrate in order to increase sensitivity in a longer wavelength region.
  • MQW Multiple Quantum Well
  • a photodiode has been proposed.
  • an InGaAs buffer is stacked on an InP substrate, and an InGaAs / GaAsSb type 2 multiple quantum well structure is stacked thereon.
  • the mesa type single pixel photodiode has a cut-off wavelength of 2.39 ⁇ m, and shows sensitivity characteristics from a wavelength of 1.7 ⁇ m to 2.7 ⁇ m.
  • a light receiving element in which a plurality of pixels (light receiving units) are arranged is used.
  • Patent Documents 1 and 2 in the planar light-receiving element in which pixels are formed by introducing impurities by selective diffusion, the above-described InGaAs / GaAsSb type 2 multiple quantum well structure is used, and the multiple quantum well structure is formed by impurities.
  • a light receiving element in which a semiconductor multilayer structure has been devised has been proposed. By using this laminated structure, a light receiving element having an arrayed pixel having sensitivity in the near infrared to infrared region can be obtained.
  • Non-Patent Document 2 an InGaAs / GaAsSb type 2 MQW is formed as an active layer on an InP substrate, and an LED and a laser diode having an emission wavelength of 2.14 ⁇ m have been proposed.
  • This type 2 MQW is grown at a temperature of 530 ° C. by a metal-organic vapor phase epitaxy (MOVPE: Metal-Organic Vapor Phase Epitaxy) method.
  • MOVPE Metal-organic vapor phase epitaxy
  • An object of the present invention is to provide a semiconductor device and a method for manufacturing the same that can improve sensitivity or quantum efficiency in the near infrared to infrared region.
  • the semiconductor device of the present invention includes a group III-V semiconductor substrate, a plurality of pairs of multiple quantum well structures that are located on the substrate and a pair of a layer and b layer, and a substrate and a multiple quantum well structure.
  • a crystal adjustment layer located between the first adjustment layer and the first adjustment layer in contact with the substrate, and the same material as the a layer or the b layer of the multiple quantum well structure. And a second adjustment layer.
  • quantum efficiency can be improved in the near infrared to infrared region.
  • FIG. 1 is a schematic view of an epitaxial wafer in an embodiment of the present invention.
  • FIG. 3 is a partial enlarged view of a crystal adjustment layer in the epitaxial wafer of FIG. 2. It is a figure which shows the state which the light receiving element of FIG. 1 waits for the incidence of light. It is a figure which shows the transmittance
  • FIG. 3 is a diagram showing the sensitivity of each test specimen in Example 1.
  • a semiconductor device includes a group III-V semiconductor substrate, a plurality of pairs of multiple quantum well structures (MQWs) located on the substrate, and a pair of a and b layers.
  • MQWs multiple quantum well structures
  • a crystal adjustment layer positioned between the substrate and the multiple quantum well structure, wherein the crystal adjustment layer is made of the same material as the substrate and is in contact with the substrate; an a layer of the multiple quantum well structure; and a second adjustment layer made of the same material as the b layer.
  • the first adjustment layer of the crystal adjustment layer is made of the same material as the substrate and fills in the high concentration of impurities such as oxygen adhering to the surface of the substrate to eliminate the influence of oxygen and the like.
  • the surface irregularities can be filled and flattened.
  • the second adjustment layer made of the same material as the a layer or b layer of the light receiving layer is epitaxially grown on the first adjustment layer, thereby providing a good underlayer for improving the crystallinity of the light receiving layer.
  • the sensitivity of the light receiving element can be improved by the action of these crystal adjustment layers.
  • an InP substrate As the substrate substrate, an InP substrate, a GaSb substrate, a GaAs substrate, a GaP substrate, an InAs substrate, an InSb substrate, an AlSb substrate, an AlAs substrate, or the like can be used.
  • the substrate may be doped with a dopant of the first conductivity type or may be doped with a high-resistance dopant.
  • non-dope may be sufficient.
  • the transmittance of the near-infrared to infrared region of the Fe-doped semi-insulating InP substrate is higher than that of the S-doped n-type InP substrate.
  • the near-infrared to infrared transmittance may be improved.
  • the transmittance in the near-infrared to infrared region is improved as compared with a GaSb substrate that shows no p-type without intentional doping.
  • the conductive dopant is not included in the substrate, choices of the type of the substrate can be increased. For example, it is not necessary to increase the free carriers by containing the first conductivity type dopant in a substrate having a thickness exceeding the wavelength of the target light at a predetermined level or more. For this reason, in the light receiving element incident on the back surface of the substrate, light can be prevented from being absorbed by free carriers in the substrate, and the quantum efficiency or sensitivity is greatly improved as compared with a substrate containing free carriers.
  • Epi-substrate interface A so-called epi-substrate interface is formed at the interface between the first adjustment layer of the crystal adjustment layer and the substrate.
  • the first adjustment layer is grown on the surface of the substrate, it can be identified by the epi-substrate interface that the first adjustment layer is a layer grown on the substrate, unlike the substrate.
  • the epi-substrate interface refers to, for example, cutting out a semiconductor substrate and cleaning and flattening the surface by etching or the like, and then exposing it to the atmosphere once and adjusting it again by etching or the like.
  • the interface between the crystal layer and the substrate when grown.
  • oxygen and carbon are mixed in as a high concentration as impurities.
  • the epi-substrate interface satisfies at least one of oxygen concentration of 1 ⁇ 10 17 cm ⁇ 3 or more and carbon concentration of 1 ⁇ 10 17 cm ⁇ 3 or more.
  • the oxygen concentration or the like in a normal semiconductor layer is 5 ⁇ 10 16 cm ⁇ 3 or less.
  • the crystal adjustment layer is located between the substrate and the multiple quantum well structure and can be said to be a buffer layer.
  • the first adjustment layer is made of the same material as the substrate, and fills the distribution of oxygen and other impurities adhering to the surface of the substrate in a high concentration, thereby eliminating the influence of oxygen and the like, and unevenness of the surface. Can be filled and flattened.
  • the second adjustment layer made of the same material as the a layer or b layer of the light receiving layer is epitaxially grown on the first adjustment layer, thereby providing a good underlayer for improving the crystallinity of the light receiving layer.
  • the crystal adjustment layer can suppress a decrease in crystallinity caused by an unfavorable surface property of the substrate such as a foreign substance.
  • the sensitivity of the light receiving element can be improved by the action of these crystal adjustment layers.
  • a convex portion may be generated on the surface of the epitaxial wafer with a decrease in crystallinity, which may result in a decrease in product yield. For example, if the total thickness of the crystal adjustment layer is about 160 nm or more, the foreign matter is completely or partially embedded in the crystal adjustment layer to prevent a decrease in crystallinity and crystal defects are enlarged. Can be deterred.
  • the crystal adjustment layer includes a first adjustment layer and a second adjustment layer, and the thickness of the first adjustment layer may be 1/5 or less of the thickness of the second adjustment layer. Since there are many materials that absorb light in the near-infrared to infrared region, it is reasonable to form the first adjustment layer thin. Further, the second adjustment layer made of the same material as the a layer or the b layer of the light receiving layer is epitaxially grown to be a thick layer, so that a good underlayer for improving the crystallinity of the light receiving layer is obtained.
  • the relationship between the thickness ranges of the first adjustment layer and the second adjustment layer is more preferably set such that the thickness of the first adjustment layer is 1/10 or less, more preferably 1/20 or less of the thickness of the second adjustment layer. .
  • the thickness of the first adjustment layer is 10 nm or more and 60 nm or less and the thickness of the second adjustment layer is 150 nm or more, for example, 300 nm can be shown.
  • the first adjustment layer contains a dopant in a high concentration, by reducing the thickness as described above, even when a light-receiving element that is incident on the back surface of the substrate is configured, it is much thinner than the wavelength of the target light. Thus, absorption of light by free carriers can be avoided. As a result, quantum efficiency or sensitivity can be increased.
  • the crystal adjustment layer may contain a first conductivity type dopant or may be non-doped.
  • the first conductivity type dopant concentration of the first adjustment layer may be higher than the first conductivity type dopant concentration of the second adjustment layer.
  • the first adjustment layer containing a high concentration of dopant can suppress the adverse effect of impurities (impurities on the substrate epi interface) attached by being exposed to the atmosphere before the growth of the epitaxial layer. Deposits such as fine particles and processed layers are removed from the surface of the substrate by wet etching or the like before the growth of the epitaxial layer.
  • the first adjustment layer having the high first conductivity type dopant concentration forms an interface between the substrate and the epi substrate.
  • the adverse effect of the deposit can be suppressed.
  • the deposits lower the crystallinity of the multiple quantum well and deteriorate the flatness of the interface of each layer of the multiple quantum well.
  • the interface of the multiple quantum well is planarized. It is predicted from the improvement in crystallinity that the dark current is suppressed when the light receiving element is formed by suppressing the adverse effect of the first adjustment layer. For this reason, sensitivity is improved and dark current is further suppressed.
  • the first conductivity type dopant concentration of the first adjustment layer may be five times or more the first conductivity type dopant concentration of the second adjustment layer. As a result, it is possible to enhance the action of suppressing the adverse effect of the deposit on the epi-substrate interface of the first adjustment layer.
  • concentration of the first conductivity type dopant for example, the first conductivity type dopant concentration of the first adjustment layer is 1 ⁇ 10 17 cm ⁇ 3 or more and 8 ⁇ 10 18 cm ⁇ 3 or less
  • the dopant concentration of the first conductivity type of the adjustment layer may be 7 ⁇ 10 16 cm ⁇ 3 or more and 8 ⁇ 10 17 cm ⁇ 3 or less.
  • the second adjustment layer is thicker than the first adjustment layer as described above, when the dopant concentration is high (for example, about 1 ⁇ 10 18 cm ⁇ 3 ), absorption by free carriers increases and the sensitivity is likely to decrease.
  • the material of the dopant doped to a 1st adjustment layer and a 2nd adjustment layer may be the same, and may differ.
  • the semiconductor element according to the present embodiment can further include a first conductive side electrode, and the first conductive side electrode (ground electrode) is in ohmic contact with the crystal adjustment layer.
  • the substrate may include a high-resistance dopant
  • the crystal adjustment layer may include a first conductivity type dopant
  • the pixel may include a second conductivity type region.
  • the first conductive side electrode is not disposed on the back surface of the substrate.
  • the first conductive side electrode is disposed in the crystal adjustment layer, the first conductive side electrode is in ohmic contact with the crystal adjustment layer.
  • the first conductive side electrode can be in ohmic contact with the first adjustment layer or the second adjustment layer of the crystal adjustment layer.
  • the second adjustment layer When the first conductive side electrode is brought into ohmic contact with the second adjustment layer, at least the second adjustment layer includes a dopant in the crystal adjustment layer.
  • the second adjustment layer is preferable for disposing the first conductive side electrode because the film thickness in the crystal adjustment layer is thick.
  • the first adjustment layer is irrelevant to the voltage path for applying the reverse bias voltage to the pin junction or the pn junction. For this reason, the first adjustment layer may be doped with the first conductivity type dopant, or may be non-doped.
  • the first adjustment layer When doping the first adjustment layer with the first conductivity type dopant, if the first conductivity type dopant concentration of the first adjustment layer is higher than the first conductivity type dopant concentration of the second adjustment layer, the first adjustment layer The adverse effect of the deposit on the interface between the epitaxial substrate and the substrate can be suppressed, and further reduction in dark current and improvement in sensitivity can be expected.
  • the first conductivity type dopant concentration of the first adjustment layer of the crystal adjustment layer is higher than the first conductivity type dopant concentration of the second adjustment layer. May be.
  • the dopant concentration of the first adjustment layer is high, it is preferable for ohmic contact.
  • the bad influence of the deposit can be suppressed by growing the first adjustment layer containing the first conductivity type dopant in a high concentration on the surface of the substrate to which the deposit such as oxide is adhered. For this reason, when a light receiving element is formed, sensitivity is further improved and dark current is also suppressed.
  • the first conductive side electrode is brought into contact with the first adjustment layer containing a high concentration of the first conductivity type dopant.
  • the thickness of the first adjustment layer is larger than that of the second adjustment layer. Often very thin.
  • the first adjustment layer and the second adjustment layer are made of different materials.
  • the first conductive side electrode forming step the second adjustment layer is etched and the first adjustment layer is not etched. It is better to use an etchant with The second adjustment layer is removed by the etchant, and then a first conductive side electrode is formed so as to be in contact with the first adjustment layer.
  • the first adjustment layer / second adjustment layer is InP / InGaAs
  • the surface of the first adjustment layer InP can be surely exposed, and the first conductive side electrode can be brought into ohmic contact with the InP first adjustment layer.
  • the first conductive side electrode (back surface electrode) may be in ohmic contact with the back surface of the substrate.
  • the pixel is set to the second conductivity type, and the substrate is doped with the first conductivity type dopant.
  • the voltage adjustment power of the crystal adjustment layer can be reduced when the first conductivity type dopant is doped.
  • the crystal adjustment layer may be non-doped and i-type.
  • the dopant of the crystal adjustment layer may be different from the dopant of the substrate.
  • the first conductivity type dopant suitable for substrate growth is different from the first conductivity type dopant suitable for growth by, for example, the MOVPE method.
  • the substrate has a thickness several hundred times that of the first adjustment layer, but depending on the type of dopant, there is a type in which absorption is large in the near infrared to infrared range.
  • the first adjustment layer having a thickness of several hundreds does not cause a significant reduction in sensitivity.
  • the dopants of the first adjustment layer and the second adjustment layer may be the same or different.
  • the substrate is any of an InP substrate, a GaSb substrate, and a GaAs substrate
  • the light receiving layer is a type 2 multiple quantum well structure
  • the pair (a / b) is (InGaAs) / GaAsSb) or (InAs / GaSb).
  • InGaAs is In x Ga 1-x As (0.38 ⁇ x ⁇ 1)
  • GaAsSb is GaAs 1-y Sb y (0.36 ⁇ y ⁇ 1).
  • the type of the substrate may be a GaP substrate, InAs substrate, InSb substrate, AlSb substrate, AlAs substrate, or the like.
  • a product semiconductor element using a semiconductor element may be a light receiving element including a multiple quantum well structure as a light receiving layer. As a result, a light receiving element having high sensitivity in the near infrared to infrared region can be obtained. Further, an optical sensor device such as an imaging device may be obtained by combining this light receiving element and a readout circuit.
  • the semiconductor element may be a laser that emits light in the near infrared to infrared region, or a light emitting diode (LED). Thus, various light emitting devices may be formed.
  • the epitaxial wafer of the present invention is an epitaxial wafer in any one of the light receiving elements described above, which has a III-V semiconductor substrate and a semiconductor laminated structure on the substrate.
  • a method for manufacturing a semiconductor device is a method for manufacturing a semiconductor device by metal organic chemical vapor deposition (MOVPE).
  • MOVPE metal organic chemical vapor deposition
  • This manufacturing method includes a step of growing a crystal adjustment layer in contact with a group III-V semiconductor substrate, and a plurality of types 2 of multiple layers in contact with the crystal adjustment layer, with an a layer and a b layer as a pair.
  • the crystal adjustment layer is composed of a first adjustment layer and a second adjustment layer, and the first adjustment layer is made of the same material as the substrate.
  • the second adjustment layer is grown on the first adjustment layer with the same material as the a layer or the b layer so as to contact the lower surface of the multiple quantum well structure.
  • MOVPE method Metalorganic vapor phase epitaxy
  • the MOVPE method is suitable for forming a semiconductor element with good crystallinity and is not easily restricted by the size of the substrate.
  • the semiconductor element or the epitaxial wafer therefor in this embodiment may be grown by any growth method, but it is preferable to grow by the MOVPE method in the above points.
  • phosphine (PH 3 ) which is an inorganic material, is used as a phosphorus raw material, and arsine (AsH 3 ) is used as a raw material for As (arsenic).
  • the all-organometallic vapor phase epitaxy method is a method in which an organometallic gas is used for all film forming materials in the MOVPE method.
  • the difference from the metal organic chemical vapor deposition method appears in the raw material for the growth of the group III-V semiconductor layer containing phosphorus (P).
  • the difference between the all-metal vapor phase growth method and the metal-organic vapor phase growth method is simply whether to use tertiary butylphosphine (TBP) or an inorganic material phosphine (PH 3 ) as the phosphorus raw material. Appears.
  • the layer containing P can of course be grown by the MOVPE method. That is, for example, an InP window layer or an InP first adjustment layer can be grown using a commercially available MOVPE growth apparatus and a commercially available source gas.
  • TBP tertiary butyl phosphine
  • PH 3 phosphine
  • Type 2 (InGaAs / GaAsSb) multiple quantum well structure In the case of a light receiving element using an InP substrate, the uppermost window layer of a semiconductor stacked structure including a type 2 (InGaAs / GaAsSb) multiple quantum well structure Often, an InP layer is used. In this case, for example, the InP window layer can be grown using phosphine (PH 3 ) as a phosphorus raw material by the MOVPE method.
  • phosphine PH 3
  • FIG. 1 is a sectional view of a light receiving element (planar photodiode) 50 in a detailed example of an embodiment of the present invention.
  • the light receiving element 50 is formed on the epitaxial wafer shown in FIG.
  • the interface between the InP substrate 1 and the first adjustment layer 2 a is the epi substrate interface 18.
  • the soot crystal adjusting layer 2 is formed of a composite layer of InP first adjusting layer 2a / InGaAs second adjusting layer 2b.
  • the InGaAs second adjustment layer 2b is doped with an n-type impurity (first conductivity type dopant), and the first conductive side electrode 12 (also referred to as a ground electrode or an n-side electrode) is in ohmic contact.
  • the total thickness of the crystal adjustment layer 2 is 160 nm or more.
  • the foreign matter is partially or completely embedded to form an upper type 2 multiple quantum well structure.
  • the crystallinity of the light receiving layer 3 can be maintained. In particular, it is possible to suppress the coarse (over 30 ⁇ m diameter) growth of the convex portion that may be generated on the surface of the window layer 5.
  • the thickness of the InP first adjustment layer 2a is 10 nm or more and 60 nm or less
  • the thickness of the InGaAs second adjustment layer 2b is 150 nm or more.
  • the thickness of the InP first adjustment layer 2a is 1/5 or less of the thickness of the InGaAs second adjustment layer 2b.
  • the pixels P of the light receiving element 50 are arranged vertically and horizontally at a pitch of 30 ⁇ m, for example, and provide an image of light in the near infrared to infrared region.
  • the main part of the pixel P is formed by the p-type region 6.
  • the p-type region is formed by selectively diffusing zinc (Zn), which is a p-type impurity, from the surface of the window layer 5 in the opening of the selective diffusion mask pattern 36. independence is ensured by being separated from the adjacent pixel P by a region that is not selectively diffused.
  • a pn junction 15 or a pi junction (a pin junction in a wide range including the first conductive side electrode side) is formed at the tip of the p-type region 6 of each pixel P.
  • the light-receiving layer 3 is intended to be a pin junction without adding impurities to make it intrinsic, but inevitably contains impurities (for example, n-type impurities) at a low concentration. For this reason, although it is called a pin type photodiode, a pn junction is actually formed at the tip of the p type region. Here, the pin junction and the pn junction are referred to as a pn junction 15.
  • the crystallinity of the multiple quantum well structure is weak against impurities. There is a problem that. Even for impurities having a relatively low concentration, the crystallinity deteriorates and the dark current increases greatly. For this reason, when the pn junction 15 is formed, the range of impurities introduced from the window layer 5 is set in the upper part of the InP window layer 5 or is limited in the diffusion concentration distribution adjusting layer 4 to thereby form a multiple quantum well structure. The concentration inside must be controlled strictly low.
  • the diffusion concentration distribution adjusting layer 4 is disposed between the light receiving layer 3 of the type 2 multiple quantum well structure and the window layer 5.
  • the carrier concentration of the selectively diffused impurity needs to be in ohmic contact with the pixel electrode in the window layer and is distributed at a high concentration, and needs to be rapidly reduced in a stepped manner in the diffusion concentration distribution adjusting layer 4.
  • Abruptly decreasing stepwise to cross the background concentration of the opposite conductivity type carrier in the diffusion concentration distribution adjusting layer 4, or of the opposite conductivity type carrier in the multiple quantum well at the top in the type 2 multiple quantum well structure Cross over background concentration.
  • the intersection (plane) with the background concentration of the opposite conductivity type carrier constitutes the pn junction 15.
  • the near-infrared-to-infrared light-receiving element in which the impurity concentration distribution in the light-receiving layer 3 of the type 2 multiple quantum well structure is strictly controlled and the sensitivity is high and the dark current is suppressed can be obtained.
  • InGaAs used for the diffusion concentration distribution adjusting layer 4 has a lower Zn diffusion rate than InP forming the window layer 5, a portion where the Zn concentration distribution sharply decreases in the InGaAs diffusion concentration distribution adjusting layer 4.
  • the diffusion concentration distribution adjusting layer 4 is preferably formed of a material having high electrical conductivity in order to improve the followability of movement such as a moving image.
  • an epitaxial wafer is formed by stacking the above III-V semiconductors, and then a selective diffusion mask pattern 36 is disposed on the InP window layer 5 of the epitaxial wafer to selectively diffuse Zn.
  • the p-type region 6, that is, the pn junction 15 is formed.
  • the pixel electrode 11 and the first conductive side electrode 12 are also formed in the state of an epitaxial wafer.
  • the epitaxial wafer is divided into pieces for each light receiving element (chip) 50.
  • An anti-reflection film (AR) 35 is disposed on the back surface of the substrate in order to prevent reflection of light with respect to incidence on the back surface of the substrate and improve quantum efficiency or sensitivity.
  • FIG. 4 is a diagram showing a light reception standby state in which the light receiving element 50 is waiting for the target light to enter.
  • a reverse bias voltage is applied to the pn junction 15 by the pixel electrode 11 and the common ground electrode 12
  • the depletion layer S protrudes from the light receiving layer 3 for each pixel P and enters a light receiving standby state.
  • an electron / hole pair is generated, the hole drifts to the pixel electrode 11, and the electron drifts to the ground electrode 12.
  • An image can be obtained by reading out the charges accumulated in the pixel electrode 11 at a constant time pitch and creating an intensity distribution of the received light signal over the pixels.
  • the InGaAs second adjustment layer 2b needs to contain an n-type impurity.
  • the first adjustment layer 2a and the InP substrate 1 do not need to be conductive, can contain optimum impurities depending on their roles, and may be non-doped.
  • the n-type impurity concentration of the first adjustment layer 2a is higher than the n-type impurity concentration of the InGaAs second adjustment layer 2b, the adverse effect of the deposit on the epi-substrate interface can be suppressed and the sensitivity can be further increased.
  • FIG. 5 shows the near infrared to infrared transmittance of the sulfur (S) -doped InP substrate.
  • S sulfur
  • FIG. 5 shows the near infrared to infrared transmittance of the sulfur (S) -doped InP substrate.
  • S sulfur
  • FIG. 5 shows the near infrared to infrared transmittance of the sulfur (S) -doped InP substrate.
  • S sulfur
  • FIG. Exaggerated the decrease in transmittance at wavelengths of 3 ⁇ m or more seems to be due to the influence of dopants (impurities) rather than rough polishing.
  • the improvement in transmittance directly leads to an improvement in sensitivity.
  • doping with tellurium (Te), which is an n-type impurity is effective in increasing light transmittance in the near infrared to infrared region.
  • Te tellurium
  • a non-doped GaSb substrate is inevitably mixed with p-type impurities to become p-type, but although the transmittance of light in the near infrared region is high, the transmittance tends to drop sharply at wavelengths of 2.5 ⁇ m or more. is there. Therefore, in the case of a GaSb substrate, doping with Te is indispensable for ensuring high sensitivity in the near-infrared to infrared region regardless of whether or not the ground electrode is in ohmic contact with the substrate.
  • FIG. 6 is a diagram showing a modification of the light receiving element shown in FIG. 1 or FIG.
  • the ground electrode 12 is in ohmic contact with the back surface of the InP substrate.
  • the first adjustment layer 2a and the second adjustment layer 2b of the InP substrate 1-crystal adjustment layer 2 are , Arranged in series.
  • the crystal adjustment layer 2 may be the first conductivity or i-type.
  • the InP substrate 1 is preferably sulfur (S) doped. If limited to the near-infrared region, the transmittance is not significantly reduced as compared to Fe doping.
  • the voltage path on the ground electrode 12 side of the reverse bias voltage with respect to the pn junction 15 necessarily includes the InP substrate 1. Therefore, the voltage power source necessary for applying a sufficiently large reverse bias voltage to the pn junction 15 tends to be large because the thickness of the InP substrate 1 is thicker than the thickness of the second adjustment layer 2b.
  • FIG. 7 is a diagram showing another modification of the light receiving element shown in FIG. 1 or FIG.
  • the InP first adjustment layer 2a of the crystal adjustment layer 2 contains silicon (Si) having a high concentration, for example, 1 ⁇ 10 18 cm ⁇ 3 as the first conductivity type dopant, and has a thickness of 30 nm (0. 03 ⁇ m).
  • the InGaAs second adjustment layer 2b contains a lower concentration of Si, for example, 1 ⁇ 10 17 cm ⁇ 3 and has a thickness of 300 nm (0.3 ⁇ m).
  • the thickness of the InP first adjustment layer 2a is 1/5 or less of the thickness of the InGaAs second adjustment layer 2b, which is 1/10 in the present embodiment.
  • the ground electrode 12 is in ohmic contact with the InP first adjustment layer 2a. Therefore, in this structure, the reverse bias voltage with respect to the pn junction 15 is the ground electrode 12—InP first adjustment layer 2a—InGaAs second adjustment layer 2b-i type or low n type light receiving layer 3—p type region 6—pixel electrode. 11 and so on. Therefore, the InP first adjustment layer 2a contains n-type impurities at a high concentration. However, the InP substrate 1 does not need to be conductive, can contain an optimum impurity according to its role, and may be non-doped.
  • the first conductivity type dopant concentration of the first adjustment layer of the crystal adjustment layer is higher than the first conductivity type dopant concentration of the second adjustment layer.
  • Zn is introduced by the selective diffusion described above to form a pixel P separated by a region not selectively diffused from the adjacent pixel.
  • a p-side electrode to be the pixel electrode 11 and an n-side electrode to be the ground electrode 12 common to each pixel are formed.
  • the multiple quantum well 3 is removed by etching at a predetermined edge of the epitaxial wafer 10 to expose the crystal adjustment layer 2.
  • the InGaAs second adjustment layer 2b is removed by etching with an etchant. That is, InGaAs is etched so that InP functions as an etch stop layer.
  • AuGeNi or the like can be used for the n-side electrode 12, and AuZn or the like can be used for the p-side pixel electrode.
  • the semiconductor element or the epitaxial wafer can be manufactured by a normal MOVPE method as described above. That is, the above-described semiconductor element and the like can be manufactured using a commercially available MOVPE growth apparatus and a source gas that is commonly used there. Desirably, it is possible to produce a material having further excellent crystallinity by using the all-organic metal vapor phase growth method.
  • the all-organometallic vapor phase growth method is a method using an organometallic gas for all film forming materials.
  • the difference between the all-organic metal-organic vapor phase epitaxy method and the MOVPE method is manifested by using tertiary butylphosphine (TBP) or an inorganic material phosphine (PH 3 ) as a phosphorus raw material.
  • TBP tertiary butylphosphine
  • PH 3 inorganic material phosphine
  • a method for manufacturing the epitaxial wafer according to the above-described embodiment by metal organic vapor phase epitaxy will be described with reference to the first and second modifications. The description will be made with reference to each part of the metal-organic vapor phase epitaxy film forming apparatus, but it is a commercially available apparatus, and the structure of the film forming apparatus does not play an important role. To do.
  • n-type InP substrate 1 in which residual stress on the surface layer is removed by wet etching or the like and a predetermined planarization is realized is prepared, placed on the substrate table, and the crystal adjustment layer 2 is formed. grow up.
  • the crystal adjustment layer 2 grows InP as a first adjustment layer 2a in a thickness range of 10 nm to 60 nm, for example, about 10 nm.
  • TMIn trimethylindium
  • TEIn triethylindium
  • PH 3 phosphine
  • TBP tertiary butyl phosphine
  • These organometallic gas raw materials are unstable due to their large molecular weight, and easily decompose even when the film forming temperature (growth temperature) is a low temperature of 525 ° C. or lower, for example, a low temperature in the range of 450 ° C. to 495 ° C.
  • An InP layer is epitaxially grown on the substrate surface. By growing the same InP first adjustment layer 2a as that of the InP substrate 1 at a low temperature, the micro unevenness on the surface of the substrate is not activated, and impurities such as oxygen caused by contact with the atmosphere after wet etching are activated. Without being formed, the InP first adjustment layer 2a can be embedded. At this time, in order to obtain the first conductivity, an n-type impurity is doped using an organic source gas.
  • the n-type carrier concentration is, for example, about 3 ⁇ 10 17 cm ⁇ 3 .
  • the InGaAs second adjustment layer 2b is grown to a thickness of 150 nm or more, for example, about 150 nm.
  • a raw material for Ga (gallium) TEGa (triethylgallium) or TMGa (trimethylgallium) may be used.
  • TMIn or TEIn described above is used.
  • Arsine (AsH 3 ) is used as a raw material for As (arsenic).
  • TBAs tertiary butylarsine
  • TMAs trimethylarsenic
  • the same impurity as that of the first adjustment layer 2a is used and the n-type carrier concentration is set to about 3 ⁇ 10 17 cm ⁇ 3, for example.
  • the InGaAs second adjustment layer 2b made of the same material as that of one of the type 2 (InGaAs / GaAsSb) multiple quantum well structures constituting the light receiving layer 3 can be epitaxially grown.
  • the InGaAs second adjustment layer 2b functions as an underlayer of the light-receiving layer 3 having a multiple quantum well structure, and can achieve good crystallinity in the multiple quantum well structure.
  • an Fe-doped semi-insulating InP substrate 1 in which the residual stress of the surface layer is removed by wet etching or the like and a predetermined planarization is realized is prepared, placed on the substrate table, and the crystal adjustment layer 2 To grow.
  • the crystal adjustment layer 2 grows InP as a first adjustment layer 2a in a thickness range of 10 nm to 60 nm, for example, about 30 nm.
  • TMIn trimethylindium
  • TEIn triethylindium
  • phosphine (PH 3 ) or TBP (tertiary butyl phosphine) is used as a raw material for P.
  • An InP first adjustment layer 2a is epitaxially grown on the surface of the substrate 1.
  • an n-type impurity such as Si is doped at a high concentration of about 1 ⁇ 10 18 cm ⁇ 3 .
  • n-type impurity such as Si
  • Si tetraethylsilane (TeESi), tetramethylsilane (TeMSi), or the like is preferably used.
  • TeESi tetraethylsilane
  • TeMSi tetramethylsilane
  • the surface of the InP substrate 1 constitutes the substrate epi interface 18 and oxygen and carbon remain in high concentration.
  • the deposits lower the crystallinity of the multiple quantum well and deteriorate the flatness of the interface of each layer of the multiple quantum well. It is unclear how the first adjustment layer 2a containing a dopant at a high concentration improves the quantum efficiency of the semiconductor element, but it is possible that the interface of the multiple quantum well 3 is planarized. High nature.
  • the material of the first adjustment layer 2a is InP which is the same as that of the InP substrate 1. By growing the InP first adjustment layer 2a at a low temperature, the micro unevenness on the surface of the substrate is not activated, and impurities such as oxygen due to contact with the atmosphere after wet etching are not activated.
  • the InP first adjustment layer 2a can be embedded.
  • the high concentration of n-type dopant Si concentrates in the local contact area with the deposits on the epi-substrate interface, thereby improving the flexibility and improving the crystallinity of the first adjustment layer as a whole. It is also possible to do.
  • the InGaAs second adjustment layer 2b is grown to a thickness of 150 nm or more, for example, about 300 nm.
  • a raw material for Ga (gallium) TEGa (triethylgallium) or TMGa (trimethylgallium) may be used.
  • TEGa triethylgallium
  • TMGa trimethylgallium
  • TMIn or TEIn described above is used.
  • the raw material for As (arsenic) may be arsine (AsH 3 ), TBAs (tertiary butylarsine), or TMAs (trimethylarsenic).
  • the InGaAs second adjustment layer 2b made of the same material as one of the pair of type 2 (InGaAs / GaAsSb) multiple quantum well structures constituting the light receiving layer 3 can be epitaxially grown. Since this InGaAs second adjustment layer 2b has the same material as that of one pair of the multiple quantum well structure, it functions as an underlayer and can realize good crystallinity in the multiple quantum well structure.
  • the type 2 (InGaAs / GaAsSb) multiple quantum well structure light-receiving layer 3, InGaAs diffusion concentration distribution adjustment layer 4 and InP window layer 5 are grown in the same growth chamber consistently by metal organic vapor phase epitaxy.
  • the interfaces 16 and 17 shown in FIGS. 2 and 7 do not become regrowth interfaces, and there is no residual high concentration of oxygen and carbon.
  • the growth temperature or the substrate temperature is preferably maintained in the range of 400 ° C. or more and 525 ° C. or less.
  • the growth temperature is higher than this temperature range, phase separation occurs in a large scale in the GaAsSb layer in the light receiving layer 3. For this reason, it grows at 525 degrees C or less, More preferably, it is good to set it as 500 degrees C or less.
  • the organic MOVPE source gas is not sufficiently decomposed, and carbon is taken into the epitaxial layer. This is hydrocarbon carbon bonded to metal in the source gas.
  • carbon is mixed into the epitaxial layer, an unintended p-type region is formed, and performance degradation occurs in a state where the semiconductor element is finished. For example, performance deterioration occurs in the state of the light receiving element. For example, in the state of the light receiving element, there is a lot of dark current, and it cannot be a practical product.
  • the thickness of GaAsSb in the quantum well is 5 nm, for example, and the thickness of InGaAs is also 5 nm, for example.
  • TEGa triethylgallium
  • TBAs tertiary butylarsine
  • TMSb trimethylantimony
  • the raw material for Sb (antimony) may be TMSb (trimethylantimony) or TESb (triethylantimony).
  • TIPSb triisopropylantimony
  • TDMASb trisdimethylaminoantimony
  • the raw material for As (arsenic) may be arsine (AsH 3 ), TBAs (tertiary butylarsine) or TMAs (trimethylarsenic).
  • TBAs tertiary butylarsine
  • TMAs trimethylarsenic
  • InGaAs TEGa, TMIn, and TBAs can be used. Since these organometallic gas raw materials have a large molecular weight and are unstable, they can be completely decomposed at a relatively low temperature of 400 ° C. or more and 525 ° C. or less and contribute to crystal growth.
  • the composition change at the interface of the quantum well can be abruptly performed on the light-receiving layer 3 of the multiple quantum well by the all-organic metal vapor deposition method. As a result, highly accurate spectrophotometry can be performed.
  • a film forming apparatus of the all-organic metal vapor phase epitaxy will be briefly described below.
  • a quartz tube is disposed in the growth chamber (chamber), and a raw material gas is introduced into the quartz tube.
  • a substrate table is disposed in the quartz tube so as to be rotatable and airtight. The substrate table is provided with a heater for heating the substrate.
  • the temperature of the surface of the epitaxial wafer 1a during film formation is monitored by an infrared temperature monitoring device through a window provided on the ceiling of the growth chamber. This monitored temperature is a temperature at the time of growth or a temperature called a film forming temperature or a substrate temperature.
  • an InGaAs layer or the like is formed at a temperature of 400 ° C. or more and 525 ° C. or less, 400 ° C. or more and 525 ° C. or less are temperatures measured by this temperature monitor.
  • the forced exhaust from the quartz tube is performed by a vacuum pump.
  • the source gas is supplied by a pipe communicating with the quartz tube. Any number of source gases can be added to the quartz tube by increasing the number of pipes.
  • An organic metal gas source gas is put in a thermostat and maintained at a constant temperature. Hydrogen (H 2 ) and nitrogen (N 2 ) are used as the carrier gas.
  • the organometallic gas is carried by a carrier gas, and is sucked by a vacuum pump and introduced into a quartz tube.
  • the amount of carrier gas is accurately adjusted by an MFC (Mass Flow Controller). Many flow controllers, solenoid valves, and the like are automatically controlled by a microcomputer.
  • Example 1 In order to verify the operation of the present invention, the light receiving element 50 of Modification 1 shown in FIG. 6 was prototyped as Invention Example A1, and the light receiving sensitivity was measured. There are two test bodies, Example A1 and Comparative Example C1. Further, as reference example R1, FIG. The result converted into the photosensitivity based on the data of 5 was used.
  • Example R1 the magnitude relationship between the film thicknesses of the first adjustment layer and the second adjustment layer of the crystal adjustment layer is reversed as compared with Example A1 of the present invention.
  • the InP substrates in Invention Example A1 and Comparative Example C1 are S-doped InP substrates. Further, although the InP substrate of Reference Example R1 in Non-Patent Document 1 is not specified, it is described as N-type, and therefore contains S or other n-type impurities.
  • FIG. 8 shows the measurement results of the light receiving sensitivities of Example A1 and Comparative Example C1 at a wavelength of 2.2 ⁇ m.
  • FIG. 8 The light receiving sensitivity converted from the data of 5 is shown. In FIG. 8, they are represented as test body A1, test body C1, and test body R1, respectively.
  • the test body C1 of the comparative example of InP / InP the result was extremely low, about 0.4 to 0.5.
  • the sensitivity of the test specimen R1 of the reference example was about 0.75, which was lower than that of the example of the present invention.
  • Example 2 In order to investigate the influence of the n-type dopant concentration of the first adjustment layer and the second adjustment layer of the crystal adjustment layer, two test bodies were manufactured in accordance with the structure of the light receiving element 50 of Modification 2 shown in FIG. Test bodies A2 and A3. Common light receiving element portions are as follows.
  • the light receiving sensitivity was 1.5 A / W for the specimen A2 and 1.2 A / W for the specimen A3. Although both the test bodies A2 and A3 showed high sensitivity, the test body A2 in which the n-type dopant concentration of the first adjustment layer is higher than the n-type dopant concentration of the second adjustment layer has higher sensitivity. Recognize.
  • the semiconductor element of the present invention for example, the light receiving element, sensitivity can be improved in the near infrared to infrared region by devising the structure of the crystal adjustment layer or the buffer layer between the light receiving layer and the substrate. I was able to do it.
  • 1 InP substrate 2 crystal adjustment layer, 2a first adjustment layer, 2b second adjustment layer, 3 type 2 multiple quantum well light-receiving layer, 4 InGaAs diffusion concentration distribution adjustment layer, 5 InP window layer, 6 p-type region, 10 epitaxial wafer, 11 p-side electrode (pixel electrode), 12 ground electrode (n-side electrode), 15 pn junction, 16, 17 interface of epitaxial layer, 18 epi-substrate interface, 35 AR (antireflection) film, 36 selective diffusion Mask pattern, 50 light receiving element (light receiving element array), P pixel, S depletion layer.

Abstract

近赤外~赤外域において量子効率または感度が高い半導体素子等を提供する。基板と、基板の上に位置し、a層とb層とを1対として複数対の多重量子井戸構造と、基板と多重量子井戸構造との間に位置する結晶調整層とを備え、結晶調整層が、基板と同じ材料で構成され該基板に接する第1調整層と、多重量子井戸構造のa層またはb層と同じ材料で構成され、多重量子井戸構造に接する第2調整層とを含む。

Description

半導体素子およびその製造方法
  本発明は、半導体素子およびその製造方法に関し、より具体的には、近赤外~赤外域に対応するバンドギャップエネルギーを有する半導体素子およびその製造方法に関するものである。
  InP等のIII-V族化合物半導体は、バンドギャップエネルギーが近赤外~赤外域に対応することから、通信用、生体検査用、夜間撮像用などの受光素子の研究開発が行われている。近赤外~赤外域の波長域は、生体や環境に関連する物質の吸収スペクトルが位置するので、上記InP等を用いた受光素子の長波長域への受光感度の拡大が重要なテーマとなっている。たとえば、非特許文献1にはより長波長域の感度を高めるため、InP基板上にInGaAs/GaAsSbのタイプ2の多重量子井戸構造(MQW:Multiple  Quantum  Well)の受光層を備える、メサ型単画素のフォトダイオードの提案がなされている。この受光素子は、InP基板にInGaAsバッファを積層し、その上にInGaAs/GaAsSbのタイプ2の多重量子井戸構造を積層している。このメサ型単画素のフォトダイオードのカットオフ波長は2.39μmであり、波長1.7μmから2.7μmまでの感度特性が示されている。
  一方、撮像装置などでは複数の画素(受光部)を配列した受光素子が用いられる。特許文献1、2には、選択拡散によって不純物を導入することで画素を形成したプレーナ型受光素子において、上記のInGaAs/GaAsSbのタイプ2の多重量子井戸構造を用い、多重量子井戸構造が不純物によって劣化しないように、半導体積層構造に工夫を凝らした受光素子が提案されている。この積層構造を用いることで、近赤外~赤外域に感度をもつアレイ化された画素をもつ受光素子を得ることができる。
  また非特許文献2では、InP基板上に、InGaAs/GaAsSbのタイプ2のMQWを活性層として形成し、発光波長2.14μmのLEDおよびレーザーダイオードの提案がなされている。このタイプ2のMQWは、有機金属気相成長(MOVPE:Metal-Organic  Vapor  Phase  Epitaxy)法によって、温度530℃で成長している。InGaAsおよびGaAsSbの原料についても、それぞれの有機金属ガスが開示されている。
特開2009-206499号公報 特開2011-54915号公報
R.Sidhu, et.al. "A Long-Wavelength  Photodiode  on InP Using  Lattice-Matched  GaInAs-GaAsSb Type-II  Quantum  Wells, IEEE  Photonics  Technology  Letters,  Vol.17, No.12(2005),  pp.2715-2717 M.Peter, et.al. "Light-emitting diodes and laser diodes based on a Ga1-xInxAs/GaAs1-ySby type II superlattice on InP substrate"Appl. Phys. Lett., Vol.74, No.14 (5 April 1999), pp.1951-1953
  近赤外~赤外域の光はエネルギーが低く、環境温度の影響を強く受けるので、受光素子の場合には特に暗電流を低く抑えなければならない。このため結晶性を高めて暗電流を抑えることが重要であるとの認識がなされている。しかし感度もしくは量子効率を高めることもそれに劣らず重要である。上記の受光素子も含めて、従来の半導体素子では、暗電流の抑制に大きな注意を払うものの、感度もしくは量子効率の最大化については十分な注意が払われていない。
  本発明は、近赤外~赤外域において感度もしくは量子効率を向上することができる、半導体素子およびその製造方法を提供することを目的とする。
  本発明の半導体素子は、III-V族半導体の基板と、基板の上に位置し、a層とb層とを1対とした複数対の多重量子井戸構造と、基板と多重量子井戸構造との間に位置する結晶調整層とを備え、結晶調整層が、基板と同じ材料で構成され該基板に接する第1調整層と、多重量子井戸構造のa層またはb層と同じ材料で構成された第2調整層とを含む。
  本発明の半導体素子等によれば、近赤外~赤外域において量子効率を向上することができる。
本発明の実施の形態における受光素子を説明するための断面図である。 本発明の実施の形態におけるエピタキシャルウエハの概略図である。 図2のエピタキシャルウエハにおける結晶調整層の部分拡大図である。 図1の受光素子が光の入射を待機する状態を示す図である。 InP基板の赤外域の透過率を示す図である。 本発明の実施の形態例であって、図1に示す受光素子の変形例を示す図である。 本発明の実施の形態例であって、図1に示す受光素子の別の変形例を示す図である。 実施例1における各試験体の感度を示す図である。
<本願発明の実施の形態例の列記>
  最初に本願発明の実施の形態例を、1.半導体素子、2.エピタキシャルウエハ、3.半導体素子もしくはエピタキシャルウエハの製造方法、についての実施の形態例を列記して説明する。
1.半導体素子
本実施の形態に係わる半導体素子は、III-V族半導体の基板と、基板の上に位置し、a層とb層とを1対とした複数対の多重量子井戸構造(MQW)と、基板と多重量子井戸構造との間に位置する結晶調整層とを備え、結晶調整層が、基板と同じ材料で構成され該基板に接する第1調整層と、多重量子井戸構造のa層またはb層と同じ材料で構成された第2調整層とを含む。これによれば、結晶調整層のうち第1調整層は基板と同じ材料であり、基板の表面に付着している酸素等の不純物が高濃度に分布するのを埋めて酸素等の影響をなくし、かつ表面の凹凸を埋めて平坦にすることができる。受光層のa層またはb層と同じ材料の第2調整層を第1調整層上にエピタキシャル成長させることで受光層の結晶性を高める良好な下地層となる。これら結晶調整層の作用により、受光素子の感度を向上させることができる。
(1)基板
基板は、InP基板、GaSb基板、GaAs基板、GaP基板、InAs基板、InSb基板、AlSb基板、AlAs基板などを用いることができる。基板は半導体素子の構造により、第1導電型のドーパントがドープされてもよいし、高抵抗性のドーパントがドープされてもよい。また、ノンドープでもよい。たとえば、InP基板の場合、Feドープの半絶縁性InP基板は、近赤外~赤外域の透過率が、Sドープのn型InP基板よりも向上する。しかし、基板が第1導電型のドーパントを含む場合でも、近赤外~赤外域の透過率が向上する場合がある。GaSb基板の場合、n型不純物であるテルル(Te)をドープすることで近赤外~赤外域の透過率が、意図的にドープしないで結果的にp型を示すGaSb基板よりも、向上する。一方、基板に導電性のドーパントを含ませない場合、基板の種類の選択肢を増やすことができる。たとえば厚みが対象光の波長を超える基板に第1導電型ドーパントを所定レベル以上含有させてフリーキャリアを増大させなくてよくなる。このため基板裏面入射の受光素子において、光が基板内のフリーキャリアによって吸収されるのを避けることができ、フリーキャリアを含有する基板に比べて量子効率もしくは感度が大幅に向上する。
(2)エピ基板界面
  結晶調整層の第1調整層と基板との界面にはいわゆるエピ基板界面が形成される。第1調整層は基板表面に成長されているが、このエピ基板界面によって、第1調整層が基板と異なり、基板の上に成長された層であることを識別することができる。ここで、エピ基板界面とは、たとえば半導体基板を切り出してエッチング等で表面を清浄、平坦にしたあと、一度、大気中に出して、再びエッチング等で調整したあと、基板に接して結晶層を成長させたときの結晶層と基板との界面をいう。通常、酸素、炭素が不純物として高濃度に混入する。エピ基板界面は、酸素濃度が1×1017cm-3以上、炭素濃度が1×1017cm-3以上、のうち少なくとも一つを満たす。通常の半導体層中の酸素濃度等は5×1016cm-3以下である。
(3)結晶調整層
  結晶調整層は基板と多重量子井戸構造との間に位置し、バッファ層とも言える。結晶調整層のうち第1調整層は基板と同じ材料であり、基板の表面に付着している酸素等の不純物が高濃度に分布するのを埋めて酸素等の影響をなくし、かつ表面の凹凸を埋めて平坦にすることができる。受光層のa層またはb層と同じ材料の第2調整層を第1調整層上にエピタキシャル成長させることで受光層の結晶性を高める良好な下地層となる。その他、異物等の基板の不都合な表面性状に起因する結晶性の低下を結晶調整層により抑制できる。これら結晶調整層の作用により、受光素子の感度を向上させることができる。
(i)結晶調整層の厚み
基板はエッチング等により表面性状を周到にクリーンにしたあとその基板上に結晶調整層の成長がなされる。このとき原因を把握し切れていない不都合な表面性状、たとえば異物という用語で総称する表面部が存在する場合がある。たとえば、差し渡し平均径5μm以下の異物が、該基板に、平均密度0.05個cm-2~0.5個cm-2で分散している場合がある。基板上に分散した異物は、エピタキシャルウエハを、EDX(エネルギー分散X線分光法)、AES(オージェ電子分光法)、SEM(走査型電子顕微鏡)、分析SEM等で観察することができ、その密度を計量することができる。これらの不都合な表面性状が存在すると、結晶性は劣化し、暗電流も増大する。結晶性の低下とともにエピタキシャルウエハ表面に凸状部が発生する場合があり、製品歩留まり低下をもたらす場合がある。たとえば、結晶調整層のトータル厚みが160nm程度以上であれば、その異物を当該結晶調整層のなかに完全にもしくは部分的に埋め込んで、結晶性の低下を防止し、かつ結晶欠陥が拡大していくのを抑止することができる。
  結晶調整層は第1調整層と第2調整層を含み、第1調整層の厚みは第2調整層の厚みの1/5以下としてもよい。基板は近赤外~赤外域の光を吸収する材料が多いので、第1調整層を薄く形成することは理にかなっている。また受光層のa層またはb層と同じ材料の第2調整層を厚めにエピタキシャル成長させることで受光層の結晶性を高める良好な下地層となる。第1調整層と第2調整層の厚み範囲の関係は、さらに望ましくは第1調整層の厚みを前記第2調整層の厚みの1/10以下、さらには1/20以下とするのがよい。具体的には、第1調整層の厚みを10nm以上60nm以下、第2調整層の厚みを150nm以上たとえば300nmとする例を示すことができる。これによって、近赤外~赤外域に吸収がかかる基板が多いので、同じ材料からなる第1調整層による吸収を抑えることができる。また、第1調整層がドーパントを高濃度に含む場合は、その厚みを上記のように薄くすることで、基板裏面入射の受光素子を構成した場合でも、対象とする光の波長より格段に薄くなり、フリーキャリアによる光の吸収を避けることができる。この結果、量子効率もしくは感度を高めることができる。
(ii)結晶調整層のドーパント
結晶調整層は、第1導電型のドーパントを含んでもよいし、ノンドープとしてもよい。また、結晶調整層において、第1調整層の第1導電型のドーパント濃度が、第2調整層の第1導電型のドーパント濃度より高くてもよい。この場合、高濃度のドーパントを含む第1調整層によって、エピタキシャル層の成長前に大気に露出されることで付着した不純物(基板エピ界面の不純物)の悪影響を抑制することができる。基板の表面は、エピタキシャル層の成長の前にウエットエッチングなどにより微粒子などの付着物や加工層が除去される。しかし、ウエットエッチング-乾燥工程等を経て、成長室に搬入されるとき、大気中に曝露されることは避けられない。このため、基板の表面には酸素(酸化物)や炭素が高濃度に残留するのが普通である。このようなエピ基板界面では、二次イオン質量分析等により、酸素濃度が1×1017cm-3以上、炭素濃度が1×1017cm-3以上のうち、少なくとも一つを満たすことが知られている。上記の第1導電型ドーパント濃度が高い第1調整層は、基板とエピ基板界面を形成することになる。酸化物など付着物が付着した基板表面に、第1導電型ドーパントを高濃度に含む第1調整層を成長させることで、付着物の悪影響を抑制することができる。付着物は、多重量子井戸の結晶性を低下させ、かつ多重量子井戸の各層の界面の平坦性を劣化させる。どのようなメカニズムによって、半導体素子の量子効率が向上するか不明であるが、多重量子井戸の界面が平坦化されることが効いている可能性が高い。第1調整層による悪影響の抑制によって、受光素子を形成した場合に暗電流が抑制されることは、結晶性の向上から予測される。このため、感度が向上し、さらに暗電流も抑制される。
さらに、第1調整層の第1導電型のドーパント濃度を、第2調整層の第1導電型のドーパント濃度の5倍以上としてもよい。これによって、第1調整層のエピ基板界面の付着物の悪影響の抑制の作用を強化することができる。第1導電型ドーパントの濃度の具体例としては、たとえば、第1調整層の第1導電型のドーパント濃度が、1×1017cm-3以上8×1018cm-3以下であり、第2調整層の第1導電型のドーパント濃度が、7×1016cm-3以上8×1017cm-3以下とすることができる。第2調整層は上述の通り第1調整層より厚いのでドーパント濃度が高濃度(たとえば、1×1018cm-3程度)になるとフリーキャリアによる吸収が増加し感度の低下を招きやすい。なお、第1導電型ドーパントであれば、第1調整層と第2調整層にドープするドーパントの材料は、同じでもよいし、異なってもよい。
(4)第1導電側電極
 (i)本実施の形態に係わる半導体素子は、さらに第1導電側電極を備えることができ、第1導電側電極(グランド電極)が結晶調整層にオーミック接触していてもよい。この場合、基板が高抵抗性のドーパントを含み、結晶調整層は、第1導電型のドーパントを含み、画素が第2導電型領域を含むようにしてもよい。基板が高抵抗性の場合、基板の裏面に第1導電側電極を配置することはない。結晶調整層に第1導電側電極を配置する場合は、第1導電側電極が結晶調整層にオーミック接触しているようにする。第1導電側電極は、結晶調整層の第1調整層または第2調整層にオーミック接触させることができる。
(a1)第1導電側電極を、第2調整層にオーミック接触させる場合、少なくとも第2調整層が結晶調整層におけるドーパントを含むようにする。第2調整層は、結晶調整層中の膜厚が厚いので第1導電側電極を配置するのに好ましい。第2調整層に第1導電側電極を配置すると、第1調整層は、pin接合もしくはpn接合への逆バイアス電圧の印加の電圧経路には関係なくなる。このため、第1調整層に第1導電型のドーパントをドープしてもよいし、ノンドープでもよい。第1導電型のドーパントを第1調整層にドープする場合、第1調整層の第1導電型のドーパント濃度を、第2調整層の第1導電型のドーパント濃度より高くすると、第1調整層と基板との間のエピ基板界面の付着物の悪影響を抑制でき、暗電流の低減や感度の向上がさらに期待できる。
(a2)第1導電側電極を第1調整層に接触させる場合、結晶調整層の第1調整層の第1導電型のドーパント濃度が、第2調整層の第1導電型のドーパント濃度より高くてもよい。この場合、第1調整層のドーパント濃度が高いのでオーミック接触させるうえで好ましい。また、酸化物など付着物が付着した基板表面に、第1導電型ドーパントを高濃度に含む第1調整層を成長させることで、付着物の悪影響を抑制することができる。このため、受光素子を形成した場合に、感度がさらに向上し、暗電流も抑制される。
  第1導電側電極を第1導電型ドーパントを高濃度に含む第1調整層に接触させることがオーミック接触を得るうえで好適であるが、第1調整層の厚みは、第2調整層よりも非常に薄くすることが多い。この問題の対処法として、第1調整層と第2調整層の材料を異なるものとし、第1導電側電極の形成工程では、第2調整層をエッチングして第1調整層をエッチングしない選択性のあるエッチャントを用いるのがよい。該エッチャントにより該第2調整層を除去し、その後、該第1調整層に接触するように第1導電側電極を形成する。たとえば、第1調整層/第2調整層がInP/InGaAs、の場合、リン酸(85%):過酸化水素水(30%):水=1:1:4、のエッチャントを用いる。これによって、確実に第1調整層InPの表面を露出でき、第1導電側電極をInP第1調整層にオーミック接触させることができる。
    (ii)第1導電側電極(裏面電極)は基板の裏面にオーミック接触していてもよい。この場合、画素を第2導電型として基板には第1導電型のドーパントがドープされる。pin接合もしくはpn接合に逆バイアス電圧を印加するために、結晶調整層は、第1導電型のドーパントがドープされたほうが電圧電源を小さくすることができる。しかし、結晶調整層をノンドープとしてi型にしてもよい。結晶調整層を第1導電型にする場合、結晶調整層のドーパントは基板のドーパントと異なるものとしてもよい。その理由は、基板成長時の好適な第1導電型ドーパントと、たとえばMOVPE法で成長するときに好適な第1導電型ドーパントとは相違するからである。たとえば、基板は第1調整層に比べて数百倍の厚みを有するが、ドーパントの種類によっては近赤外~赤外域に吸収が大きくかかる種類がある。このようなドーパントを基板に含有させることは避けることが望ましいが、厚みが数百分の一の第1調整層はそれほど大きな感度減少要因にならない。また、結晶調整層にドープする場合、第1調整層と第2調整層のドーパントは同じでもよいし、異なってもよい。この場合、第1調整層の第1導電型のドーパント濃度を、第2調整層の第1導電型のドーパント濃度より高くすることによりエピ基板界面の付着物の悪影響を抑制する作用を得ることができる。
(5)多重量子井戸構造の種類
  基板が、InP基板、GaSb基板、およびGaAs基板、のいずれかであり、受光層がタイプ2の多重量子井戸構造であり、対(a/b)が(InGaAs/GaAsSb)または(InAs/GaSb)とすることができる。これによって、近赤外~赤外域用に対応するバンドギャップを持つタイプ2の多重量子井戸を備えた半導体素子を得ることができる。なお、InGaAsは、InGa1-xAs(0.38≦x≦1)であり、GaAsSbは、GaAs1-ySb(0.36≦y≦1)である。基板の種類は、上記のほかに、GaP基板、InAs基板、InSb基板、AlSb基板、AlAs基板などを用いることができる。
(5)半導体素子を用いた製品
半導体素子を、多重量子井戸構造を受光層として含む受光素子としてもよい。これによって近赤外~赤外域に高感度を有する受光素子を得ることができる。またこの受光素子と、読み出し回路とを組み合わせて、撮像装置などの光学センサー装置を得てもよい。また、半導体素子を、近赤外~赤外域の光を発光するレーザー、発光ダイード(LED:Light  Emitting  Diode)としてもよい。これによって各種の発光装置を形成してもよい。
2.エピタキシャルウエハ
  本発明のエピタキシャルウエハは、III-V族半導体の基板および該基板上の半導体積層構造を有する、上記のいずれかの受光素子におけるエピタキシャルウエハとする。
3.半導体素子もしくはエピタキシャルウエハの製造方法:
  本発明の実施例に係わる半導体素子の製造方法は、有機金属気相成長法(MOVPE)によって半導体素子を製造する方法である。この製造方法は、III-V族半導体の基板上に接して、結晶調整層を成長する工程と、結晶調整層に接して、a層とb層とを1対として複数対のタイプ2の多重量子井戸構造(MQW)を成長する工程とを備え、結晶調整層の成長工程では、該結晶調整層を第1調整層と第2調整層とで構成し、第1調整層を基板と同じ材料で該基板に接して成長し、また第2調整層をa層またはb層と同じ材料で第1調整層上に多重量子井戸構造の下面に接するように成長する。これによって、上記のように、量子効率が十分高い半導体素子を有機金属気相成長法によって能率よく製造することが可能となる。上記の半導体素子もしくはエピタキシャルウエハは、市販の有機金属気相成長装置を用いて、そこで常用されている原料ガスを用いて上記の半導体素子等を製造することができる。望ましくは、全有機金属気相成長法を用いることでより一層結晶性に優れたものを製造することができる。
(1)有機金属気相成長法(MOVPE法)
  MOVPE法は、基板のサイズに制約を受けにくく、能率よく結晶性の良好な半導体素子を形成するのに適している。本実施の形態における半導体素子もしくはそのためのエピタキシャルウエハは、どのような成長方法で成長してもよいが、上記の点でMOVPE法で成長するのがよい。MOVPE法は、リン原料に無機材料のホスフィン(PH)を用い、As(砒素)の原料としては、アルシン(AsH)を用いる。全有機金属気相成長法は、MOVPE法において、すべての成膜材料に有機金属ガスを用いる方法である。有機金属気相成長法との相違は、本実施の形態の場合、リン(P)を含むIII-V族半導体層の成長の原料にあらわれる。全有機金属気相成長法と、有機金属気相成長法との相違は、このリン原料にターシャリーブチルホスフィン(TBP)を用いるか、または無機材料のホスフィン(PH)を用いるかに端的にあらわれる。
(2)リン(P)を含む層
  Pを含む層は、もちろん、MOVPE法によって成長することができる。すなわち市販のMOVPE成長装置を用い、市販の原料ガスを用いて、たとえばInP窓層やInP第1調整層を成長することはできる。ただ、全有機金属気相成長法によれば、リンの原料にTBP(ターシャリブチルホスフィン)を用いて、無機原料のホスフィン(PH)に比べて低温で分解するため低温成膜が可能になる。InP基板の表面の酸素等の不純物の埋め込み、凹凸を穏やかに平坦化するのは、この低温成膜が有効である。
(3)タイプ2(InGaAs/GaAsSb)多重量子井戸構造
  また、InP基板を用いた受光素子の場合、タイプ2の(InGaAs/GaAsSb)多重量子井戸構造などを含む半導体積層構造の最上層の窓層にInP層を用いる場合が多い。この場合、たとえばInP窓層を、MOVPE法により、リンの原料にホスフィン(PH)を用いて成長することができる。より望ましくは、全有機金属気相成長法により、TBPを用いて低温で成長できるので、下層に位置する受光層中のGaAsSbの熱によるダメージの発生を誘起することなく良好な結晶性の受光層を得ることができる。  
<本願発明の実施の形態の詳細>
  次に、本願発明の実施形態のエピタキシャルウエハ等の具体例を、図面を参照しながら説明する。なお、本願発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図されている。
  図1は、本発明の実施の形態の詳細例における受光素子(プレーナ型フォトダイオード)50の断面図である。受光素子50は、図2に示すエピタキシャルウエハに形成されている。InP基板1と第1調整層2aとの界面がエピ基板界面18である。
(InP基板1/結晶調整層2(第1調整層2a/第2調整層2b)/タイプ2の(InGaAs/GaAsSb)多重量子井戸構造(MQW)の受光層3/InGaAs拡散濃度分布調整層4/InP窓層5)
  結晶調整層2は、図1~3等に示すように、InP第1調整層2a/InGaAs第2調整層2b、の複合層から形成されている。InGaAs第2調整層2bにはn型不純物(第1導電型ドーパント)がドープされており、第1導電側電極12(グランド電極またはn側電極とも呼ぶ)がオーミック接触している。結晶調整層2のトータルの厚みは、160nm以上とする。とくに原因が特定できない異物が、薄膜成長室内で結晶調整層2を成長する直前の基板に分散している場合、その異物を部分的にもしくは完全に埋め込むことで、上層のタイプ2多重量子井戸構造の受光層3の結晶性を保持することができる。とくに窓層5の表面に生成する場合がある凸状部の粗大な(直径30μmを越える)成長を抑制することができる。具体的には、InP第1調整層2aの厚みは10nm以上60nm以下であり、InGaAs第2調整層2bの厚みは150nm以上である。InP第1調整層2aの厚みは、InGaAs第2調整層2bの厚みの1/5以下である。
受光素子50の画素Pは、たとえば30μmピッチで縦横に配列されて、近赤外~赤外域の光の画像を提供する。画素Pの主要部は、p型領域6によって形成されている。このp型領域は、選択拡散マスクパターン36の開口部の窓層5の表面からp型不純物である亜鉛(Zn)を選択拡散することで形成されている。隣の画素Pとは、選択拡散されていない領域によって隔てられて独立性が確保されている。各画素Pのp型領域6の先端にはpn接合15もしくはpi接合(第1導電側電極側も含めて広範囲にみればpin接合)が形成されている。受光層3は、イントリンシック(intrinsic:真性)にするために不純物は添加せず、pin接合とすることを意図するが、不可避的に不純物(たとえばn型不純物)が低濃度で含有される。このため、pin型フォトダイオードといいながらp型領域の先端には実際はpn接合が形成されている。ここでは、pin接合およびpn接合を含めて、pn接合15と呼ぶ。
  プレーナ方式にしたがって、受光層/窓層など積層体に窓層から不純物を選択拡散する場合、受光層がタイプ2多重量子井戸構造の場合、その多重量子井戸構造の結晶性が不純物に対して脆弱であるという問題がある。比較的濃度が低い不純物に対しても結晶性が劣化して暗電流が大きく増大する。このため、pn接合15を形成するとき、窓層5から導入する不純物の範囲はInP窓層5内の上部にするか、または拡散濃度分布調整層4内にとどめるかして、多重量子井戸構造内の濃度を厳格に低く制御しなければならない。
  この問題を解決するために、タイプ2多重量子井戸構造の受光層3と、窓層5との間に、拡散濃度分布調整層4を配置する。選択拡散された不純物のキャリア濃度は、窓層内では画素電極とオーミック接触する必要があり高濃度で分布し、この拡散濃度分布調整層4内においてステップ状に急低下させる必要がある。ステップ状に急低下させて、拡散濃度分布調整層4内における反対導電型キャリアのバックグランド濃度に交差させるか、またはタイプ2多重量子井戸構造内の上部で多重量子井戸内の反対導電型キャリアのバックグランド濃度に交差させる。この反対導電型キャリアのバックグランド濃度との交差点(面)が、pn接合15を構成する。このような構造によって、タイプ2多重量子井戸構造の受光層3内の不純物濃度分布は厳格に制御され、感度が高く暗電流が抑制された近赤外~赤外域の受光素子を得ることができる。拡散濃度分布調整層4に用いられるInGaAsは、窓層5を形成するInPに比べて、Znの拡散速度が小さいので、当該InGaAs拡散濃度分布調整層4に、Zn濃度分布の急峻に低下する部分を形成しやすい。また、拡散濃度分布調整層4は、動画などの動きの追随性を高めるために電気伝導度の高い材料で形成することが望ましい。
  受光素子50を製造するとき、上記のIII-V族半導体を積層してエピタキシャルウエハを形成した後、そのエピタキシャルウエハのInP窓層5に選択拡散マスクパターン36を配置して、Znを選択拡散してp型領域6、すなわちpn接合15を形成する。画素電極11および第1導電側電極12も、エピタキシャルウエハの状態のまま形成する。受光素子(チップ)50ごとにパッケージする段階になって、エピタキシャルウエハは、各受光素子(チップ)50ごとに個片化される。基板裏面入射に対して光の反射を防止して量子効率もしくは感度を向上させるために、反射防止膜(AR:Anti-Reflection)35が基板裏面に配置される。
  図4は、受光素子50が、対象光が入射するのを待っている、受光待機の状態を示す図である。pn接合15に対して、画素電極11および共通のグランド電極12によって逆バイアス電圧を印加すると、画素Pごとに空乏層Sが受光層3に張り出して受光待機状態となる。ある画素Pの空乏層Sに光が入射され受光されると電子・正孔ペアが生成し、正孔は画素電極11にドリフトし、電子はグランド電極12へとドリフトする。画素電極11に蓄積された電荷を一定の時間ピッチで読み出し、画素にわたって受光信号の強度分布を作成することで画像を得ることができる。この場合、pn接合15に対する逆バイアス電圧は、グランド電極12-InGaAs第2調整層2b-i型もしくは低n型受光層3-p型領域6-画素電極11、とにより、加えられる。したがってInGaAs第2調整層2bは、n型不純物を含む必要がある。第1調整層2aおよびInP基板1は、導電性である必要はなく、それぞれの役割に応じて最適な不純物を含むことができるし、またノンドープであってもよい。たとえば、第1調整層2aのn型不純物濃度をInGaAs第2調整層2bのn型不純物濃度より高くするとエピ基板界面の付着物の悪影響を抑制できさらに感度を高めることができる。
  また、InP基板1については、たとえば、図5に示すように、近赤外~赤外域の光の透過率を高くするために、半絶縁性もしくは高抵抗性の鉄(Fe)ドープInP基板とするのがよい。図5には、合わせて硫黄(S)ドープInP基板の近赤外~赤外域の透過率を示すが、表面粗研磨の影響が強く表れていて、波長域2μm~3μmでの低い透過率は、誇張されている。しかし、波長3μm以上で透過率が低下しているのは、粗研磨というよりもドーパント(不純物)の影響であるとおもわれる。透過率の向上は、感度向上に直結する。
  また、図示はしないが、基板がGaSbの場合は、n型不純物であるテルル(Te)をドープすることが、近赤外~赤外域の光の透過率を高める上で効果的である。ノンドープのGaSb基板は、不可避的にp型不純物が混入してp型になるが、近赤外域の光の透過率は高いものの、波長2.5μm以上で、急激に透過率は低下する傾向がある。したがって、GaSb基板の場合には、基板にグランド電極をオーミック接触する、しないにかかわらず、Teをドープするのが、近赤外~赤外域において高い感度を確保するのに、不可欠である。
(変形例1)
  図6は、図1もしくは図4に示す受光素子の変形例を示す図である。本変形例1では、InP基板の裏面にグランド電極12をオーミック接触する。この構造においては、pn接合15に対して、グランド電極12および画素電極11によって逆バイアス電圧を印加するには、InP基板1-結晶調整層2の第1調整層2aおよび第2調整層2bは、直列で配置される。InP基板が第1導電性を示すことは必須であるが、結晶調整層2は第1導電性であってもよいし、i型であってもよい。結晶調整層2が第1導電型の場合、pn接合15に至る間の電圧降下が小さいので電圧電源を小さくできる利点がある。さらに、第1調整層2aの第1導電型ドーパント濃度を第2調整層2bの第1導電型ドーパント濃度より高くするとエピ基板界面の付着物の悪影響を抑制する作用を得ることができる。裏面電極が配置される場合、InP基板1は、硫黄(S)ドープしたものがよい。近赤外域に限定すれば、Feドープに比べてそれほど大きな透過率の低下は生じない。
  この図6の変形例1と図1もしくは図4の構造との相違は、次の点にあらわれる。図6の変形例1の場合、pn接合15に対する逆バイアス電圧のグランド電極12側の電圧経路は、InP基板1を必ず含む。そのため、pn接合15に十分大きい逆バイアス電圧を印加するのに必要な電圧電源は、InP基板1の厚みが第2調整層2bの厚みに比べて厚いので大きくなる傾向がある。
(変形例2)
図7は、図1もしくは図4に示す受光素子の別の変形例を示す図である。本変形例2では、結晶調整層2のInP第1調整層2aには、高濃度たとえば1×1018cm-3のシリコン(Si)が第1導電型ドーパントとして含まれ、厚み30nm(0.03μm)である。また、InGaAs第2調整層2bには、それより低濃度たとえば1×1017cm-3のSiが含まれ、厚み300nm(0.3μm)である。InP第1調整層2aの厚みは、InGaAs第2調整層2bの厚みの1/5以下であり、本実施の形態の場合1/10である。InP第1調整層2aにはグランド電極12がオーミック接触している。従って、この構造では、pn接合15に対する逆バイアス電圧は、グランド電極12-InP第1調整層2a-InGaAs第2調整層2b-i型もしくは低n型受光層3-p型領域6-画素電極11、とにより、加えられる。したがってInP第1調整層2aは、n型不純物を高濃度に含むことになる。しかし、InP基板1は、導電性である必要はなく、その役割に応じて最適な不純物を含むことができるし、またノンドープであってもよい。
本変形例2では、結晶調整層の第1調整層の第1導電型のドーパント濃度は、第2調整層の第1導電型のドーパント濃度より高い。酸化物など付着物が付着した基板表面に、第1導電型ドーパントを高濃度に含む第1調整層を成長させることで、付着物の悪影響を抑制することができる。これにより、多重量子井戸の結晶性の低下や、多重量子井戸の各層の界面の平坦性の劣化を抑制でき、半導体素子の量子効率が向上し、受光素子を形成した場合に一層感度が向上し、また暗電流も抑制される。
  エピタキシャルウエハ10を製造した後、上記の選択拡散によるZnの導入を行って、隣の画素とは選択拡散されていない領域で隔てられた画素Pを形成する。このあと、画素電極11となるp側電極および各画素に共通のグランド電極12となるn側電極を形成する。グランド電極12の形成では、エピタキシャルウエハ10の所定の辺縁部において多重量子井戸3をエッチングによって除去して結晶調整層2を露出させる。このあと開口部がグランド電極12の平面的な位置となるレジストマスクパターンを形成し、上述の、リン酸(85%):過酸化水素水(30%):水=1:1:4、のエッチャントで、InGaAs第2調整層2bをエッチングで除去する。すなわち、InGaAsをエッチングしてInPはエッチストップ層として機能させる。このように、第1調整層/第2調整層がInP/InGaAs、の場合、リン酸(85%):過酸化水素水(30%):水=1:1:4、のエッチャントを用いる。これによって、確実に第1調整層InPの表面を露出でき、第1導電(n)側電極をInP第1調整層にオーミック接触させることが容易になる。n側電極12にはAuGeNiなど用い、p側の画素電極にはAuZnなどを用いることができる。
  上記の半導体素子もしくはエピタキシャルウエハは、上述のように、通常のMOVPE法により製造することができる。すなわち市販のMOVPE成長装置を用いて、そこで常用されている原料ガスを用いて上記の半導体素子等を製造することができる。望ましくは、全有機金属気相成長法を用いることでより一層結晶性に優れたものを製造することができる。全有機金属気相成長法は、上記のように、すべての成膜材料に有機金属ガスを用いる方法である。全有機金属気相成長法と、MOVPE法との相違は、リン原料にターシャリーブチルホスフィン(TBP)を用いるか、または無機材料のホスフィン(PH)を用いるかに端的にあらわれる。
  上記の実施の形態のエピタキシャルウエハを有機金属気相成長法によって製造する方法について、上記の変形例1、及び変形例2を例にとって説明する。また有機金属気相成長法の成膜装置の各部分を引用しながら説明するが、市販されている装置であり、とくに成膜装置の仕組みが重要な役割を演ずるわけではないので、図示は省略する。
(変形例1の製造方法)
  本変形例1では、まずウエットエッチング等により、表層の残留応力を除去しかつ所定の平坦化を実現したSドープn型InP基板1を準備し、基板テーブルに配置して、結晶調整層2を成長する。結晶調整層2は、第1調整層2aとしてInPを厚み10nm以上60nm以下の範囲、たとえば10nm程度で成長する。原料ガスは、InにはTMIn(トリメチルインジウム)もしくはTEIn(トリエチルインジウム)を用いる。またPの原料としては、PH(ホスフィン)を用いる。望ましくは、TBP(ターシャリーブチルホスフィン)を用いる。これら有機金属ガス原料は、分子量が大きいために不安定であり、成膜温度(成長温度)を525℃以下の低温、たとえば450℃~495℃の範囲の低温にしても容易に分解してInP基板表面にInP層をエピタキシャル成長する。InP基板1と同じInP第1調整層2aを低温成長することにより、基板の表面のミクロな凹凸を活性化させずに、またウエットエッチング後の大気との接触に起因する酸素等の不純物を活性化させずに、InP第1調整層2aにより埋め込むことができる。このとき、第1導電性とする場合には、有機原料ガスを用いてn型不純物をドープする。n型キャリア濃度は、たとえば3×1017cm-3程度とする。
  次いでInGaAs第2調整層2bを厚み150nm以上たとえば150nm程度となるように成長する。Ga(ガリウム)の原料としては、TEGa(トリエチルガリウム)でもよいし、TMGa(トリメチルガリウム)でもよい。Inの原料としては、上記したTMInまたはTEInを用いる。As(砒素)の原料としては、アルシン(AsH)を用いる。望ましくは、TBAs(ターシャリーブチルアルシン)もしくはTMAs(トリメチル砒素)を用いる。n型不純物をドープする場合は、第1調整層2aと同じ不純物を用いてn型キャリア濃度をたとえば3×1017cm-3程度とする。これにより受光層3を構成するタイプ2の(InGaAs/GaAsSb)多重量子井戸構造の一方と同じ材料のInGaAs第2調整層2bをエピタキシャル成長することができる。このInGaAs第2調整層2bは、多重量子井戸構造の受光層3の下地層として機能して、多重量子井戸構造において良好な結晶性を実現することができる。
(変形例2の製造方法)
  本変形例2では、まずウエットエッチング等により、表層の残留応力を除去しかつ所定の平坦化を実現したFeドープ半絶縁性InP基板1を準備し、基板テーブルに配置して、結晶調整層2を成長する。結晶調整層2は、第1調整層2aとしてInPを厚み10nm以上60nm以下の範囲、たとえば30nm程度で成長する。原料ガスは、InにはTMIn(トリメチルインジウム)もしくがTEIn(トリエチルインジウム)を用いる。またPの原料にはホスフィン(PH)またはTBP(ターシャリーブチルホスフィン)を用いる。これら有機金属ガス原料は、分子量が大きいために不安定であり、成膜温度(成長温度)を525℃以下の低温、たとえば450℃~495℃の範囲の低温にしても容易に分解してInP基板1表面にInP第1調整層2aをエピタキシャル成長する。
  このInP第1調整層2aを成長するとき、n型不純物、たとえばSiを1×1018cm-3程度の高濃度にドープする。Siのドーピングにはテトラエチルシラン(TeESi)、テトラメチルシラン(TeMSi)などを用いるのがよい。上記のようにInP基板1の表面は基板エピ界面18を構成し、酸素、炭素が高濃度に残留している。このようなInP基板1表面に高濃度にSiを含むInP第1調整層2aをエピタキシャル成長することで、酸素(酸化物)などの付着物の悪影響を抑制することができる。付着物は、多重量子井戸の結晶性を低下させ、かつ多重量子井戸の各層の界面の平坦性を劣化させる。高濃度にドーパントを含む第1調整層2aが、どのような機構で半導体素子の量子効率を向上させるのかは不明であるが、多重量子井戸3の界面が平坦化されることが効いている可能性が高い。さらに、第1調整層2aの材料は、InP基板1と同じInPである。このInP第1調整層2aを低温成長することにより、基板の表面のミクロな凹凸を活性化させずに、またウエットエッチング後の大気との接触に起因する酸素等の不純物を活性化させずに、InP第1調整層2aにより埋め込むことができる。また、高濃度のn型ドーパントSiが、エピ基板界面の付着物との局所的な接触部に濃縮することで融通性を高めて、全体的に第1調整層の結晶性を高める作用を発揮することも考えられる。
  次いでInGaAs第2調整層2bを厚み150nm以上、たとえば300nm程度となるように成長する。Ga(ガリウム)の原料としては、TEGa(トリエチルガリウム)でもよいし、TMGa(トリメチルガリウム)でもよい。Inの原料としては、上記したTMInまたはTEInを用いる。As(砒素)の原料としては、アルシン(AsH)でもよいし、TBAs(ターシャリーブチルアルシン)でもよいし、TMAs(トリメチル砒素)でもよい。n型不純物をドープする場合は、InP第1調整層2aと同じ不純物を用いてn型キャリア濃度を1×1017cm-3程度とするのがよい。これにより受光層3を構成するタイプ2の(InGaAs/GaAsSb)多重量子井戸構造のペアの一方と同じ材料のInGaAs第2調整層2bをエピタキシャル成長することができる。このInGaAs第2調整層2bは、多重量子井戸構造の一方のペアと材料が共通するので下地層として機能して、多重量子井戸構造において良好な結晶性を実現することができる。
  上記の変形例1もしくは変形例2の結晶調整層2のInGaAs第2調整層2bの成長に続いて、タイプ2の(InGaAs/GaAsSb)多重量子井戸構造の受光層3、InGaAs拡散濃度分布調整層4およびInP窓層5を、有機金属気相成長法によって一貫して同じ成長室で成長する。この結果、図2、7に示す界面16,17は再成長界面にならず、酸素および炭素の高濃度の残留はない。すなわち多重量子井戸構造の受光層3と拡散濃度分布調整層4との界面16、および拡散濃度分布調整層4とInP窓層5との界面17に大気中の酸素等の不純物が付着することはない。この結果、暗電流の増大を避けることが可能になる。このとき、成長温度または基板温度は、温度400℃以上かつ525℃以下の範囲に維持するのがよい。この温度範囲より高い成長温度にすると、受光層3中のGaAsSb層に相分離が大規模で起こる。このため525℃以下で成長し、より好ましくは500℃以下とするのがよい。400℃未満の成長温度とすると、有機MOVPEの原料ガスが十分に分解せず、炭素がエピタキシャル層に取り込まれる。原料ガスにおいて金属と結合している炭化水素の炭素である。炭素がエピタキシャル層に混入すると、意図しないp型領域が形成され、半導体素子にまで仕上げた状態で、性能劣化を生じる。たとえば受光素子の状態で、性能劣化を生じる。たとえば受光素子の状態で、暗電流が多く、実用レベルの製品にならない。
  次に、多重量子井戸構造の受光層3の成長について説明する。量子井戸におけるGaAsSbは、膜厚はたとえば5nm、またInGaAsの膜厚もたとえば5nmとする。GaAsSbの成膜では、TEGa(トリエチルガリウム)、TBAs(ターシャリーブチルアルシン)およびTMSb(トリメチルアンチモン)を用いる。Sb(アンチモン)の原料としては、TMSb(トリメチルアンチモン)でもよいし、TESb(トリエチルアンチモン)でもよい。また、TIPSb(トリイソプロピルアンチモン)、また、TDMASb(トリスジメチルアミノアンチモン)でもよい。As(砒素)の原料としては、アルシン(AsH)でもよいし、TBAs(ターシャリーブチルアルシン)もしくはTMAs(トリメチル砒素)でもよい。また、InGaAsについては、TEGa、TMIn、およびTBAsを用いることができる。これら有機金属ガス原料は、分子量が大きく不安定であるため、400℃以上かつ525℃以下の比較的低温で完全に分解して、結晶成長に寄与することができる。多重量子井戸の受光層3を全有機金属気相成長法によって、量子井戸の界面の組成変化を急峻にすることができる。この結果、高精度の分光測光をすることができる。
全有機金属気相成長法の成膜装置について、以下に簡単に説明する。成長室(チャンバ)内に石英管が配置され、その石英管に、原料ガスが導入される。石英管中には、基板テーブルが、回転自在に、かつ気密性を保つように配置される。基板テーブルには、基板加熱用のヒータが設けられる。成膜途中のエピタキシャルウエハ1aの表面の温度は、成長室の天井部に設けられたウィンドウを通して、赤外線温度モニタ装置によりモニタされる。このモニタされる温度が、成長するときの温度、または成膜温度もしくは基板温度等と呼ばれる温度である。本発明における製造方法における、温度400℃以上かつ525℃以下でInGaAs層などを形成する、というときの400℃以上および525℃以下は、この温度モニタで計測される温度である。石英管からの強制排気は真空ポンプによって行われる。
  原料ガスは、石英管に連通する配管によって、供給される。原料ガスは、何種類でも配管を増やして石英管に練通させることができる。有機金属気体の原料ガスは、恒温槽に入れられて一定温度に保持される。搬送ガスには、水素(H)および窒素(N)が用いられる。有機金属気体は、搬送ガスによって搬送され、また真空ポンプで吸引されて石英管に導入される。搬送ガスの量は、MFC(Mass  Flow  Controller:流量制御器)によって精度よく調節される。多数の、流量制御器、電磁弁等は、マイクロコンピュータによって自動制御される。
(実施例1)
  本発明の作用を検証するために、図6に示す変形例1の受光素子50を本発明例A1として試作して受光感度を測定した。試験体は本発明例A1と比較例C1の2体である。また、参考例R1として非特許文献1のFig.5のデータをもとに受光感度に換算した結果を用いた。
(本発明例A1:第1調整層/第2調整層=InP/InGaAs):
(1)積層構造:InP基板/InP第1調整層/InGaAs第2調整層/タイプ2(InGaAs(5nm)/GaAsSb(5nm))受光層2μm/InGaAs拡散濃度分布調整層1μm/InP窓層0.75μm
(2)結晶調整層の構成:n型InP第1調整層(膜厚10nm:キャリア濃度3×1017cm-3)/n型InGaAs第2調整層(膜厚150nm:キャリア濃度3×1017cm-3
(比較例C1:第1調整層/第2調整層=InP/InP):
(1)積層構造:InP基板/InP第1調整層/InP第2調整層/タイプ2(InGaAs(5nm)/GaAsSb(5nm))受光層2μm/InGaAs拡散濃度分布調整層1μm/InP窓層0.75μm
(2)結晶調整層の構成:n型InP第1調整層(膜厚10nm:キャリア濃度3×1017cm-3)/n型InP第2調整層(膜厚150nm:キャリア濃度3×1017cm-3
(参考例(非特許文献1)R1:第1調整層/第2調整層=InGaAs/InGaAs)
(1)積層構造:InP基板/InGaAs第1調整層/InGaAs第2調整層/タイプ2(InGaAs(5nm)/GaAsSb(5nm))受光層1.5μm/InGaAs拡散濃度分布調整層45nm/InGaAs窓層0.5μm
(2)結晶調整層の構成:n型InGaAs第1調整層(膜厚500nm:キャリア濃度  高)/i型InGaAs第2調整層(膜厚50nm:キャリア濃度  希薄)
  参考例R1では、結晶調整層の第1調整層と第2調整層の膜厚の大小関係が、本発明例A1と比べて逆転している。本発明例A1および比較例C1におけるInP基板はSドープInP基板である。また、非特許文献1における参考例R1のInP基板は明記されていないが、N-typeと記載されているので、Sもしくは他のn型不純物を含んでいる。
  本発明例A1および比較例C1の受光感度の、波長2.2μmにおける測定結果を図8に示す。また、合わせて参考例R1として非特許文献1のFig.5のデータから換算した受光感度を示す。図8では、それぞれ試験体A1、試験体C1、試験体R1とあらわしている。図8によれば、結晶調整層(=第1調整層/第2調整層)が、InP/InGaAsとした本発明例である試験体A1の感度が最も高く、1.0~1.2程度であった。
これに対してInP/InPの比較例の試験体C1では、0.4~0.5程度と格段に低い結果となった。また参考例の試験体R1の感度は、0.75程度であり、本発明例より低い感度であった。
(実施例2)
  結晶調整層の第1調整層と第2調整層のn型ドーパント濃度の影響を調べるために、図7に示す変形例2の受光素子50の構造にならって試験体を2体製造した。試験体A2、A3である。共通する受光素子の部分は、つぎのとおりである。
<エピタキシャルウエハの材料>:(Feドープ半絶縁性InP基板1/InP第1調整層2a/InGaAs第2調整層2b/タイプ2の(InGaAs/GaAsSb)多重量子井戸構造の受光層3/InGaAs拡散濃度分布調整層4/InP窓層5):
<InP第1調整層2a/InGaAs第2調整層2bの厚み>:30nm/300nm試験体相互で異なる部分は次の点である。
(試験体A2):InP第1調整層2aのSi濃度1×1018cm-3/InGaAs第2調整層2bのSi濃度1×1017cm-3
(試験体A3):InP第1調整層2aのSi濃度1×1017cm-3/InGaAs第2調整層2bのSi濃度1×1017cm-3
  各試験体の受光素子について、InP基板の裏面側から、波長2.2μm(単色光)を入射して受光感度を測定した。
  受光感度は、試験体A2が1.5A/W、試験体A3が1.2A/Wであった。試験体A2、A3とも、高い感度を示したが、第1調整層のn型ドーパント濃度が第2調整層のn型ドーパント濃度より高い試験体A2の方が、より優れた感度を有することがわかる。
  本発明の半導体素子、たとえば受光素子によれば、受光層と基板との間の、結晶調整層もしくはバッファ層の構成に工夫をこらすことで、近赤外~赤外域において感度が向上することができようになった。
  1  InP基板、2  結晶調整層、2a  第1調整層、2b  第2調整層、3  タイプ2多重量子井戸構造の受光層、4  InGaAs拡散濃度分布調整層、5  InP窓層、6  p型領域、10 エピタキシャルウエハ、11  p側電極(画素電極)、12  グランド電極(n側電極)、15  pn接合、16,17  エピタキシャル層の界面、18  エピ基板界面、35  AR(反射防止)膜、36  選択拡散マスクパターン、50  受光素子(受光素子アレイ)、P  画素、S  空乏層。
 

Claims (14)

  1.   III-V族半導体の基板と、
      前記基板の上に位置し、a層とb層とを1対とした複数対の多重量子井戸構造と、
      前記基板と前記多重量子井戸構造との間に位置する結晶調整層とを備え、
      前記結晶調整層が、前記基板と同じ材料で構成され前記基板に接する第1調整層と、前記多重量子井戸構造のa層またはb層と同じ材料で構成された第2調整層とを含む、半導体素子。
  2. 前記第1調整層の第1導電型のドーパント濃度が、前記第2調整層の第1導電型のドーパント濃度より高い、請求項1に記載の半導体素子。
  3.   前記第1調整層の第1導電型のドーパント濃度が、前記第2調整層の第1導電型のドーパント濃度の5倍以上である、請求項2に記載の半導体素子。
  4.   前記第1調整層の厚みが前記第2調整層の厚みの1/5以下である、請求項1~3のいずれか1項に記載の半導体素子。
  5.   前記第1調整層の厚みが10nm以上60nm以下であり、前記第2調整層の厚みが150nm以上である、請求項1~4のいずれか1項に記載の半導体素子。
  6.   さらに第1導電側電極を備え、前記第1導電側電極が前記結晶調整層にオーミック接触している、請求項1~5のいずれか1項に記載の半導体素子。
  7.    さらに第1導電側電極を備え、前記第1導電側電極が前記基板の裏面にオーミック接触している、請求項1~5のいずれか1項に記載の半導体素子。
  8.   前記基板が、InP、GaSb、およびGaAs、のいずれかであり、前記多重量子井戸構造がタイプ2の多重量子井戸構造であり、対(a/b)が(InGaAs/GaAsSb)または(InAs/GaSb)である、請求項1~7のいずれか1項に記載の半導体素子。
  9.   前記基板がInPであり、前記多重量子井戸構造がタイプ2の(InGaAs/GaAsSb)多重量子井戸構造であり、前記結晶調整層において、前記第1調整層がInPであり前記第2調整層がInGaAsである、請求項1~8のいずれか1項に記載の半導体素子。
  10.   前記半導体素子は、前記多重量子井戸構造を受光層として含む受光素子である、請求項1~9のいずれか1項に記載の半導体素子。
  11.   請求項10に記載の半導体素子と、読み出し回路とを備える、光学センサ装置。
  12.   有機金属気相成長法によって半導体素子を製造する方法であって、
      III-V族半導体の基板上に接して、結晶調整層を成長する工程と、
      前記結晶調整層に接して、a層とb層とを1対として複数対のタイプ2の多重量子井戸構造を成長する工程とを備え、
      前記結晶調整層を第1調整層と第2調整層とで構成し、前記第1調整層を前記基板と同じ材料で前記基板に接して成長し、また前記第2調整層を前記a層またはb層と同じ材料で前記第1調整層上に前記多重量子井戸構造の下面に接するように成長し、前記第1調整層の第1導電型のドーパント濃度を、前記第2調整層の第1導電型のドーパント濃度より高くする、半導体素子の製造方法。
  13.   前記結晶調整層の成長工程では、前記第1調整層の膜厚を前記第2調整層の膜厚の1/5以下とする、請求項12に記載の半導体素子の製造方法。
  14.   さらに、第1導電側電極の形成工程を備え、前記第2調整層をエッチングして前記第1調整層をエッチングしない選択性のあるエッチャントを用い、前記エッチャントにより前記第2調整層を除去し、その後、前記第1調整層に接触するように前記第1導電側電極を形成する、請求項12または請求項13に記載の半導体素子の製造方法。
     
PCT/JP2014/060775 2013-04-23 2014-04-16 半導体素子およびその製造方法 WO2014175128A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480022894.2A CN105144410A (zh) 2013-04-23 2014-04-16 半导体器件及其制造方法
US14/784,817 US9680040B2 (en) 2013-04-23 2014-04-16 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-090478 2013-04-23
JP2013090478A JP2014216382A (ja) 2013-04-23 2013-04-23 エピタキシャルウエハ、受光素子、光学センサ装置、およびエピタキシャルウエハの製造方法
JP2013-140001 2013-07-03
JP2013140001A JP2015015306A (ja) 2013-07-03 2013-07-03 半導体素子およびその製造方法
JP2013166656A JP2015035550A (ja) 2013-08-09 2013-08-09 半導体素子およびその製造方法
JP2013-166656 2013-08-09

Publications (1)

Publication Number Publication Date
WO2014175128A1 true WO2014175128A1 (ja) 2014-10-30

Family

ID=51791707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060775 WO2014175128A1 (ja) 2013-04-23 2014-04-16 半導体素子およびその製造方法

Country Status (4)

Country Link
US (1) US9680040B2 (ja)
CN (1) CN105144410A (ja)
TW (1) TW201501279A (ja)
WO (1) WO2014175128A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016197616A (ja) * 2015-04-02 2016-11-24 日本電信電話株式会社 半導体レーザ

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10418407B2 (en) 2015-11-06 2019-09-17 Artilux, Inc. High-speed light sensing apparatus III
US10886309B2 (en) 2015-11-06 2021-01-05 Artilux, Inc. High-speed light sensing apparatus II
US10254389B2 (en) * 2015-11-06 2019-04-09 Artilux Corporation High-speed light sensing apparatus
US9992430B2 (en) * 2016-06-16 2018-06-05 Intel Corporation Per-pixel performance improvement for combined visible and infrared image sensor arrays
US11105928B2 (en) 2018-02-23 2021-08-31 Artilux, Inc. Light-sensing apparatus and light-sensing method thereof
JP7027969B2 (ja) * 2018-03-07 2022-03-02 住友電気工業株式会社 半導体受光素子
US11574942B2 (en) 2018-12-12 2023-02-07 Artilux, Inc. Semiconductor device with low dark noise
WO2021041742A1 (en) 2019-08-28 2021-03-04 Artilux, Inc. Photo-detecting apparatus with low dark current
KR20210098725A (ko) 2020-02-03 2021-08-11 삼성전자주식회사 적외선 검출 소자 및 이를 포함하는 적외선 검출 시스템
CN111211484B (zh) * 2020-03-04 2021-06-11 常州纵慧芯光半导体科技有限公司 一种垂直腔面发射激光器及其制造方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206499A (ja) * 2008-02-01 2009-09-10 Sumitomo Electric Ind Ltd 受光素子、受光素子アレイおよびそれらの製造方法
WO2011016309A1 (ja) * 2009-08-01 2011-02-10 住友電気工業株式会社 半導体素子およびその製造方法
WO2011027624A1 (ja) * 2009-09-07 2011-03-10 住友電気工業株式会社 Iii-v族化合物半導体受光素子、iii-v族化合物半導体受光素子を作製する方法、受光素子、及び、エピタキシャルウェハ
JP2011060792A (ja) * 2009-09-04 2011-03-24 Sumitomo Electric Ind Ltd 半導体素子の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2372787A4 (en) * 2008-12-26 2018-03-07 Sumitomo Electric Industries, Ltd. Light-receiving element, light-receiving element array, method for manufacturing light-receiving element and method for manufacturing light-receiving element array
US8000371B2 (en) * 2009-09-22 2011-08-16 Palo Alto Research Center Incorporated Vertical surface emitting semiconductor device
JP5531744B2 (ja) 2010-04-13 2014-06-25 住友電気工業株式会社 半導体ウエハ、受光素子、受光素子アレイ、ハイブリッド型検出装置、光学センサ装置、および半導体ウエハの製造方法
JP2012038766A (ja) 2010-08-03 2012-02-23 Sumitomo Electric Ind Ltd 検出装置、受光素子アレイ、半導体チップ、これらの製造方法、および光学センサ装置
JP2012216727A (ja) 2011-04-01 2012-11-08 Sumitomo Electric Ind Ltd 受光素子、その製造方法および検出装置
KR20130012375A (ko) * 2011-07-25 2013-02-04 삼성전자주식회사 반도체 발광소자 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206499A (ja) * 2008-02-01 2009-09-10 Sumitomo Electric Ind Ltd 受光素子、受光素子アレイおよびそれらの製造方法
WO2011016309A1 (ja) * 2009-08-01 2011-02-10 住友電気工業株式会社 半導体素子およびその製造方法
JP2011060792A (ja) * 2009-09-04 2011-03-24 Sumitomo Electric Ind Ltd 半導体素子の製造方法
WO2011027624A1 (ja) * 2009-09-07 2011-03-10 住友電気工業株式会社 Iii-v族化合物半導体受光素子、iii-v族化合物半導体受光素子を作製する方法、受光素子、及び、エピタキシャルウェハ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, BAILE ET AL.: "SWIR/MWIR InP-Based p-i-n Photodiodes With InGaAs/GaAsSb Type-II Quantum Wells", IEEE JOURNAL OF QUANTUM ELECTRONICS, vol. 47, no. 9, September 2011 (2011-09-01), pages 1244 - 1250 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016197616A (ja) * 2015-04-02 2016-11-24 日本電信電話株式会社 半導体レーザ

Also Published As

Publication number Publication date
CN105144410A (zh) 2015-12-09
TW201501279A (zh) 2015-01-01
US20160056315A1 (en) 2016-02-25
US9680040B2 (en) 2017-06-13

Similar Documents

Publication Publication Date Title
WO2014175128A1 (ja) 半導体素子およびその製造方法
TWI552371B (zh) A group III-V compound semiconductor light-receiving element, a method for fabricating a III-V compound semiconductor light-receiving element, a light-receiving element, and an epitaxial wafer
WO2015059988A1 (ja) エピタキシャルウエハおよびその製造方法
JP5892476B2 (ja) エピタキシャルウエハ、受光素子、光学センサ装置、並びにエピタキシャルウエハおよび受光素子の製造方法
JP5748176B2 (ja) 受光素子、エピタキシャルウエハおよびその製造方法
JP2011101032A5 (ja)
JP5218476B2 (ja) 半導体素子、光学センサ装置および半導体素子の製造方法
US9608148B2 (en) Semiconductor element and method for producing the same
JP2014127499A (ja) 受光デバイス、その製造法、およびセンシング装置
JP2011100770A (ja) 受光素子アレイの製造方法及び受光素子アレイ、並びにエピタキシャルウェハの製造方法及びエピタキシャルウェハ
WO2010073768A1 (ja) 受光素子、受光素子アレイおよびそれらの製造方法
US20220367749A1 (en) Semiconductor optical device and method of producing the same
JP2015015306A (ja) 半導体素子およびその製造方法
JP4702474B2 (ja) Iii−v族化合物半導体受光素子、及びiii−v族化合物半導体受光素子を作製する方法
JP6137732B2 (ja) エピタキシャルウエハおよびその製造方法
WO2012046603A1 (ja) 受光素子、光学センサ装置および受光素子の製造方法
US9698287B2 (en) Epitaxial wafer, method for producing the same, semiconductor element, and optical sensor device
JP2015035550A (ja) 半導体素子およびその製造方法
WO2012002144A1 (ja) 受光素子およびその製造方法
JP4941525B2 (ja) 半導体素子の製造方法
JP2012080010A (ja) エピタキシャルウエハ、半導体素子、およびこれらの製造方法
JP5983716B2 (ja) Iii−v族化合物半導体受光素子
JP5794288B2 (ja) 受光素子アレイ及びエピタキシャルウェハ
JP5659864B2 (ja) Iii−v族化合物半導体受光素子
JP2014216382A (ja) エピタキシャルウエハ、受光素子、光学センサ装置、およびエピタキシャルウエハの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480022894.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788923

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14784817

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14788923

Country of ref document: EP

Kind code of ref document: A1