WO2018082251A1 - 一种带有GaN纳米线阵列的紫外探测器及其制作方法 - Google Patents

一种带有GaN纳米线阵列的紫外探测器及其制作方法 Download PDF

Info

Publication number
WO2018082251A1
WO2018082251A1 PCT/CN2017/079209 CN2017079209W WO2018082251A1 WO 2018082251 A1 WO2018082251 A1 WO 2018082251A1 CN 2017079209 W CN2017079209 W CN 2017079209W WO 2018082251 A1 WO2018082251 A1 WO 2018082251A1
Authority
WO
WIPO (PCT)
Prior art keywords
type gan
thin film
nanowire array
film layer
window
Prior art date
Application number
PCT/CN2017/079209
Other languages
English (en)
French (fr)
Inventor
何苗
王志成
郑树文
朱凝
Original Assignee
华南师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南师范大学 filed Critical 华南师范大学
Publication of WO2018082251A1 publication Critical patent/WO2018082251A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • H01L31/1035Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type the devices comprising active layers formed only by AIIIBV compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to an ultraviolet detector and a manufacturing method thereof, in particular to an ultraviolet detector with a GaN nanowire array and a manufacturing method thereof.
  • UV detection technology is widely used in military and civilian applications. In the military, missile warning, guidance, ultraviolet communication, biochemical analysis and other aspects have the need for ultraviolet detection. In civil use, such as open fire detection, biomedical analysis, ozone monitoring, offshore oil monitoring, solar illumination monitoring, public security investigation, etc. In short, UV detection technology is another dual-use photoelectric detection technology after infrared and laser detection technology.
  • UV-sensitive photomultiplier tubes have long used UV-sensitive photomultiplier tubes and similar vacuum devices.
  • Ultraviolet-enhanced silicon photodiodes are representative of solid-state detectors. Compared with solid-state detectors, vacuum devices have the disadvantages of large volume and high operating voltage; the characteristics of visible light response of silicon devices can become a disadvantage in some UV applications.
  • the GaN material is a wide bandgap direct band gap compound semiconductor material with a band gap of 3.4 eV.
  • GaN material photodetectors are mostly composed of GaN thin film structures, and generally have various chip structures such as light guide type, MSM, Schottky junction type, and photodiode type.
  • GaN thin film devices are expensive to manufacture, and manufacturing process technology. It is difficult to be widely used in actual operation, and it is difficult to further promote and apply it.
  • Another object of the present invention is to provide a method for fabricating an ultraviolet detector with a GaN nanowire array that is simple and feasible in manufacturing process and low in cost.
  • An ultraviolet detector with a GaN nanowire array comprising a substrate and a P-type GaN thin film layer disposed on an upper surface of the substrate, wherein the P-type GaN thin film layer is grown with an N-type In the GaN nanowire array, a homogenous PN junction is formed between the N-type GaN nanowire and the P-type GaN thin film layer in the N-type GaN nanowire array.
  • the P-type GaN thin film layer is formed with a first window and a second window disposed on the peripheral edge of the first window, the first window is plated with a catalyst, and the second window is plated with passivation a layer; the N-type GaN nanowire array is grown on the first window.
  • the gap of the N-type GaN nanowire array is filled with an insulating spin-on glass liquid to form a spin-on glass layer.
  • a transparent conductive layer is plated on the upper surface of the spin-on glass layer.
  • a P-type ohmic electrode is disposed on the P-type GaN thin film layer, and an N-type ohmic electrode is disposed on the transparent conductive layer.
  • a method for fabricating an ultraviolet detector with a GaN nanowire array includes the following steps:
  • a P-type ohmic electrode is disposed on the P-type GaN thin film layer, and an N-type ohmic electrode is disposed on the transparent conductive layer.
  • the step of growing the N-type GaN nanowire array on the P-type GaN thin film layer in the step S2 is specifically: forming a first window on the P-type GaN thin film layer and setting a second window on the peripheral edge of the first window, the first window is plated with a catalyst, and the second window is plated with a passivation layer to grow an N-type GaN nanowire array on the first window.
  • the step of growing an N-type GaN nanowire array on the P-type GaN thin film layer described in the step S2 is specifically: by a gas phase reaction method in a hydride vapor phase epitaxy apparatus, thereby An N-type GaN nanowire array is grown on the P-type GaN thin film layer.
  • the growth conditions of the N-type GaN nanowire array in the step S2 are: a temperature of 820 degrees Celsius, a GaCl flow rate of 15 sccm, a NH 3 flow rate of 100 sccm, and a time of 4 min.
  • step S4 is specifically: plating a 200 nm thick indium tin oxide on the spin-on glass by the plasma enhanced chemical vapor deposition method as the transparent Conductive layer.
  • the invention has the beneficial effects that the present invention provides an ultraviolet detector with a GaN nanowire array, which has low cost, high sensitivity and stable performance; and the specific performance is as follows: N-type GaN is grown on the P-type GaN thin film layer. In the nanowire array, a homogenous PN junction is formed between the N-type GaN nanowire and the P-type GaN thin film layer in the N-type GaN nanowire array, and the one-dimensional GaN nanowire structure avoids lattice mismatch and thermal stress Mismatching and other issues, greatly reducing material defects, improving material quality and device performance.
  • the present invention provides a method for fabricating an ultraviolet detector with a GaN nanowire array, which has low manufacturing cost, and the GaN nanowire array ultraviolet detector fabricated by the method has high sensitivity and stable performance;
  • the specific performance is as follows: by forming N-type GaN nanowires on the P-type GaN thin film layer to form a homogenous PN junction, avoiding problems such as lattice mismatch and thermal stress mismatch, greatly reducing material defects, improving material quality and device performance.
  • the electroplating of the nano-array structure is realized by spin-coating the spin-on glass liquid between the nanowires, and the process is simple and feasible.
  • FIG. 1 is a schematic structural view of an ultraviolet detector with a GaN nanowire array according to the present invention
  • FIG. 2 is a schematic top view of a P-type GaN thin film layer of an ultraviolet detector with a GaN nanowire array according to the present invention
  • FIG. 3 is a perspective view of a GaN nanowire field emission scanning electron microscope of an ultraviolet detector with a GaN nanowire array according to the present invention
  • FIG. 4 is a top view of a GaN nanowire field emission scanning electron microscope of an ultraviolet detector with a GaN nanowire array of the present invention
  • FIG. 5 is a schematic diagram showing the photoelectric response characteristic I-V curve of an ultraviolet detector with a GaN nanowire array for 365 nm ultraviolet light according to the present invention
  • FIG. 6 is a schematic diagram showing a time response repeatability test curve of an ultraviolet detector with a GaN nanowire array according to the present invention
  • FIG. 7 is a flow chart showing the steps of a method for fabricating an ultraviolet detector with a GaN nanowire array according to the present invention.
  • An ultraviolet detector with a GaN nanowire array comprising a substrate and a P-type GaN thin film layer disposed on an upper surface of the substrate, wherein the P-type GaN thin film layer is grown with an N-type In the GaN nanowire array, a homogenous PN junction is formed between the N-type GaN nanowire and the P-type GaN thin film layer in the N-type GaN nanowire array.
  • the P-type GaN thin film layer is formed with a first window and a second window disposed on the peripheral edge of the first window, the first window is plated with a catalyst, and the second window is plated with passivation a layer; the N-type GaN nanowire array is grown on the first window.
  • the gap of the N-type GaN nanowire array is filled with an insulating spin coating After the glass liquid, a spin-on glass layer is formed.
  • a transparent conductive layer is plated on the upper surface of the spin-on glass layer.
  • a P-type ohmic electrode is disposed on the P-type GaN thin film layer, and an N-type ohmic electrode is disposed on the transparent conductive layer.
  • an ultraviolet detector with a GaN nanowire array includes a sapphire substrate 1 and a P-type GaN thin film layer 2, and the P-type GaN thin film layer 2 is disposed on the sapphire substrate 1. a surface; an N-type GaN nanowire array is grown on the P-type GaN thin film layer 2, and a homogenous PN is formed between the N-type GaN nanowire 7 and the P-type GaN thin film layer 2 in the N-type GaN nanowire array Knot.
  • the structural design of the invention avoids the problems of lattice mismatching, thermal stress mismatch, etc. of the materials for constructing the nanophotovoltaic device, greatly reducing defects, improving material quality and device performance.
  • a first window 8 of 660*660 um and a 90* disposed on the peripheral edge of the first window are fabricated on the P-type GaN thin film layer 2 by a photolithography process.
  • a second window 9 of 660 um wherein a P-type GaN thin film layer of the first window 8 is vapor-deposited with a 2 nm/2 nm Au/Ni thin film, and a vapor deposited on the P-type GaN thin film layer of the second window 9
  • the layer is 280 nm of SiO 2 ; Au / Ni is used as a catalyst for growing N-type GaN nanowires, and SiO 2 is used as a passivation layer; and the N-type GaN nanowire array is grown on the first window 8.
  • the first window 8 and the second window 9 are formed on the P-type GaN thin film layer 2 to control the growth range of the N-type GaN nanowire array.
  • the gap of the N-type GaN nanowire array is filled with an insulating spin-on glass liquid 4, thereby realizing electrical injection of the nanowire array structure.
  • an insulating spin-on glass liquid 4 thereby realizing electrical injection of the nanowire array structure.
  • Art is simple and feasible.
  • the spin-on glass liquid 4 filled in the gap of the N-type GaN nanowire array is cured, a spin-on glass layer is formed.
  • the spin-on glass layer is vapor-deposited with a thickness of 200 nm of indium tin oxide 5, which belongs to the transparent conductive layer and has an effect of expanding current.
  • a P-type ohmic electrode 3 is provided on the P-type GaN thin film layer 2, and the P-type ohmic electrode 3 is made of Ni/Au metal and has a thickness of 10/200 nm;
  • An indium tin 5 is provided with an N-type ohmic electrode made of Ti/Al/Ti/Au metal and having a thickness of 70/1700/50/200 nm.
  • a manufacturing method thereof that is, a method for fabricating an ultraviolet detector with a GaN nanowire array, specifically includes the following steps:
  • a P-type ohmic electrode is disposed on the P-type GaN thin film layer, and an N-type ohmic electrode is disposed on the transparent conductive layer.
  • the step of growing the N-type GaN nanowire array on the P-type GaN thin film layer in the step S2 is specifically: forming on the P-type GaN thin film layer a first window and a second window disposed on a peripheral edge of the first window, the first window is plated with a catalyst, and the second window is plated with a passivation layer, thereby growing the N-type GaN nanowire array On a window.
  • the step of growing an N-type GaN nanowire array on the P-type GaN thin film layer described in the step S2 is specifically: by a gas phase reaction method in a hydride vapor phase epitaxy apparatus, thereby An N-type GaN nanowire array is grown on the P-type GaN thin film layer.
  • the growth condition of the N-type GaN nanowire in the step S2 is: a temperature of 820 degrees Celsius, a GaCl flow rate of 15 sccm, a NH 3 flow rate of 100 sccm, and a time of 4 min.
  • step S4 is specifically: plating a layer of 200 nm indium tin oxide as the transparent conductive layer on the spin-on glass by plasma enhanced chemical vapor deposition.
  • a method for fabricating an ultraviolet detector with a GaN nanowire array includes the following steps:
  • a P-type ohmic electrode is disposed on the P-type GaN thin film layer, and an N-type ohmic electrode is disposed on the transparent conductive layer.
  • a P-type GaN thin film layer preparation step is further provided before the step S1, and the P-type GaN thin film layer preparation step is specifically: depositing on a sapphire substrate by a metal organic chemical vapor deposition (MOCVD) method.
  • MOCVD metal organic chemical vapor deposition
  • the step of growing the N-type GaN nanowire array on the P-type GaN thin film layer in the step S2 is specifically: using a photolithography process to form a P-type GaN thin film layer. a first window of 660*660 um and a second window of 90*660 um disposed at a periphery of the first window; a plasma enhanced chemical vapor deposition method, depositing a layer of 2 nm/2 nm on the first window An Au/Ni film on which a 280 nm SiO 2 layer is deposited on the second window, wherein Au/Ni is used as a catalyst for growing GaN nanowires, and SiO 2 is used as a passivation layer, thereby making the N-type GaN nanowire array at a temperature 820 degrees Celsius, GaCl flow rate is 15sccm, NH 3 flow rate is 100sccm, and the time is 4min, the growth is on the first window, and the N-type GaN nanowire has a
  • a homogenous PN junction is formed between the N-type GaN nanowire and the P-type GaN thin film layer.
  • the GaN nanowires are hexagonal prism wurtzite structures.
  • the GaN nanowires are grown by the method of the invention, and the growth rate reaches 1 um/min, and the growth rate is much higher than that of expensive equipment such as MOCVD and MBE, thereby reducing the cost; and the N-type GaN nanowires are formed on the P-type GaN thin film to form the same
  • the quality of the PN junction avoids problems such as lattice mismatch and thermal stress mismatch, greatly reducing material defects and improving material quality and device performance.
  • the ultraviolet detector manufactured by the method of the invention has high photoelectric conversion efficiency, more sensitive photoelectric response, and excellent light detection performance; as shown in FIG. 6, the ultraviolet detector manufactured by the method of the invention Good repeatability, small error and high stability.
  • the step S3 is specifically: spin-coating an insulating spin-on glass onto the substrate of the N-type GaN nanowire, filling the spin-on glass into the nanowire gap, and then following The spin coating time is 60 s, the spin coating speed is 3000 r / s; after spin coating, the specific steps of baking at 200 ° C for 30 min, the spin-on glass solution is solidified and converted into SiO 2 to obtain a spin-on glass layer.
  • the electro-injection of the nano-array structure is realized by spin-coating a spin-on glass (SOG) between the nanowires, and the process is simple and feasible.
  • SOG spin-on glass
  • a 200 nm thick indium tin oxide is deposited on the surface of the spin-on glass layer by plasma enhanced chemical vapor deposition as the transparent conductive layer, and the transparent conductive layer has an extension. The role of current.
  • the step S5 further comprises converting the SiO 2 and the spin-on glass liquid evaporated by the plasma enhanced chemical vapor deposition method by using a buffer silicon oxide etching solution by using a photoresist as a mask.
  • the SiO 2 is removed, and then a P-type ohmic electrode is disposed on the P-type GaN thin film layer, and an N-type ohmic electrode is disposed on the transparent conductive layer.
  • 10/200 nm of Ni/Au and 70/1700/50/200 nm of Ti/ are deposited by plasma enhanced chemical vapor deposition on P-type GaN and indium tin oxide in step S5, respectively.
  • the Al/Ti/Au metal system achieves ohmic contact, and the ultraviolet detector as described in Fig. 1 is thus completed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

提供一种带有GaN纳米线阵列的紫外探测器及其制作方法。该探测器包括衬底(1)和P型GaN薄膜层(2),P型GaN薄膜层(2)设置在衬底(1)的上表面,P型GaN薄膜层(2)上生长有N型GaN纳米线阵列,N型GaN纳米线阵列中的N型GaN纳米线(7)与P型GaN薄膜层(2)之间形成有同质PN结。该方法包括通过旋涂玻璃液(4)实现纳米线间隙填充绝缘,实现电注入;蒸镀透明导电层(5)来扩展电流,实现纳米线阵列互联;并在P型GaN薄膜层(2)上设有P型欧姆电极(3),在透明导电层(5)上设有N型欧姆电极(6),制成纳米线阵列紫外探测器。该方法具有成本低、灵敏度高、性能稳定、制作方法简单、便于在实际工作中操作等优点。紫外探测器及其制作方法可广泛应用于紫外探测技术领域中。

Description

一种带有GaN纳米线阵列的紫外探测器及其制作方法 技术领域
本发明涉及一种紫外探测器及其制作方法,特别是一种带有GaN纳米线阵列的紫外探测器及其制作方法。
背景技术
紫外探测技术在军事和民用等方面应用广泛。在军事上,导弹预警、制导、紫外通讯、生化分析等方面都有紫外探测的需求。在民用上,如明火探测、生物医药分析、臭氧监测、海上油监、太阳照度监测、公安侦查等。总之,紫外探测技术是继红外和激光探测技术之后的又一军民两用光电探测技术。
一直以来,高灵敏紫外探测多采用对紫外敏感的光电倍增管和类似的真空器件。而紫外增强型硅光电二极管是固体探测器的代表。相对固体探测器而言,真空器件存在体积大、工作电压高等缺点;硅器件具有可见光响应的特点在一些紫外应用中会变成缺点。随着宽禁带半导体材料研究,人们开始考虑可见光响应极小的本征型紫外光电探测器。GaN材料是一种宽禁带直接带隙化合物半导体材料,禁带宽度为3.4eV。目前,GaN材料光电探测器大都由GaN薄膜结构构成,大致有光导型、MSM、肖特基结型以及光电二极管型等多种芯片结构但是,GaN薄膜器件的制造成本很高,而且制造工艺技术难度高,因此无法广泛运用到实际操作中,难以进行进一步的推广和应用。
发明内容
本发明的目的是提供一种结构具有更少的缺陷、质量性能更好、紫外探测性能更优越的带有GaN纳米线阵列的紫外探测器。
本发明的另一目的是提供一种制造工艺简单可行,成本较低的带有GaN纳米线阵列的紫外探测器的制作方法。
本发明所采用的技术方案是:
一种带有GaN纳米线阵列的紫外探测器,包括衬底和P型GaN薄膜层,所述P型GaN薄膜层设置在衬底的上表面,所述P型GaN薄膜层上生长有N型GaN纳米线阵列,所述N型GaN纳米线阵列中的N型GaN纳米线与P型GaN薄膜层之间形成有同质PN结。
进一步地,所述P型GaN薄膜层上制有第一窗口和设置在第一窗口四周边沿上的第二窗口,所述第一窗口上镀有催化剂,所述第二窗口上镀有钝化层;所述N型GaN纳米线阵列生长在所述第一窗口上。
进一步地,所述N型GaN纳米线阵列的间隙中填充有绝缘的旋涂玻璃液后形成旋涂玻璃层。
进一步地,在所述旋涂玻璃层的上表面镀有透明导电层。
进一步地,所述P型GaN薄膜层上设有P型欧姆电极,所述透明导电层上设有N型欧姆电极。
本发明所采用的另一技术方案是:
一种带有GaN纳米线阵列的紫外探测器的制作方法,包括以下步骤:
S1、在衬底的上表面设置P型GaN薄膜层;
S2、在所述P型GaN薄膜层上生长N型GaN纳米线阵列,并且所述N型GaN纳米线阵列中的N型GaN纳米线与P型GaN薄膜层之间形成同质PN结;
S3、将绝缘的旋涂玻璃液旋涂到所述N型GaN纳米线的衬底上,使旋涂玻璃液填充到纳米线间隙后形成旋涂玻璃层;
S4、在所述旋涂玻璃层上表面蒸镀一层透明导电层;
S5、在所述P型GaN薄膜层上设置P型欧姆电极,在所述透明导电层上设置N型欧姆电极。
进一步地,所述步骤S2中的所述在所述P型GaN薄膜层上生长N型GaN纳米线阵列这一步骤具体为:在所述P型GaN薄膜层上制有第一窗口和设置在第一窗口四周边沿上的第二窗口,所述第一窗口上镀有催化剂,所述第二窗口上镀有钝化层,从而使N型GaN纳米线阵列生长在所述第一窗口上。
进一步地,所述步骤S2中所述的在所述P型GaN薄膜层上生长N型GaN纳米线阵列这一步骤,其具体为:在氢化物气相外延设备中通过气相反应方法,从而在所述P型GaN薄膜层上生长N型GaN纳米线阵列。
进一步地,所述步骤S2中所述N型GaN纳米线阵列的生长条件为:温度为820摄氏度,GaCl流量为15sccm,NH3流量为100sccm,时间为4min。
进一步地,所述步骤S4具体为:利用等离子体增强化学气相沉积法在所述旋涂玻璃上镀一层200nm厚度的氧化铟锡作为所述透明 导电层。
本发明的有益效果是:本发明提供一种带有GaN纳米线阵列的紫外探测器,成本低、灵敏度高、性能稳定;其具体表现在:所述P型GaN薄膜层上生长有N型GaN纳米线阵列,所述N型GaN纳米线阵列中的N型GaN纳米线与P型GaN薄膜层之间形成有同质PN结,其一维GaN纳米线结构避免了晶格不匹配、热应力不匹配等问题,大大减少材料缺陷,提升材料质量、器件性能。
本发明的另一有益效果是:本发明提供一种带有GaN纳米线阵列的紫外探测器的制作方法,制造成本低,以此方法制作的GaN纳米线阵列紫外探测器灵敏度高、性能稳定;其具体表现在:通过在P型GaN薄膜层上生长N型GaN纳米线形成同质PN结,避免了晶格不匹配、热应力不匹配等问题,大大减少材料缺陷,提升材料质量、器件性能;通过旋涂填充旋涂玻璃液在纳米线之间,实现纳米阵列结构的电注入,工艺简单可行。
附图说明
下面结合附图和实施例对本发明作进一步说明。
图1是本发明一种带有GaN纳米线阵列的紫外探测器的结构示意图;
图2是本发明一种带有GaN纳米线阵列的紫外探测器的P型GaN薄膜层的上表面示意图;
图3是本发明一种带有GaN纳米线阵列的紫外探测器的GaN纳米线场发射扫描电镜倾斜图;
图4是本发明一种带有GaN纳米线阵列的紫外探测器的GaN纳米线场发射扫描电镜顶部图;
图5是本发明一种带有GaN纳米线阵列的紫外探测器对365nm紫外光的光电响应特性I-V曲线示意图;
图6是本发明一种带有GaN纳米线阵列的紫外探测器的时间响应重复性测试曲线示意图;
图7是本发明一种带有GaN纳米线阵列的紫外探测器的制作方法的步骤流程图。
其中,1是蓝宝石衬底;2是P型GaN薄膜层;3是P型欧姆电极;4是旋涂玻璃液;5是氧化铟锡;6是N型欧姆电极;7是N型GaN纳米线;8是第一窗口;9是第二窗口。
具体实施方式
下面对于本发明所提出的一种GaN纳米线阵列的紫外探测器及其制作方法,结合附图和实施例详细说明。
一种带有GaN纳米线阵列的紫外探测器,包括衬底和P型GaN薄膜层,所述P型GaN薄膜层设置在衬底的上表面,所述P型GaN薄膜层上生长有N型GaN纳米线阵列,所述N型GaN纳米线阵列中的N型GaN纳米线与P型GaN薄膜层之间形成有同质PN结。
进一步地,所述P型GaN薄膜层上制有第一窗口和设置在第一窗口四周边沿上的第二窗口,所述第一窗口上镀有催化剂,所述第二窗口上镀有钝化层;所述N型GaN纳米线阵列生长在所述第一窗口上。
进一步地,所述N型GaN纳米线阵列的间隙中填充有绝缘的旋涂 玻璃液后形成旋涂玻璃层。
进一步地,在所述旋涂玻璃层的上表面镀有透明导电层。
进一步地,所述P型GaN薄膜层上设有P型欧姆电极,所述透明导电层上设有N型欧姆电极。
本发明紫外探测器一具体实施例
如图1所示,本发明一种带有GaN纳米线阵列的紫外探测器,包括蓝宝石衬底1和P型GaN薄膜层2,所述P型GaN薄膜层2设置在蓝宝石衬底1的上表面;所述P型GaN薄膜层2上生长有N型GaN纳米线阵列,所述N型GaN纳米线阵列中的N型GaN纳米线7与P型GaN薄膜层2之间形成有同质PN结。本发明的结构设计避免了构造纳米光电器件的材料晶格不匹配、热应力不匹配等问题,大大减少缺陷,提升材料质量和器件性能。
进一步作为优选的实施方式,如图2所示,所述P型GaN薄膜层2上利用光刻工艺制作了660*660um的第一窗口8和设置在所述第一窗口四周边沿上的90*660um的第二窗口9,所述第一窗口8的P型GaN薄膜层上蒸镀有一层2nm/2nm的Au/Ni薄膜,在所述第二窗口9的P型GaN薄膜层上蒸镀有一层280nm的SiO2;Au/Ni作为生长N型GaN纳米线的催化剂,SiO2作为钝化层;所述N型GaN纳米线阵列生长在所述第一窗口8上。在P型GaN薄膜层2上制作所述第一窗口8和第二窗口9的作用在于控制N型GaN纳米线阵列的生长范围。
进一步作为优选的实施方式,所述N型GaN纳米线阵列的间隙中填充有绝缘的旋涂玻璃液4,由此实现纳米线阵列结构的电注入,工 艺简单可行。当所述N型GaN纳米线阵列间隙所填充的旋涂玻璃液4固化后形成旋涂玻璃层。
进一步作为优选的实施方式,所述旋涂玻璃层上蒸镀有一层200nm厚度的氧化铟锡5,氧化铟锡5属于透明导电层、具有扩展电流的作用。
进一步作为优选的实施方式,在所述P型GaN薄膜层2上设有P型欧姆电极3,所述P型欧姆电极3由Ni/Au金属制成,厚度为10/200nm;在所述氧化铟锡5上设有N型欧姆电极,所述N型欧姆电极6由Ti/Al/Ti/Au金属制成,厚度为70/1700/50/200nm。
对于上述的紫外探测器,其制作方法,即一种带有GaN纳米线阵列的紫外探测器的制作方法,具体包括以下步骤:
S1、在衬底的上表面设置P型GaN薄膜层;
S2、在所述P型GaN薄膜层上生长N型GaN纳米线阵列,所述N型GaN纳米线阵列中的N型GaN纳米线与P型GaN薄膜层之间形成同质PN结;
S3、将绝缘的旋涂玻璃液旋涂到所述N型GaN纳米线的衬底上,使旋涂玻璃液填充到纳米线间隙后形成旋涂玻璃层;
S4、在所述旋涂玻璃层上表面蒸镀一层透明导电层;
S5、在所述P型GaN薄膜层上设置P型欧姆电极,在所述透明导电层上设置N型欧姆电极。
进一步地,所述步骤S2中的所述在所述P型GaN薄膜层上生长N型GaN纳米线阵列这一步骤具体为:在所述P型GaN薄膜层上制有 第一窗口和设置在第一窗口四周边沿上的第二窗口,所述第一窗口上镀有催化剂,所述第二窗口上镀有钝化层,从而使N型GaN纳米线阵列生长在第一窗口上。
进一步地,所述步骤S2中所述的在所述P型GaN薄膜层上生长N型GaN纳米线阵列这一步骤,其具体为:在氢化物气相外延设备中通过气相反应方法,从而在所述P型GaN薄膜层上生长N型GaN纳米线阵列。
进一步地,所述步骤S2中所述N型GaN纳米线的生长条件为:温度为820摄氏度,GaCl流量为15sccm,NH3流量为100sccm,时间为4min。
进一步地,所述步骤S4具体为:利用等离子体增强化学气相沉积法在所述旋涂玻璃上镀一层200nm厚度的氧化铟锡作为所述透明导电层。
本发明制作方法一具体实施例
如图7所示,一种带有GaN纳米线阵列的紫外探测器的制作方法,包括以下步骤:
S1、在衬底的上表面设置P型GaN薄膜层;
S2、在所述P型GaN薄膜层上生长N型GaN纳米线阵列,所述N型GaN纳米线阵列中的N型GaN纳米线与P型GaN薄膜层之间形成同质PN结;
S3、将绝缘的旋涂玻璃液旋涂到所述N型GaN纳米线的衬底上,使旋涂玻璃液填充到纳米线间隙后形成旋涂玻璃层;
S4、在所述旋涂玻璃层上表面蒸镀一层透明导电层;
S5、在所述P型GaN薄膜层上设置P型欧姆电极,在所述透明导电层上设置N型欧姆电极。
进一步作为优选的实施方式,在步骤S1之前还设有P型GaN薄膜层制备步骤,所述P型GaN薄膜层制备步骤具体为:在蓝宝石衬底上利用金属有机物化学气相沉积(MOCVD)方法沉积一层AlN缓冲层和Mg掺杂的P型GaN薄膜层。
进一步作为优选的实施方式,所述步骤S2中的所述在所述P型GaN薄膜层上生长N型GaN纳米线阵列这一步骤具体为:利用光刻工艺,在P型GaN薄膜层上制作660*660um的第一窗口和设置在所述第一窗口四周边沿的90*660um的第二窗口;利用等离子体增强化学气相沉积法,在所述第一窗口上蒸镀一层2nm/2nm的Au/Ni薄膜,在所述第二窗口上蒸镀一层280nm的SiO2,其中Au/Ni作为生长GaN纳米线的催化剂,SiO2作为钝化层,从而使N型GaN纳米线阵列在温度为820摄氏度,GaCl流量为15sccm,NH3流量为100sccm,时间为4min的条件下生长在第一窗口上,所述N型GaN纳米线的生长直径为200-300nm、高度为3-4um,所述N型GaN纳米线与P型GaN薄膜层之间形成同质PN结。如图3和图4所示,GaN纳米线为六棱柱纤锌矿结构。利用本发明的方法生长GaN纳米线,其生长速率达到1um/min,生长速率远高于MOCVD、MBE等昂贵设备,从而降低成本;另外通过在P型GaN薄膜上生长N型GaN纳米线形成同质PN结,避免了晶格不匹配、热应力不匹配等问题,大大减少材料缺陷,提升材 料质量、器件性能。并且如图5所示,由本发明方法制作而成的紫外探测器的光电转换效率高,光电响应更灵敏,光探测性能优异;如图6所示,由本发明方法制作而成的紫外探测器的重复性好,误差小,稳定性高。
进一步作为优选的实施方式,所述步骤S3具体为:将绝缘的旋涂玻璃液旋涂到所述N型GaN纳米线的衬底上,使旋涂玻璃液填充到纳米线间隙中,然后按照旋涂时间为60s、旋涂速度为3000r/s;旋涂好后在200摄氏度下烘烤30min的具体步骤,使旋涂玻璃液固化并转化为SiO2,从而得到旋涂玻璃层。通过旋涂填充旋涂玻璃液(SOG)在纳米线之间,实现纳米阵列结构的电注入,工艺简单可行。
进一步作为优选的实施方式,所述步骤S4中利用等离子体增强化学气相沉积在旋涂玻璃层上表面蒸镀一层200nm厚度的氧化铟锡作为所述透明导电层,所述透明导电层具有扩展电流的作用。
进一步作为优选的实施方式,所述步骤S5还包括通过光刻胶做掩膜,利用缓冲氧化硅刻蚀液将等离子体增强化学气相沉积法蒸镀的SiO2和旋涂玻璃液转化而成的SiO2去除掉,然后才在所述P型GaN薄膜层上设置P型欧姆电极,在所述透明导电层上设置N型欧姆电极。
进一步作为优选的实施方式,所述步骤S5中分别在P型GaN和氧化铟锡上通过等离子体增强化学气相沉积法蒸镀10/200nm的Ni/Au和70/1700/50/200nm的Ti/Al/Ti/Au金属体系,实现欧姆接触,至此完成如图1所述的紫外探测器。
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不 限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

  1. 一种带有GaN纳米线阵列的紫外探测器,包括衬底和P型GaN薄膜层,所述P型GaN薄膜层设置在衬底的上表面,其特征在于:所述P型GaN薄膜层上生长有N型GaN纳米线阵列,所述N型GaN纳米线阵列中的N型GaN纳米线与P型GaN薄膜层之间形成有同质PN结。
  2. 根据权利要求1所述的一种带有GaN纳米线阵列的紫外探测器,其特征在于:所述P型GaN薄膜层上制有第一窗口和设置在第一窗口四周边沿上的第二窗口,所述第一窗口上镀有催化剂,所述第二窗口上镀有钝化层;所述N型GaN纳米线阵列生长在所述第一窗口上。
  3. 根据权利要求1或2所述的一种带有GaN纳米线阵列的紫外探测器,其特征在于:所述N型GaN纳米线阵列的间隙中填充有绝缘的旋涂玻璃液后形成旋涂玻璃层。
  4. 根据权利要求3所述的一种带有GaN纳米线阵列的紫外探测器,其特征在于:所述旋涂玻璃层的上表面镀有透明导电层。
  5. 根据权利要求4所述的一种带有GaN纳米线阵列的紫外探测器,其特征在于:所述P型GaN薄膜层上设有P型欧姆电极,所述透明导电层上设有N型欧姆电极。
  6. 一种带有GaN纳米线阵列的紫外探测器的制作方法,其特征在于,包括以下步骤:
    S1、在衬底的上表面设置P型GaN薄膜层;
    S2、在所述P型GaN薄膜层上生长N型GaN纳米线阵列,所述N型GaN纳米线阵列中的N型GaN纳米线与P型GaN薄膜层之间形成同质PN结;
    S3、将绝缘的旋涂玻璃液旋涂到所述N型GaN纳米线的衬底上,使旋涂玻璃液填充到纳米线间隙后形成旋涂玻璃层;
    S4、在所述旋涂玻璃层上表面蒸镀一层透明导电层;
    S5、在所述P型GaN薄膜层上设置P型欧姆电极,在所述透明导电层上设置N型欧姆电极。
  7. 根据权利要求6所述的一种带有GaN纳米线阵列的紫外探测器的制作方法,其特征在于:所述步骤S2中的所述在所述P型GaN薄膜层上生长N型GaN纳米线阵列这一步骤具体为:
    在所述P型GaN薄膜层上制有第一窗口和设置在第一窗口四周边沿上的第二窗口,所述第一窗口上镀有催化剂,所述第二窗口上镀有钝化层,从而使N型GaN纳米线阵列生长在第一窗口上。
  8. 根据权利要求6所述的一种带有GaN纳米线阵列的紫外探测器的制作方法,其特征在于:所述步骤S2中所述的在所述P型GaN薄膜层上生长N型GaN纳米线阵列这一步骤,其具体为:在氢化物气相外延设备中通过气相反应方法,从而在所述P型GaN薄膜层上生长N型GaN纳米线阵列。
  9. 根据权利要求8所述的一种带有GaN纳米线阵列的紫外探测器的制作方法,其特征在于:所述步骤S2中所述的N型GaN纳米线阵列的生长条件为:温度为820摄氏度,GaCl流量为15sccm,NH3 流量为100sccm,时间为4min。
  10. 根据权利要求6所述的一种带有GaN纳米线阵列的紫外探测器的制作方法,其特征在于:所述步骤S4具体为:利用等离子体增强化学气相沉积法在所述旋涂玻璃上镀一层200nm厚度的氧化铟锡作为所述透明导电层。
PCT/CN2017/079209 2016-11-01 2017-04-01 一种带有GaN纳米线阵列的紫外探测器及其制作方法 WO2018082251A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610936288.2A CN106571405B (zh) 2016-11-01 2016-11-01 一种带有GaN纳米线阵列的紫外探测器及其制作方法
CN201610936288.2 2016-11-01

Publications (1)

Publication Number Publication Date
WO2018082251A1 true WO2018082251A1 (zh) 2018-05-11

Family

ID=58533618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079209 WO2018082251A1 (zh) 2016-11-01 2017-04-01 一种带有GaN纳米线阵列的紫外探测器及其制作方法

Country Status (2)

Country Link
CN (1) CN106571405B (zh)
WO (1) WO2018082251A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2685032C1 (ru) * 2018-07-26 2019-04-16 Общество с ограниченной ответственностью "Научно технический центр "Новые технологии" Фоточувствительное устройство и способ его изготовления

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107195586B (zh) * 2017-04-27 2019-08-09 华南师范大学 一种GaN水平纳米线电子器件制备方法
CN108417676B (zh) * 2018-02-09 2019-05-17 郑州大学 基于等离子体增强效应的核壳结构钙钛矿led及其制备方法
CN108831969B (zh) * 2018-05-28 2020-02-11 北京大学 利用空气作为绝缘介质的半导体纳米线电注入发光器件
CN111725338B (zh) * 2019-03-19 2022-04-01 华南师范大学 一种微米线阵列异质结紫外光探测器及其制备方法
CN112880823B (zh) * 2019-11-29 2022-05-13 中国科学技术大学 日盲紫外光电化学光探测器及其产品
CN112880821B (zh) * 2019-11-29 2022-05-13 中国科学技术大学 日盲紫外光电化学光探测器及其制备方法
CN111063725B (zh) * 2019-12-19 2021-01-19 太原理工大学 一种三维氮化镓基呼出式气体传感器及其制备方法
CN115084296B (zh) * 2022-05-23 2023-09-29 南京航空航天大学 复合型自驱动氧化锌同质结基紫外探测器及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050194598A1 (en) * 2004-02-13 2005-09-08 Hwa-Mok Kim Super bright light emitting diode of nanorod array structure having InGaN quantum well and method for manufacturing the same
CN101863452A (zh) * 2010-06-10 2010-10-20 中国科学院苏州纳米技术与纳米仿生研究所 一种改善绝缘衬底上纳米阵列结构器件制作的方法
CN102260907A (zh) * 2011-06-17 2011-11-30 浙江大学 一种ZnO纳米同质p-n结阵列的制备方法
CN102376817A (zh) * 2010-08-11 2012-03-14 王浩 一种半导体光电器件的制备方法
CN102655206A (zh) * 2011-03-03 2012-09-05 三星电子株式会社 电能产生器
CN104638031A (zh) * 2015-01-21 2015-05-20 中电投西安太阳能电力有限公司 基于GaN纳米线阵列的太阳能电池及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7355216B2 (en) * 2002-12-09 2008-04-08 The Regents Of The University Of California Fluidic nanotubes and devices
KR100593264B1 (ko) * 2003-06-26 2006-06-26 학교법인 포항공과대학교 p-타입 반도체 박막과 n-타입 산화아연(ZnO)계나노막대의 이종접합 구조체, 이의 제법 및 이를 이용한소자
CN101510504B (zh) * 2009-03-13 2010-09-08 苏州纳晶光电有限公司 半导体薄膜的纳区横向外延生长方法
CN101853894B (zh) * 2010-04-14 2012-02-08 大连海事大学 一种纳米线异质结阵列基紫外光探测器及其制备方法
CN102315330B (zh) * 2011-09-20 2012-12-05 中国科学院苏州纳米技术与纳米仿生研究所 一种高灵敏度紫外探测器的制备方法
FR2984599B1 (fr) * 2011-12-20 2014-01-17 Commissariat Energie Atomique Procede de fabrication d'un micro- ou nano- fil semiconducteur, structure semiconductrice comportant un tel micro- ou nano- fil et procede de fabrication d'une structure semiconductrice
CN103579415B (zh) * 2013-10-22 2016-08-31 华中科技大学 一种氧化锌纳米线阵列紫外光电探测器的制备方法
CN103760336B (zh) * 2014-01-02 2016-01-20 中国科学院苏州生物医学工程技术研究所 一种线阵ZnO纳米线异质结LED生物传感器及制备方法
CN105140331A (zh) * 2015-08-03 2015-12-09 宋金会 紫外探测器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050194598A1 (en) * 2004-02-13 2005-09-08 Hwa-Mok Kim Super bright light emitting diode of nanorod array structure having InGaN quantum well and method for manufacturing the same
CN101863452A (zh) * 2010-06-10 2010-10-20 中国科学院苏州纳米技术与纳米仿生研究所 一种改善绝缘衬底上纳米阵列结构器件制作的方法
CN102376817A (zh) * 2010-08-11 2012-03-14 王浩 一种半导体光电器件的制备方法
CN102655206A (zh) * 2011-03-03 2012-09-05 三星电子株式会社 电能产生器
CN102260907A (zh) * 2011-06-17 2011-11-30 浙江大学 一种ZnO纳米同质p-n结阵列的制备方法
CN104638031A (zh) * 2015-01-21 2015-05-20 中电投西安太阳能电力有限公司 基于GaN纳米线阵列的太阳能电池及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2685032C1 (ru) * 2018-07-26 2019-04-16 Общество с ограниченной ответственностью "Научно технический центр "Новые технологии" Фоточувствительное устройство и способ его изготовления
WO2020022937A1 (ru) * 2018-07-26 2020-01-30 Общество с ограниченной ответственностью "Научно технический центр "Новые технологии" Фоточувствительное устройство и способ его изготовления

Also Published As

Publication number Publication date
CN106571405A (zh) 2017-04-19
CN106571405B (zh) 2018-04-03

Similar Documents

Publication Publication Date Title
WO2018082251A1 (zh) 一种带有GaN纳米线阵列的紫外探测器及其制作方法
Qin et al. Metal–semiconductor–metal ε-Ga2O3 solar-blind photodetectors with a record-high responsivity rejection ratio and their gain mechanism
CN102361046B (zh) AlGaN基MSM结构日盲型紫外探测器及其制备方法
CN106409968B (zh) AlGaN基超晶格雪崩型紫外探测器及其制备方法
CN111725338B (zh) 一种微米线阵列异质结紫外光探测器及其制备方法
KR101639779B1 (ko) 반도체 광 검출 소자
CN108376716A (zh) 一种新型氧化镓基pin结构紫外光电探测器及其制备方法
CN108231926B (zh) 一种红外探测器及其制备方法
CN109119508B (zh) 一种背入射日盲紫外探测器及其制备方法
CN107403848B (zh) 一种背照式级联倍增雪崩光电二极管
CN105590971B (zh) AlGaN日盲紫外增强型雪崩光电探测器及其制备方法
CN109686809A (zh) 一种iii族氮化物半导体可见光雪崩光电探测器及制备方法
US8350290B2 (en) Light-receiving device and manufacturing method for a light-receiving device
Hu et al. High-sensitivity and fast-speed UV photodetectors based on asymmetric nanoporous-GaN/graphene vertical junction
CN104576928A (zh) 一种有机/GaN异质p-n结紫外光探测器及其制备方法
CN210167365U (zh) 一种同质外延GaN肖特基势垒型紫外雪崩探测器
CN109698250B (zh) 栅极调控AlGaN基金属-半导体-金属紫外探测器及制备方法
Chen et al. AlGaN-based self-powered solar-blind UV focal plane array imaging photosensors: material growth, device preparation, and functional verification
CN114678439B (zh) 一种对称叉指结构的2deg紫外探测器及制备方法
Chowdhury et al. Overcoming the challenges associated with the InN/InGaN heterostructure via a nanostructuring approach for broad band photodetection
WO2019210647A1 (zh) 雪崩光电二极管的制备方法
CN114530519B (zh) 一种自驱动msm紫外探测器及其制备方法
CN109166935A (zh) 一种Al组分过渡型日盲紫外探测器及其制备方法
CN111640768B (zh) 一种垂直双异质结光探测器面阵及其制作方法
KR20170010578A (ko) 광 검출 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17867728

Country of ref document: EP

Kind code of ref document: A1