CN111524995B - β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器及其制备方法 - Google Patents

β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器及其制备方法 Download PDF

Info

Publication number
CN111524995B
CN111524995B CN202010315454.3A CN202010315454A CN111524995B CN 111524995 B CN111524995 B CN 111524995B CN 202010315454 A CN202010315454 A CN 202010315454A CN 111524995 B CN111524995 B CN 111524995B
Authority
CN
China
Prior art keywords
blind
gan
layer
beta
film layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010315454.3A
Other languages
English (en)
Other versions
CN111524995A (zh
Inventor
杨莲红
张保花
郭福强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHANGJI UNIVERSITY
Original Assignee
CHANGJI UNIVERSITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHANGJI UNIVERSITY filed Critical CHANGJI UNIVERSITY
Priority to CN202010315454.3A priority Critical patent/CN111524995B/zh
Publication of CN111524995A publication Critical patent/CN111524995A/zh
Application granted granted Critical
Publication of CN111524995B publication Critical patent/CN111524995B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero-junctions, X being an element of Group VI of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种β‑Ga2O3/GaN异质结日盲/可见盲双色紫外探测器,采用β‑Ga2O3/GaN异质结结构。并公开了其制备方法。与传统单色探测器相比,本发明实现了通过施加的不同偏压,在β‑Ga2O3/GaN异质结处形成不同深度的耗尽层,实现了一个器件的两种工作模式,即在较小偏压下,耗尽层为Ga2O3层,器件只对275nm以下日盲波段的光有响应;在较大偏压下,耗尽层延伸到GaN层,光响应延伸到365nm的可见盲波段。

Description

β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器及其制备 方法
技术领域
本发明涉及一种β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器及其制备方法,属于光电探测技术领域。
背景技术
近年来,无论是在民用还是军事领域,如导弹预警、空间通信安全、发动机引擎控制等方向,日盲/可见盲光电探测器的潜在的应用价值引发社会广泛的关注研究。但能同时在日盲/可见盲实现双色紫外探测的探测器件仍然是一个尚待解决的创新性课题。
III-氮化物光子晶体滤波器经常被广泛应用于深紫外垂直腔面发射激光器、共振腔发光二极管以及尤其是日盲光电探测器中。目前为止,据文献报道Ga2O3与GaN可分别实现275nm与365nm以下的光电流响应,β-Ga2O3是一种具有深紫外特性的半导体材料,500nm的β-Ga2O3薄膜在紫外光区域能达到80%以上的透过率,能够弥补传统TCO材料在深紫外区域透过性低的特点,能够实现较宽的带隙且发出较短短波长的光,可实现日盲紫外的光电流探测,而GaN则可通过较窄的带隙与较大的光谱宽度,实现可见盲区的光电流探测。
发明内容
本发明的目的在于提供一种β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器,可通过施加不同大小的电压,实现日盲区与可见盲区的双色探测。
本发明采用的技术方案为:一种β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器,其特征在于:采用β-Ga2O3/GaN异质结结构。
优选的,其结构自上而下依次包括:一衬底层,一n-GaN薄膜层、β-Ga2O3层,以及设置在β-Ga2O3层上的p型电极,设置在n-GaN薄膜层上的n型电极。衬底层可采用蓝宝石衬底、Si衬底或SiC衬底。
优选的,还包括一i-GaN薄膜层,设置于n-GaN薄膜层与β-Ga2O3层之间。
优选的,所述p型电极为透明电极,所述透明电极为InGaZnO电极、Ni/Au 电极或Au电极,通常而言,电极厚度在10nm以下,可形成透明电极。在β-Ga2O3薄膜上淀积透明电极,形成肖特基接触,可有提高电极的光透过率,降低对器件光损失的影响。
优选的,所述n-GaN薄膜层的厚度为1~10μm,i-GaN薄膜层的厚度为200~2000nm,β-Ga2O3层的厚度为200~1000nm。
本发明还公开了上述的β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器的制备方法,其步骤包括:
(1)清洗衬底;
(2)MOCVD法在衬底上生长一层n-GaN薄膜层;
(3)MOCVD法在n-GaN薄膜层上生长一层i-GaN薄膜层;
(4)降温,MOCVD法在i-GaN薄膜层上生长一层InN薄膜层作为界面牺牲层;
(5)升温使InN蒸发,LPCVD法原位生长一层β-Ga2O3薄膜层;
(6)制作p型电极和n型电极。
生长Ga2O3时,需将样品从GaN生长炉(MOCVD)中取出,放入新的生长设备(LPCVD),该过程中会接触空气,带来污染。在i-GaN薄膜层表面生长一层InN层,相当于在GaN表面覆上一层保护膜,防止表面受到污染,等放入新腔室后,升温蒸发InN即可。
优选的,步骤(2)和步骤(3)中生长温度为980℃。
优选的,步骤(4)中InN薄膜层的生长温度为600℃。
优选的,步骤(5)中InN薄膜层的蒸发温度为700℃。
优选的,步骤(5)中β-Ga2O3薄膜层的生长温度为700~1000℃。
本发明的有益效果如下:
(1)与传统单色探测器相比,实现了通过施加的不同偏压,在β-Ga2O3/GaN 异质结处形成不同深度的耗尽层,实现了一个器件的两种工作模式,即在较小偏压(0~5V)下,耗尽层为Ga2O3层,器件只对275nm以下日盲波段的光有响应;在较大偏压(20~100V)下,耗尽层延伸到GaN层,光响应延伸到365nm的可见盲波段。
(2)在n型层与β-Ga2O3层之间设有i型层,在相同偏压下,可提高对长波长光的吸收,提高器件的响应度和量子效率。
(3)肖特基采用了透明电极,有利于减少电极对光的吸收,提高探测器的光电流响应度。
附图说明
图1.一种β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器的结构示意图。
图2.双色紫外探测器在0V偏压下的光谱响应图。
图3.双色紫外探测器在20V偏压下的光谱响应图。
图4.双色紫外探测器在0V偏压下的电场分布图。
图5.双色紫外探测器在20V偏压下的电场分布图。
需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
下面结合附图对本发明的具体实施方式做进一步的说明。
具体实施方式
以下是结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
如图1所示,本β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器,其结构自上而下依次包括:一衬底层1,一n-GaN薄膜层2、一i-GaN薄膜层3、β-Ga2O3层4,以及设置在β-Ga2O3层上的p型电极5,设置在n-GaN薄膜层上的n型电极6。
其中衬底为蓝宝石衬底,所述n-GaN薄膜层的厚度为1μm,i-GaN薄膜层的厚度为500nm,β-Ga2O3层的厚度为300nm。p型电极为InGaZnO透明电极, n型电极为Ti/Al/Ni/Au多层电极。
图2与图3为实施例1的双色紫外探测器在0V与20V不同电压下的光电流响应谱。即在较小偏压下,耗尽层为Ga2O3层,器件只对275nm以下日盲波段的光有响应;在较大偏压下,耗尽层延伸到GaN层,光响应延伸到365nm的可见盲波段。
图4与图5为实施例1的双色紫外探测器在0V与20V不同偏压下的电场分布图,耗尽层的深度随偏压的增大,由Ga2O3层逐渐延伸到GaN层。
该器件在0~5V的偏压下,耗尽层为Ga2O3层,器件只对275nm以下日盲波段的光有响应;在20~100V的偏压下,耗尽层延伸到GaN层,光响应延伸到 365nm的可见盲波段。
实施例2
本β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器,其结构自上而下依次包括:一衬底层,一n-GaN薄膜层、一i-GaN薄膜层、β-Ga2O3层,以及设置在β-Ga2O3层上的p型电极,设置在n-GaN薄膜层上的n型电极。
其中衬底为Si衬底,所述n-GaN薄膜层的厚度为10μm,i-GaN薄膜层的厚度为2000nm,β-Ga2O3层的厚度为1000nm。p型电极为薄层Ni/Au透明电极,n型电极为Ti/Al/Ni/Au多层电极。
该器件在0~20V的偏压下,耗尽层为Ga2O3层,器件只对275nm以下日盲波段的光有响应;在40~100V的偏压下,耗尽层延伸到GaN层,光响应延伸到 365nm的可见盲波段。
实施例3
本β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器,其结构自上而下依次包括:一衬底层,一n-GaN薄膜层、一i-GaN薄膜层、β-Ga2O3层,以及设置在β-Ga2O3层上的p型电极,设置在n-GaN薄膜层上的n型电极。
其中衬底为SiC衬底,所述n-GaN薄膜层的厚度为5μm,i-GaN薄膜层的厚度为200nm,β-Ga2O3层的厚度为200nm。p型电极为薄层Au透明电极,n 型电极为Ti/Al/Ni/Au多层电极。
该器件在0~2V的偏压下,耗尽层为Ga2O3层,器件只对275nm以下日盲波段的光有响应;在10~100V的偏压下,耗尽层延伸到GaN层,光响应延伸到 365nm的可见盲波段。
实施例4
本β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器,其结构自上而下依次包括:一衬底层,一n-GaN薄膜层、β-Ga2O3层,以及设置在β-Ga2O3层上的 p型电极,设置在n-GaN薄膜层上的n型电极。
其中衬底为蓝宝石衬底,所述n-GaN薄膜层的厚度为1μm,β-Ga2O3层的厚度为300nm。p型电极为InGaZnO透明电极,n型电极为Ti/Al/Ni/Au多层电极。
该器件在0~5V的偏压下,耗尽层为Ga2O3层,器件只对275nm以下日盲波段的光有响应;在20~100V的偏压下,耗尽层延伸到GaN层,光响应延伸到 365nm的可见盲波段。
实施例5
本β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器的制备方法,其步骤包括:
1、选择蓝宝石衬底在1050℃下进行表面高温处理。
2、在蓝宝石衬底上利用MOCVD在980℃下制备一层厚约1μm的n-GaN薄膜层和500nm的i-GaN薄膜层。
3、通过MOCVD降温至600℃,生长10nm的InN薄膜作为界面牺牲层,后利用LPCVD在700℃先将InN薄膜蒸发掉。
4、通过LPCVD在700-1000℃的范围内生长制备300nm的β-Ga2O3薄膜层。
5、通过刻蚀工艺,在n-GaN上制备Ti/Al/Ni/Au电极,接着在850℃退火30s形成欧姆接触,然后在β-Ga2O3薄膜上淀积InGaZnO透明电极,形成肖特基接触,制备成β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器。
通过施加的不同偏压,在β-Ga2O3/GaN异质结处形成不同深度的耗尽层,实现了一个器件的两种工作模式,即在较小偏压下,耗尽层为Ga2O3层,器件只对275nm以下日盲波段的光有响应;在较大偏压下,耗尽层延伸到GaN层,光响应延伸到365nm的可见盲波段。此外,肖特基采用了InGaZnO透明电极,有利于减少电极对光的吸收,提高探测器的光电流响应度。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

1.一种β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器,其特征在于:采用β-Ga2O3/GaN异质结结构,所述紫外探测器的结构自下而上依次包括:
一衬底层,一n-GaN薄膜层、一i-GaN薄膜层、β-Ga2O3层,以及设置在β- Ga2O3层上的p型电极,设置在n-GaN薄膜层上的n型电极,所述n-GaN薄膜层的厚度为1~10 μm,i-GaN薄膜层的厚度为200~2000 nm,β-Ga2O3层的厚度为200~1000 nm,在0~5V偏压下,耗尽层为β- Ga2O3层,紫外探测器只对275 nm以下日盲波段的光有响应;在40~100 V偏压下,耗尽层延伸到GaN层,光响应延伸到365nm的可见盲波段。
2.根据权利要求1所述的β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器,其特征在于:所述p型电极为透明电极,所述透明电极为InGaZnO电极、Ni/Au电极或Au电极。
3.权利要求1-2中任一项所述的β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器的制备方法,其步骤包括:
(1)清洗衬底;
(2)MOCVD法在衬底上生长一层n-GaN薄膜层;
(3)MOCVD法在n-GaN薄膜层上生长一层i-GaN薄膜层;
(4)降温,MOCVD法在i-GaN薄膜层上生长一层InN薄膜层;
(5)升温使InN蒸发,LPCVD法原位生长一层β-Ga2O3薄膜层;
(6)制作p型电极和n型电极。
4.根据权利要求3所述的β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器的制备方法,其特征在于:步骤(2)和步骤(3)中生长温度为980℃。
5.根据权利要求4所述的β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器的制备方法,其特征在于:步骤(4)中InN薄膜层的生长温度为600℃。
6.根据权利要求5所述的β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器的制备方法,其特征在于:步骤(5)中InN薄膜层的蒸发温度为700℃。
7.根据权利要求6所述的β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器的制备方法,其特征在于:步骤(5)中β-Ga2O3薄膜层的生长温度为700~1000℃。
CN202010315454.3A 2020-04-21 2020-04-21 β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器及其制备方法 Active CN111524995B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010315454.3A CN111524995B (zh) 2020-04-21 2020-04-21 β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010315454.3A CN111524995B (zh) 2020-04-21 2020-04-21 β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN111524995A CN111524995A (zh) 2020-08-11
CN111524995B true CN111524995B (zh) 2022-02-15

Family

ID=71912036

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010315454.3A Active CN111524995B (zh) 2020-04-21 2020-04-21 β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN111524995B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112382688B (zh) * 2020-10-16 2022-11-04 华南师范大学 基于柔性的氧化镓/氮化镓结构的光电探测器及制备方法
CN114823982B (zh) * 2022-05-12 2024-03-19 深圳大学 一种GaN-GaON紫外-深紫外宽波段探测器制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3950833B2 (ja) * 2002-09-25 2007-08-01 日本特殊陶業株式会社 アンモニアセンサ
CN101179015A (zh) * 2007-12-12 2008-05-14 南京大学 InN材料作衬底或缓冲层制备InN/锗或InN/硅薄膜及制备方法
CN101901850A (zh) * 2009-05-27 2010-12-01 中国科学院半导体研究所 基于氮化镓材料的新型结构紫外双色探测器
CN106449894A (zh) * 2016-12-08 2017-02-22 西安电子科技大学 基于双异质结的Ga2O3/GaN/SiC光电探测二极管及其制备方法
CN107658384A (zh) * 2017-10-27 2018-02-02 张香丽 基于有机‑无机多异质结纳米阵列的广谱光电探测器及其制备方法
CN109713126A (zh) * 2018-12-26 2019-05-03 西安电子科技大学 基于宽禁带半导体/钙钛矿异质结的宽频光电探测器
CN110195217A (zh) * 2019-06-26 2019-09-03 北京工业大学 一种制备β-Ga2O3薄膜方法
CN110504343A (zh) * 2018-05-18 2019-11-26 中国科学院苏州纳米技术与纳米仿生研究所 基于蓝宝石衬底的氧化镓薄膜及其生长方法和应用
CN110854233A (zh) * 2019-11-17 2020-02-28 金华紫芯科技有限公司 一种Ga2O3薄膜基日盲紫外探测器、制备方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870225B (zh) * 2016-03-31 2017-10-20 张权岳 一种单片集成的多功能紫外/日盲紫外双色探测器及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3950833B2 (ja) * 2002-09-25 2007-08-01 日本特殊陶業株式会社 アンモニアセンサ
CN101179015A (zh) * 2007-12-12 2008-05-14 南京大学 InN材料作衬底或缓冲层制备InN/锗或InN/硅薄膜及制备方法
CN101901850A (zh) * 2009-05-27 2010-12-01 中国科学院半导体研究所 基于氮化镓材料的新型结构紫外双色探测器
CN106449894A (zh) * 2016-12-08 2017-02-22 西安电子科技大学 基于双异质结的Ga2O3/GaN/SiC光电探测二极管及其制备方法
CN107658384A (zh) * 2017-10-27 2018-02-02 张香丽 基于有机‑无机多异质结纳米阵列的广谱光电探测器及其制备方法
CN110504343A (zh) * 2018-05-18 2019-11-26 中国科学院苏州纳米技术与纳米仿生研究所 基于蓝宝石衬底的氧化镓薄膜及其生长方法和应用
CN109713126A (zh) * 2018-12-26 2019-05-03 西安电子科技大学 基于宽禁带半导体/钙钛矿异质结的宽频光电探测器
CN110195217A (zh) * 2019-06-26 2019-09-03 北京工业大学 一种制备β-Ga2O3薄膜方法
CN110854233A (zh) * 2019-11-17 2020-02-28 金华紫芯科技有限公司 一种Ga2O3薄膜基日盲紫外探测器、制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GaN Schottky Barrier Photodetectors with a β-Ga2O3 Cap Layer;Zhen-Da Huang 等;《Applied Physics Express》;20121018;第116701-1页-第116701-3页 *

Also Published As

Publication number Publication date
CN111524995A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
Liao et al. Comprehensive investigation of single crystal diamond deep-ultraviolet detectors
Zhu et al. A high performance self-powered ultraviolet photodetector based on a p-GaN/n-ZnMgO heterojunction
CN106409968B (zh) AlGaN基超晶格雪崩型紫外探测器及其制备方法
CN104362213B (zh) 一种铝镓氮基日盲紫外探测器及其制备方法
CN111524995B (zh) β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器及其制备方法
CN103077963B (zh) 一种欧姆接触电极、其制备方法及包含该欧姆接触电极的半导体元件
CN106960885B (zh) 一种pin结构紫外光电探测器及其制备方法
CN103943720A (zh) 一种自驱动式氧锌镁紫外探测器及其制备方法
CN111244203B (zh) 基于Ga2O3/CuI异质PN结的日光盲紫外探测器
CN109037374A (zh) 基于NiO/Ga2O3的紫外光电二极管及其制备方法
Li et al. Solar-blind AlxGa1-xN-based metal-semiconductor-metal ultraviolet photodetectors
Zhang et al. Effects of oxygen pressure on PLD-grown Be and Cd co-substituted ZnO alloy films for ultraviolet photodetectors
CN112563353A (zh) 一种异质结紫外探测器及其制备方法
Roul et al. Highly responsive ZnO/AlN/Si heterostructure-based infrared-and visible-blind ultraviolet photodetectors with high rejection ratio
CN106876504A (zh) 一种ZnO基p‑i‑n结构紫外探测器及其制备方法
CN102931272A (zh) 一种具有增益的紫外探测器结构及其制备方法
CN109166935B (zh) 一种Al组分过渡型日盲紫外探测器及其制备方法
Ismail et al. Studies on fabrication and characterization of a high-performance Al-doped ZnO/n-Si (1 1 1) heterojunction photodetector
Hu et al. Fabrication and properties of a solar-blind ultraviolet photodetector based on Si-doped β-Ga2O3 film grown on p-Si (111) substrate by MOCVD
CN102569486B (zh) 一种肖特基栅场效应紫外探测器及其制备方法
Liu et al. Zn0. 8Mg0. 2O-based metal–semiconductor–metal photodiodes on quartz for visible-blind ultraviolet detection
Barkad et al. Design, fabrication and physical analysis of TiN/AlN deep UV photodiodes
Ku et al. Mg x Zn 1− x O Thin-Film Transistor-Based UV Photodetector with Enhanced Photoresponse
Pei et al. Low-temperature-crystallized Ga2O3 thin films and their TFT-type solar-blind photodetectors
Su et al. Fabrication of ZnO nanowall-network ultraviolet photodetector on Si substrates

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant