CN111403505A - 一种双极型可见光探测器及其制备方法 - Google Patents

一种双极型可见光探测器及其制备方法 Download PDF

Info

Publication number
CN111403505A
CN111403505A CN202010158012.2A CN202010158012A CN111403505A CN 111403505 A CN111403505 A CN 111403505A CN 202010158012 A CN202010158012 A CN 202010158012A CN 111403505 A CN111403505 A CN 111403505A
Authority
CN
China
Prior art keywords
layer
doped
ohmic contact
type
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010158012.2A
Other languages
English (en)
Other versions
CN111403505B (zh
Inventor
江灏
张苏朋
吕泽升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
National Sun Yat Sen University
Original Assignee
National Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Sun Yat Sen University filed Critical National Sun Yat Sen University
Priority to CN202010158012.2A priority Critical patent/CN111403505B/zh
Publication of CN111403505A publication Critical patent/CN111403505A/zh
Application granted granted Critical
Publication of CN111403505B publication Critical patent/CN111403505B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4446Type of detector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种双极型可见光探测器及其制备方法,双极型可见光探测器包括衬底、外延层、沉积的金属电极,外延层按照自下而上的生长顺序依次为成核层、过渡层、Si掺杂n型GaN下欧姆接触层、Si掺杂n型AlxGa1‑xN组分渐变层、非故意掺杂AlyGa1‑yN层、非故意掺杂AlzGa1‑zN组分渐变层、具有周期GaN薄插入层的非故意掺杂InjGa1‑jN光吸收层、Si掺杂n型InkGa1‑kN组分渐变层、Si掺杂n型GaN上欧姆接触层,金属电极包括下欧姆接触电极和上欧姆接触电极。本发明具有光电增益高、响应速度快和工作电压低的优点。

Description

一种双极型可见光探测器及其制备方法
技术领域
本发明涉及半导体可见光探测器的技术领域,更具体地,涉及一种双极型可见光探测器及其制备方法。
背景技术
当前,在可见光通信、生物光子学、荧光光谱等领域的应用对可见光探测器的性能都提出了更高的要求。III族氮化物半导体InGaN三元合金,由于通过改变铟(In)的组分可实现从0.7到3.4eV的、覆盖整个可见区域的直接和可调的带隙能量,在可见光探测中具有应用前景;同时,由于InGaN是直接带隙半导体,且具有光吸收系数高、电子饱和漂移速度快的材料特性,因此是极具潜力的高效、高速可见光探测器制作材料。
迄今为止,包括肖特基势垒、p-i-n结、金属-半导体-金属(MSM)和金属-绝缘体-半导体(MIS)光电二极管在内的各种类型的可见光波段InGaN基光电探测器已被研究开发出来。在这些类型的探测器中,尽管一些探测器件显示了高达60%的外量子效率和低暗电流(IEEE Photonics Technology Letters,vol.31,pp1469,2019),但是基本上都不具备增益特性。即使一些研制的InGaN可见光探测器显示出了光电增益,也是由于缺陷关联机制所产生的,因此一致性和重复性都不能满足实际应用的要求。
而在许多可见光的光电探测中,高光电增益特性是有强烈的需求的。例如在可见光通信应用中,作为信号接收端的核心器件,可见光探测器的光电增益决定了其探测灵敏度,而器件的探测灵敏度则关系到整个通信系统的信号传输距离和带宽。在可见光通信系统中,随着传输距离的增加,光接收器接收到信号衰减、变弱,并且由于外界强烈的背景噪声以及固有的电路噪声,会严重影响信号与噪声的区分。因此,为了保证信号的高速、准确接收,采用灵敏度高、响应速度快、响应度高、噪声小的光电探测器是一个关键因素。
通常,要获得高光电增益可以通过制作雪崩光电二极管、光电导探测器、光电晶体管探测器来实现。但是,由于目前InGaN外延层中存在高密度的线缺陷和点缺陷,以及相分离等问题,使得InGaN光电探测器的有源层中存在大量漏电通道(如螺旋位错),难以实现高电场下的雪崩效应;同时,使得非故意掺杂层中也存在高浓度的施主型背景载流子,不利于实现p型掺杂,因此难以制作InGaN基雪崩光电探测器和光电晶体管探测器。而光电导探测器由于暗电流高、光响应速度慢,又不能满足大多数实际应用的要求。
发明内容
本发明旨在克服上述现有技术的至少一种不足,提供一种双极型可见光探测器,用于解决光电导探测器由于暗电流高、光响应速度慢,不能满足大多数实际应用要求,而InGaN基雪崩光电探测器和光电晶体管探测器难以制作的问题。
本发明采取的技术方案是:
一种双极型可见光探测器,包括衬底、生长于衬底之上的外延层、沉积的金属电极,其中,所述外延层按照自下而上的生长顺序依次为成核层、过渡层、Si掺杂n型GaN下欧姆接触层、Si掺杂n型AlxGa1-xN组分渐变层、非故意掺杂AlyGa1-yN层、非故意掺杂AlzGa1-zN组分渐变层、具有周期GaN薄插入层的非故意掺杂InjGa1-jN光吸收层、Si掺杂n型InkGa1-kN组分渐变层、Si掺杂n型GaN上欧姆接触层,所述金属电极分别包括沉积在Si掺杂n型GaN下欧姆接触层上的下欧姆接触电极和沉积在Si掺杂n型GaN上欧姆接触层上的上欧姆接触电极。
本发明提出了一种基于III族氮化物半导体的双极型可见光探测器,该双极型可见光探测器避免了InGaN基光电二极管在高偏压下漏电流高、p型掺杂因受高背景载流子浓度影响而不易实现的问题,利用III族氮化物中GaN和AlGaN材料结晶质量相对较高且稳定的特点,以及该体系材料的极化效应,形成具有高光诱导增益的双极型光电探测器;同时,对光吸收层InGaN通过插入周期GaN薄层加以结晶质量改善,从而使得器件具有了除雪崩光电探测器之外的光电二极管所不具备的高光电增益,并且具有响应速度快和工作电压低的优点。
所述双极型可见光探测器的原理是:利用纤锌矿结构III族氮化物外延层中的自发和压电极化效应,使得承受压应力的、组分由高逐渐变低的非故意掺杂AlzGa1-zN组分渐变层中产生纵向极化电场,在其作用下费米能级靠近价带,使得从受主杂质离化出的空穴累积在该层中,使该层的电势高于其上层和下层的Si掺杂n型GaN欧姆接触层,形成势垒阻碍载流子的输运。因此,在没有光信号入射情况下,可以实现低漏电流(即低暗电流)。另一方面,把非故意掺杂InjGa1-jN光吸收层作为吸收层来实现可见光探测。为改善非故意掺杂InjGa1-jN光吸收层的结晶质量,采用周期GaN薄插入层来增强非故意掺杂InjGa1-jN光吸收层中的压应力,抑制非故意掺杂InjGa1-jN光吸收层中的相分离(即In组分分布不均匀,从而导致局域态的存在,致使非故意掺杂InjGa1-jN光吸收层中背景载流子浓度高,导致探测器产生吸收边不陡峭、漏电等问题)。进一步,在非故意掺杂InjGa1-jN光吸收层上层通过InGaN组分渐变层缓释应力,并生长n型GaN欧姆接触层用以制作金属接触电极和作为入射窗口层。探测器在上、下层欧姆接触电极分别接正、负电极的状态下工作,此时InGaN吸收层处于部分或全耗尽状态,当可见光信号从上方的n型GaN欧姆接触层/窗口层入射进入非故意掺杂InjGa1-jN光吸收层,产生光生-电子空穴对,电子向上层的正电极一侧移动,空穴向下层负电极一侧移动。光生空穴在非故意掺杂AlyGa1-yN层与AlzGa1-zN组分渐变层的界面处受到价带带阶的阻挡,产生空穴累积,导致AlzGa1-zN层相对其上、下层的电势降低,即该层对其下面的n型掺杂层中的电子的势垒降低,导致电子越过势垒向上层正电极渡越的数量大幅增加,产生光电流增益。由于AlzGa1-zN组分渐变层中的空穴浓度较低,该层在工作电压下(在0-10V范围内)处于全耗尽态,电子可快速渡越该层,进入非故意掺杂InjGa1-jN光吸收层后在电场作用下漂移到正电极,完成收集,因此可实现高速光响应。在探测器的工作中,电子、空穴均参与光响应,故为双极型探测器。
优选地,所述衬底为蓝宝石、碳化硅、氮化镓、氮化铝或硅衬底,所述成核层为低温GaN或AlN成核层,厚度范围为10-35nm;所述过渡层为高温GaN、AlN或AlGaN过渡层,厚度范围为0.2-3μm;生长于所述过渡层上方的Si掺杂n型GaN下欧姆接触层的电子浓度为3×1017-5×1018cm-3,厚度为0.2-2μm。
优选地,所述Si掺杂n型AlxGa1-xN组分渐变层中Al组分x线性渐变,x的起始值为0,终止值范围为0.1~0.2,层厚度范围为50-200nm,层中电子浓度为3×1017-5×1018cm-3;所述非故意掺杂AlyGa1-yN层中Al组分y值为x的终止值,厚度为3-10nm,所述的非故意掺杂AlzGa1-zN组分渐变层中Al组分z线性变化,z的起始值≤y,终止值为0,层厚度为50-200nm。
优选地,所述非故意掺杂InjGa1-jN光吸收层的带隙宽度所对应波长范围是400~580nm,总厚度为40-100nm,所述非故意掺杂InjGa1-jN光吸收层内每隔10-20nm设有一个厚度为1-3nm的GaN薄插入层。
优选地,所述Si掺杂n型InkGa1-kN组分渐变层中In组分k线性渐变,k的起始值为l,终止值为0,层中电子浓度范围为3×1017-5×1018cm-3,层厚度为10-100nm。
优选地,生长于所述Si掺杂n型InkGa1-kN组分渐变层上方的Si掺杂n型GaN上欧姆接触层,层中电子浓度范围为3×1017-5×1018cm-3,层厚度为30-200nm。
本发明的另一目的在于提供一种双极型可见光探测器的制备方法,包括以下步骤:
S1.表面清洗:采用有机和无机清洗,去除晶圆表面杂质及氧化层;
S2.台阶制作:采用标准光刻技术制作掩膜层,其后干法或湿法刻蚀工艺刻蚀至Si掺杂n型GaN下欧姆接触层,形成台阶;
S3.刻蚀损伤修复:采用快速退火和湿法表面处理修复刻蚀对晶圆表面所造成的损伤;
S4.电极制作:采用光刻技术制作掩膜层,形成环形电极图形,沉积金属电极,剥离后得到台阶上、下表面两个金属环电极;对金属电极进行合金退火处理,形成欧姆接触。
在本技术方案所述的步骤S2中,台阶的制作方法采用干法刻蚀或者湿法刻蚀工艺实现,刻蚀至所述Si掺杂n型GaN下欧姆接触层。
优选地,所述步骤S3中,先在高纯氮气氛围中高温快速退火,然后采用碱性溶液湿法处理进行刻蚀损伤修复。
优选地,所述步骤S4中,金属电极为以Ti/Al为最初两层的金属层组合;采用在高纯氮气氛围或高真空中高温快速退火合金。
优选地,所述GaN薄插入层的生长温度与非故意掺杂InjGa1-jN光吸收层相同,所述GaN薄插入层采用脉冲V族N源的方式生长,所述Si掺杂n型InkGa1-kN组分渐变层的生长温度与非故意掺杂InjGa1-jN光吸收层相同,所述Si掺杂n型GaN上欧姆接触层层的生长温度比所述Si掺杂n型InkGa1-kN组分渐变层高200-300℃。采用脉冲V族N源的生长方式能进一步改善GaN薄插入层的结晶质量。
与现有技术相比,本发明的有益效果为:利用III族氮化物中GaN和AlGaN材料结晶质量相对较高且稳定的特点,以及该体系材料的极化效应,形成双极型光电探测器,并对光吸收层InGaN加以结晶质量改善,使得本发明的双极型可见光探测器具有光电增益高、响应速度快和工作电压低的优点。
附图说明
图1为本发明的双极型可见光探测器的结构示意图。
图中包含:衬底-101;成核层-102;过渡层-103;Si掺杂n型GaN下欧姆接触层-104;Si掺杂n型AlxGa1-xN组分渐变层-105;非故意掺杂AlyGa1-yN层-106;非故意掺杂AlzGa1-zN组分渐变层-107;非故意掺杂InjGa1-jN光吸收层-108;Si掺杂n型InkGa1-kN组分渐变层-109;Si掺杂n型GaN上欧姆接触层-110;下欧姆接触电极-111;上欧姆接触电极-112;台阶-113。
具体实施方式
本发明附图仅用于示例性说明,不能理解为对本发明的限制。为了更好说明以下实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
实施例1
如图1所示,本实施例1为一种基于III族氮化物半导体的双极型可见光探测器的结构示意图,器件结构采用金属有机化学气相沉积或分子束外延的方法生长,包括c面蓝宝石衬底101及生长于衬底101之上的外延层。其中,外延层自下而上的顺序依次为25nm厚的低温GaN成核层102,3μm厚的高温非故意掺杂GaN过渡层103,2μm厚、电子浓度为3×1018cm-3的Si掺杂n型GaN下欧姆接触层104,100nm厚、电子浓度为3×1018cm-3的AlxGa1-xN(x起始值为0,终止值为0.15)组分渐变层105,5nm厚的AlyGa1-yN(y=0.15)非故意掺杂层106,110nm厚的非故意掺杂AlzGa1-zN(z起始值为0.1,终止值为0)组分渐变层107,60nm厚的非故意掺杂InjGa1-jN(j=0.18)光吸收层108,非故意掺杂InjGa1-jN(j=0.18)光吸收层108内每隔15nm插入有2nm的非故意掺杂GaN层,50nm厚、电子浓度为2×1018cm-3的Si掺杂n型InkGa1-kN(k起始值为0.18,终止值为0)组分渐变层109,100nm厚、电子浓度为2×1018cm-3的Si掺杂n型GaN上欧姆接触层110,采用标准光刻和干法刻蚀工艺制作的台阶113,以及在Si掺杂n型GaN下欧姆接触层104上的下欧姆接触电极111和在Si掺杂n型GaN上欧姆接触层110上的上欧姆接触电极112。
实施例2
本实施例2为一种双极型可见光探测器的制备方法,具体包括以下步骤:
S1.表面清洗:将晶圆依次置于丙酮和异丙醇,并且进行超声震荡进行有机清洗,用去离子水清洗后,将晶圆置于50%的盐酸中溶液中,以去除表面氧化层,用纯氮气枪吹干;
S2.台阶制作:进行涂胶,光刻,显影暴露出需要刻蚀的部分,然后使用电感耦合等离子体干法刻蚀晶圆至Si掺杂n型GaN下欧姆接触层104,并用去胶剂去胶;
S3.刻蚀损伤修复:采用煮沸的KOH溶液对晶圆进行处理,再使用在高纯N2气氛下的快速热退火工艺进行700℃、1min的退火处理;
S4.电极制作:进行涂胶,光刻,显影在Si掺杂n型GaN下欧姆接触层104和Si掺杂n型GaN上欧姆接触层110表面制作出环形电极图形,然后使用电子束蒸发技术,蒸镀上Ti/Al/Ni/Au,用去胶剂剥离后得到的上、下两个电极的环形图形;采用在高纯N2气氛下的快速退火工艺进行700℃、30s的合金处理,使下欧姆接触电极111与Si掺杂n型GaN下欧姆接触层104形成良好的欧姆接触,及使上欧姆接触电极112与Si掺杂n型GaN上欧姆接触层110形成良好的欧姆接触。
显然,本发明的上述实施例仅仅是为清楚地说明本发明技术方案所作的举例,而并非是对本发明的具体实施方式的限定。凡在本发明权利要求书的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

1.一种双极型可见光探测器,其特征在于,包括衬底(101)、生长于衬底之上的外延层、沉积的金属电极,其中,所述外延层按照自下而上的生长顺序依次为成核层(102)、过渡层(103)、Si掺杂n型GaN下欧姆接触层(104)、Si掺杂n型AlxGa1-xN组分渐变层(105)、非故意掺杂AlyGa1-yN层(106)、非故意掺杂AlzGa1-zN组分渐变层(107)、具有周期GaN薄插入层的非故意掺杂InjGa1-jN光吸收层(108)、Si掺杂n型InkGa1-kN组分渐变层(109)、Si掺杂n型GaN上欧姆接触层(110),所述金属电极分别包括沉积在Si掺杂n型GaN下欧姆接触层(104)上的下欧姆接触电极(111)和沉积在Si掺杂n型GaN上欧姆接触层(110)上的上欧姆接触电极(112)。
2.根据权利要求1所述的双极型可见光探测器,其特征在于,所述衬底(101)为蓝宝石、碳化硅、氮化镓、氮化铝或硅衬底,所述成核层(102)为低温GaN或AlN成核层,厚度范围为10-35nm;所述过渡层(103)为高温GaN、AlN或AlGaN过渡层,厚度范围为0.2-3μm;所述Si掺杂n型GaN下欧姆接触层(104)的电子浓度为3×1017-5×1018cm-3,厚度为0.2-2μm。
3.根据权利要求1所述的双极型可见光探测器,其特征在于,所述Si掺杂n型AlxGa1-xN组分渐变层(105)中Al组分x线性渐变,x的起始值为0,终止值范围为0.1~0.2,层厚度范围为50-200nm,层中电子浓度为3×1017-5×1018cm-3;所述非故意掺杂AlyGa1-yN层(106)中Al组分y值为x的终止值,厚度为3-10nm,所述的非故意掺杂AlzGa1-zN组分渐变层(107)中Al组分z线性变化,z的起始值≤y,终止值为0,层厚度为50-200nm。
4.根据权利要求1所述的双极型可见光探测器,其特征在于,所述非故意掺杂InjGa1-jN光吸收层(108)的带隙宽度所对应波长范围是400~580nm,总厚度为40-100nm,所述非故意掺杂InjGa1-jN光吸收层(108)内每隔10-20nm设有一个厚度为1-3nm的GaN薄插入层。
5.根据权利要求1所述的双极型可见光探测器,其特征在于,所述Si掺杂n型InkGa1-kN组分渐变层(109)中In组分k线性渐变,k的起始值为l,终止值为0,层中电子浓度范围为3×1017-5×1018cm-3,层厚度为10-100nm。
6.根据权利要求1所述的双极型可见光探测器,其特征在于,所述的Si掺杂n型GaN上欧姆接触层(110),层中电子浓度范围为3×1017-5×1018cm-3,层厚度为30-200nm。
7.一种权利要求1-6任一项所述的双极型可见光探测器的制备方法,其特征在于,包括以下步骤:
S1.表面清洗:采用有机和无机清洗,去除晶圆表面杂质及氧化层;
S2.台阶制作:采用标准光刻技术制作掩膜层,其后干法或湿法刻蚀工艺刻蚀至所述Si掺杂n型GaN下欧姆接触层(104),形成台阶(113);
S3.刻蚀损伤修复:采用快速退火和湿法表面处理修复刻蚀对晶圆表面所造成的损伤;
S4.电极制作:采用光刻技术制作掩膜层,形成环形电极图形,沉积金属电极,剥离后得到台阶(113)上、下表面两个金属环电极;对金属电极进行合金退火处理,形成欧姆接触。
8.根据权利要求7所述的双极型可见光探测器的制备方法,其特征在于,所述步骤S3中,先在高纯氮气氛围中高温快速退火处理,然后采用碱性溶液湿法处理进行刻蚀损伤修复。
9.根据权利要求7所述的双极型可见光探测器的制备方法,其特征在于,所述步骤S4中,金属电极为以Ti/Al为最初两层的金属层组合;采用在高纯氮气氛围或高真空中对金属电极进行高温快速合金退火处理。
10.根据权利要求7所述的双极型可见光探测器的制备方法,其特征在于,所述GaN薄插入层的生长温度与非故意掺杂InjGa1-jN光吸收层(108)相同,所述GaN薄插入层采用脉冲V族N源的方式生长,所述Si掺杂n型InkGa1-kN组分渐变层(109)的生长温度与非故意掺杂InjGa1-jN光吸收层(108)相同,所述Si掺杂n型GaN上欧姆接触层(110)层的生长温度比所述Si掺杂n型InkGa1-kN组分渐变层(109)高200-300℃。
CN202010158012.2A 2020-03-09 2020-03-09 一种双极型可见光探测器及其制备方法 Active CN111403505B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010158012.2A CN111403505B (zh) 2020-03-09 2020-03-09 一种双极型可见光探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010158012.2A CN111403505B (zh) 2020-03-09 2020-03-09 一种双极型可见光探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN111403505A true CN111403505A (zh) 2020-07-10
CN111403505B CN111403505B (zh) 2021-09-07

Family

ID=71413241

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010158012.2A Active CN111403505B (zh) 2020-03-09 2020-03-09 一种双极型可见光探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN111403505B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112259632A (zh) * 2020-09-30 2021-01-22 中国电子科技集团公司第十三研究所 光电探测器及其制备方法
CN112420883A (zh) * 2020-11-18 2021-02-26 湘能华磊光电股份有限公司 一种提高发光效率的led外延生长方法
CN113113506A (zh) * 2021-03-26 2021-07-13 中山大学 一种iii族氮化物增益型光电探测器及其制备方法
WO2023108862A1 (zh) * 2021-12-14 2023-06-22 华南理工大学 一种用于可见光通信的芯片及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120180868A1 (en) * 2010-10-21 2012-07-19 The Regents Of The University Of California Iii-nitride flip-chip solar cells
CN102856163A (zh) * 2012-09-04 2013-01-02 程凯 半导体外延结构及其生长方法
CN104078520A (zh) * 2014-06-27 2014-10-01 中山大学 一种具有窄带光谱响应的电子输运可见光光电探测器
CN109686809A (zh) * 2018-12-25 2019-04-26 中山大学 一种iii族氮化物半导体可见光雪崩光电探测器及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120180868A1 (en) * 2010-10-21 2012-07-19 The Regents Of The University Of California Iii-nitride flip-chip solar cells
CN102856163A (zh) * 2012-09-04 2013-01-02 程凯 半导体外延结构及其生长方法
CN104078520A (zh) * 2014-06-27 2014-10-01 中山大学 一种具有窄带光谱响应的电子输运可见光光电探测器
CN109686809A (zh) * 2018-12-25 2019-04-26 中山大学 一种iii族氮化物半导体可见光雪崩光电探测器及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
卢怡丹 等: "InGaN紫外探测器的制备与性能研究", 《半导体光电》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112259632A (zh) * 2020-09-30 2021-01-22 中国电子科技集团公司第十三研究所 光电探测器及其制备方法
CN112420883A (zh) * 2020-11-18 2021-02-26 湘能华磊光电股份有限公司 一种提高发光效率的led外延生长方法
CN112420883B (zh) * 2020-11-18 2023-06-27 湘能华磊光电股份有限公司 一种提高发光效率的led外延生长方法
CN113113506A (zh) * 2021-03-26 2021-07-13 中山大学 一种iii族氮化物增益型光电探测器及其制备方法
CN113113506B (zh) * 2021-03-26 2023-01-03 中山大学 一种iii族氮化物增益型光电探测器及其制备方法
WO2023108862A1 (zh) * 2021-12-14 2023-06-22 华南理工大学 一种用于可见光通信的芯片及其制备方法与应用

Also Published As

Publication number Publication date
CN111403505B (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
CN111403505B (zh) 一种双极型可见光探测器及其制备方法
CN106847933B (zh) 单片集成紫外-红外双色雪崩光电二极管及其制备方法
CN106784123B (zh) 单行载流子光电探测器及其制作方法
CN107482070B (zh) 一种凹槽型电极结构的InGaN基MSM可见光光电探测器
EP1498960A2 (en) Increased responsivity photodetector
CN109686809B (zh) 一种iii族氮化物半导体可见光雪崩光电探测器及制备方法
CN102332456A (zh) 光探测器集成器件及制备方法
CN107863403B (zh) 一种高线性增益红外雪崩光电二极管及其制备方法
CN109980040A (zh) 一种氧化镓mis结构紫外探测器
CN105655437A (zh) 一种紫外雪崩光电探测器
CN109285914B (zh) 一种AlGaN基紫外异质结光电晶体管探测器及其制备方法
US20150034159A1 (en) Hole-blocking TiO2/Silicon Heterojunction for Silicon Photovoltaics
CN113169244A (zh) 具有稀释氮化物层的光电子装置
Ang et al. High-performance waveguided Ge-on-SOI metal–semiconductor–metal photodetectors with novel silicon–carbon (Si: C) Schottky barrier enhancement layer
CN210349846U (zh) 一种吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
CN112635615B (zh) 具有多吸收量子阱的光伏型氮化物子带跃迁红外探测器
CN209675319U (zh) 一种氧化镓mis结构紫外探测器
US11164986B2 (en) Avalanche photodiode and method of manufacturing the same
CN114744076B (zh) 基于氮化镓异质结薄膜的双极型光电二极管及其制备方法
CN112993077B (zh) 一种GaN基紫外光电探测器及其制备方法
CN109148623B (zh) 一种具有低噪声的AlGaN基雪崩光电二极管及制备方法
CN113113506B (zh) 一种iii族氮化物增益型光电探测器及其制备方法
CN109378361A (zh) 一种实现低电压下AlGaN探测器雪崩倍增的方法
CN117637894A (zh) 一种超薄势垒的增强型异质结紫外光电探测器及其制备方法
CN117673188A (zh) 一种基于非对称肖特基势垒的自驱动日盲紫外探测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant