CN106876504A - 一种ZnO基p‑i‑n结构紫外探测器及其制备方法 - Google Patents

一种ZnO基p‑i‑n结构紫外探测器及其制备方法 Download PDF

Info

Publication number
CN106876504A
CN106876504A CN201710028232.1A CN201710028232A CN106876504A CN 106876504 A CN106876504 A CN 106876504A CN 201710028232 A CN201710028232 A CN 201710028232A CN 106876504 A CN106876504 A CN 106876504A
Authority
CN
China
Prior art keywords
zno
layer
type
growth
mgzno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710028232.1A
Other languages
English (en)
Inventor
苏龙兴
方晓生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201710028232.1A priority Critical patent/CN106876504A/zh
Publication of CN106876504A publication Critical patent/CN106876504A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02963Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02966Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe including ternary compounds, e.g. HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1832Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising ternary compounds, e.g. Hg Cd Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属于光电探测器技术领域,具体涉及一种基于极化诱导空穴法的ZnO基p‑i‑n结构紫外探测器及其制备方法。本发明探测器包括衬底、缓冲层、n型ZnO层、i型ZnO绝缘层、p型Mg组份梯度线性渐变的MgZnO层以及在p、n型层上沉积的金属接触电极。在薄膜结构中,缓冲层起到释放衬底与n型ZnO层之间应力的作用,n型ZnO层提供电子,i型ZnO绝缘层起到加宽耗尽层的作用,p型渐变Mg组份的MgZnO层则提供空穴。通过电极蒸镀的方法在n型层上制作金属负极,在p型层上制作金属正极。本发明利用极化场诱导离化的空穴提供层:Mg组份梯度线性渐变的MgZnO层(掺N、P等),解决了ZnO材料p型掺杂困难的问题,该器件在紫外波段具有广泛的应用前景。

Description

一种ZnO基p-i-n结构紫外探测器及其制备方法
技术领域
本发明属于光电探测器技术领域,具体涉及一种基于极化诱导空穴法的ZnO基p-i-n结构紫外探测器及其制备方法。
背景技术
由于在民用上和军事上的巨大应用潜力,紫外探测器一直以来都受到了很广泛的关注。在民用领域,紫外探测器可用于海洋石油勘探、环境紫外线监测和森林火灾预警等方面;在军事应用上,紫外探测器可应用于导弹羽烟追踪、空间卫星通讯等方面。目前商业上成熟应用的紫外探测器有光电倍增管、Si探测器和宽禁带半导体GaN基探测器。对于光电倍增管,其正常工作需要外加高电压,因此增加了探测器的体积,不方便携带;对于Si探测器,由于Si的带隙约为1.12 eV(~1100 nm),因此需要外加昂贵的滤光片,增加了探测器的成本;对于宽禁带半导体GaN基紫外探测器,虽然具有方便携带的优点,但是由于GaN薄膜的生长温度高(通常在1000℃以上),需要高要求的生长设备,而且所生长的薄膜中位错等缺陷密度较高,因此也不利于高质量紫外探测器的实际应用。ZnO是另一种可以跟GaN媲美的宽禁带半导体,其禁带宽度接近,但ZnO的生长温度较低(通常在500℃左右即可),而且原材料价格便宜,制备的设备要求没有GaN材料严格,而且所制备器件的空间抗辐射性更强。
一般情况下光电探测器可分为:光电导型、肖特基势垒型、雪崩型、PN结型和PIN结型。在这些光电探测器中,光电导型探测器虽然因为有源区中少数载流子陷阱效应而具有很高的光电流增益,但是却牺牲了器件的响应速度;肖特基势垒型探测器虽然具有响应速度快的优点,但是金属的接触势垒较低,暗电流较大,而且重复高效稳定肖特基接触的制备也是一个需要解决的难题;雪崩型探测器利用载流子的碰撞离化雪崩效应产生了极大的增益,但需要在较高的反向偏压下工作;相比之下,p-n结和p-i-n结型探测器则兼具有更高的响应速度,暗电流更低(因为更高的势垒),易于耦合焦平面阵列(FPA)读出电路,可在很低的偏压甚至零偏压下(光伏模式)工作等优点,而且p-i-n结型探测器还可通过调整i型层的厚度来调整器件的量子效率跟工作速度。
本发明提出一种基于极化诱导空穴法的ZnO基p-i-n结构紫外探测器。针对p型ZnO,由于:1,受主能级较深;2,具有强自补偿效应;3,受主元素不稳定等问题而较难得到高效空穴浓度的难题。我们提出了制备Mg组份梯度线性渐变的MgZnO合金(O极性),利用梯度应变产生的极化场诱导离化空穴,产生高浓度的三维空穴气体,解决目前ZnO所遇到的p型困难的问题。具体的物理原理示意图如附图2所示,由于ZnO是一种极性半导体,平衡晶格偏离理想的六方纤锌矿结构,因此自发极化和应变极化效应都很强。在MgZnO/ZnO突变的界面,由于两层之间的应力水平不一样,压电极化场的强度也不一样,在界面的地方将产生束缚表电荷。根据高斯定理,如果ZnO和MgZnO是O极性的,界面处的表电荷为带正电的空穴。因此我们通过控制MgZnO中Mg组份梯度线性渐变,产生梯度线性渐变的应变极化场,利用极化场离化受主,在每一层原胞界面都产生空穴,从而形成三维空穴气体,大大提升p型层的空穴浓度,解决了目前ZnO所遇到p型掺杂困难的问题。根据我们的调研,目前关于利用极化诱导空穴方法制备ZnO基p-i-n结构的紫外探测器尚未见到相关的专利和文献报道。
发明内容
本发明的目的在于提供一种基于极化诱导空穴法的ZnO基p-i-n结构紫外探测器及其制备方法,以获得在波长范围短于380 nm(ZnO的本征吸收波长)内具有高响应度、快速响应速度以及便于集成的紫外光电探测器。
本发明提出的ZnO基p-i-n结构紫外探测器,包括:衬底1,衬底上生长的缓冲层2,缓冲层上生长的n型ZnO层3,i型ZnO层4,p型MgZnO层5,以及n、p型层上的金属接触电极6;其中,
n型ZnO层的厚度为50 nm~5 μm,i型ZnO层的厚度为10 nm~500 nm,p型MgZnO层的厚度为10 nm~500 nm;在n型ZnO和p型MgZnO层上面的为金属接触电极6;其中,p型MgZnO层5为Mg组份梯度线性渐变的O极性MgZnO合金,利用梯度应变产生的极化场诱导离化空穴,产生高浓度的三维空穴气体。
本发明中,所述的衬底1可为蓝宝石Al2O3、单晶硅Si、单晶氮化镓GaN、单晶砷化镓GaAs和单晶氧化镁MgO等。
本发明中,所述的缓冲层2可以是Mg、MgO、ZnO、BeO、BeZnO和MgZnO中的一种或多种组合材料组成。
本发明中,所述的n型层3为掺Ga或Al的ZnO,厚度为50 nm~5 μm,其电子浓度控制在1017/cm3 ~ 1020/cm3范围内。
本发明中,所述的i型层4为高温生长的高质量ZnO薄膜,厚度为10 nm~500 nm,其本征载流子浓度控制在1014/cm3 ~ 1016/cm3范围内。
本发明中,所述的p型层5为Mg组份线性渐变的MgZnO薄膜,受主掺杂元素包括Li、Na、P、As、N等,可通过控制MgZnO层中Mg组份梯度线性渐变产生的极化场,利用极化场对受主进行离化,产生高浓度的三维空穴气,本层的厚度为10 nm~500 nm,空穴浓度在1016/cm3 ~ 1019/cm3范围内。
本发明中,所述的接触金属电极6为钛Ti、铝Al、镍Ni、铂Pt、金Au、银Ag、钼Mo、钽Ta、钴Co、鋯Zr和钨W等单层金属或金属复合层。接触电极层的厚度为30 nm~500 nm,然后在接触电极上再蒸镀一层10 nm~500 nm厚的金Au层,起到防止接触金属氧化和优化导电性能的作用。
本发明提出的ZnO基p-i-n结构紫外探测器,其光谱响应范围为波长短于380 nm的紫外线。
本发明提出的ZnO基p-i-n结构紫外探测器的制备方法,具体步骤为:
①在生长前先对衬底1进行清洗,其中对于蓝宝石衬底Al2O3、GaN单晶衬底,清洗步骤为:在H2SO4:HCl=3:1的酸中加热,之后分别在丙酮和异丙醇IPA(或丙醇)中超声清洗,然后用去离子水冲洗干净,最后用氮气枪吹干装入生长腔,在生长腔中用高温处理。Si衬底的清洗步骤为:先后分别在硫酸H2SO4和双氧水H2O2中、氢氟酸HF中、氨水NH3.H2O和双氧水H2O2中、盐酸HCl中清洗,然后用去离子水冲干净,在氮气枪下吹干后装入生长腔直接生长。GaAs单晶衬底和MgO单晶衬底则不用生长前清洗;
②在衬底处理完后,在衬底1上生长一层缓冲层2;
③生长完缓冲层后,开始n型ZnO层3的生长,n型ZnO的厚度可通过生长时间的长短控制,掺杂元素为Al或Ga,电子的浓度可通过控制掺杂元素的流量或者蒸汽压来调节;
④生长完n型层ZnO后,开始i型ZnO层4的生长,生长温度比n型层的生长温度高100℃~200℃左右,生长条件为富氧状态;
⑤生长完i型层ZnO后,接着开始p型MgZnO层5的生长,其中MgZnO层中的Mg含量从0%~30%线性梯度渐变,掺杂元素为Li、Na、N、As、P等;
⑥薄膜制备完后先后用丙酮、异丙醇IPA(丙醇)等化学试剂和去离子水对薄膜的表面进行清洗,以得到干净的表面;
⑦清洗完样品后,用光学掩膜的方法在薄膜上面做图案,把需要刻蚀的部分裸露出来,不需要刻蚀的部分则用光刻胶覆盖。然后采用标准ICP刻蚀的方法把p型层和i型层薄膜刻蚀掉,使部分n型层裸露出来;
⑧刻蚀完样品后,用丙酮、异丙醇(IPA)或丙醇和去离子水清洗干净,然后进行光刻掩膜,用电子束蒸镀(热蒸发)的方法在n型层和p型层上面镀上金属电极,所制备的电极材料包括钛Ti、铝Al、镍Ni、铂Pt、金Au、银Ag、钼Mo、钽Ta、钴Co、鋯Zr和钨W等各种金属,根据所需接触的不同进行选择。
所述步骤②、③、④、⑤各层的生长过程中所采用的金属生长源为高纯的Mg、Zn和Be金属或MgO、ZnO和BeO陶瓷靶材,氧源则采用高纯的射频等离子氧源。n型掺杂源为高纯Al、Ga金属源;p型掺杂源包括Li、Na、P、As高纯固态源,和高纯NO、NO2、N2和N2O气体源。
所述步骤⑧的金属接触层的厚度为30 nm~500 nm。
本发明的优势有两个,一个是提供了一种新的p型ZnO制备的方法,即利用极化诱导空穴法产生三维空穴气体,在i型ZnO/p-MgZnO渐变层中,通过控制MgZnO中Mg组份从0%开始梯度线性渐变,产生梯度线性渐变的应力梯度和应变极化场,利用极化场离化受主,在每一层原胞界面都产生空穴,从而形成三维空穴气体,大大提升了p型层的空穴浓度,解决了目前ZnO所遇到p型掺杂困难的问题;第二个优势是所制备的p-i-n结构紫外探测器具有输入阻抗高,工作频率大,暗电流低,响应速度快,可在零偏压下工作等优点,另外本发明器件还可与半导体平面工艺相容,有利于大规模集成。
附图说明
图1是本发明ZnO基同质p-i-n结构紫外探测器的剖面结构示意图。
图2是本发明中利用极化场诱导离化产生空穴的原理示意图。
图3位本发明基于极化诱导空穴法的ZnO基p-i-n结构紫外探测器的制备流程示意图。
图中标号:1-衬底 2-缓冲层 3-n型层 4-i型层 5-p型层 6-金属接触电极。
具体实施方式
实施例 1,在生长前先对衬底进行清洗,其中蓝宝石衬底Al2O3、GaN单晶衬底的清洗步骤为:在H2SO4:HCl=3:1的酸中加热15 min ~ 45 min,之后分别在丙酮和异丙醇IPA(或丙醇)中超声清洗15 min ~ 45 min,然后用去离子水冲洗干净,最后用氮气枪吹干装入生长腔,在生长腔中用500℃~900℃的高温处理15 min ~ 60 min,把表面的水蒸气和有机物除掉。Si衬底的清洗步骤为:先在硫酸H2SO4和双氧水H2O2中清洗1 min~5 min,接着在氢氟酸HF中清洗1 min~ 3 min,把Si表面的SiO2氧化层腐蚀掉,紧接着进一步在氨水NH3.H2O和双氧水H2O2中清洗3 min~15 min,最后在盐酸HCl中清洗3 min~15 min后用去离子水冲干净,在氮气枪下吹干后装入生长腔直接生长。GaAs衬底和MgO单晶衬底则不需要生长前清洗。
清洗完衬底后开始薄膜生长,根据生长方法的不同,可用的方法包括磁控溅射(sputter)法、分子束外延法(MBE)、金属有机气相沉积法(MOCVD)和激光脉冲沉积法(PLD)等。
首先开始缓冲层的生长。各固体源的束流可通过控制固态源的加热温度、溅射功率或者激光的脉冲功率来调节,气体源则通过质量流量计来控制;缓冲层的厚度为10 nm ~500 nm,厚度可通过生长时间精确控制。
生长完缓冲层后,开始n型ZnO层的生长,掺杂元素为Al或Ga,固体源的束流可通过控制固态源的加热温度、溅射功率或者激光的脉冲功率来调节,气体源则通过质量流量计来控制;n型层的厚度为50 nm~5 μm,厚度可通过生长时间的长短精确控制。
生长完n型ZnO层后,接着开始i型层ZnO的生长,生长温度比n型层的生长温度高100℃~200℃左右,生长条件为富氧状态;固体源的束流可通过控制固态源的加热温度、溅射功率或者激光的脉冲功率来调节,气体源则通过质量流量计来控制;i型层的厚度为10nm~500 nm,厚度可通过生长时间的长短控制。
生长完i型ZnO层后,接着开始p型MgZnO层的生长,其中MgZnO层中的Mg含量从0%~30%梯度线性渐变,掺杂元素为Li、Na、N、As、P等,固体源的束流可通过控制固态源的加热温度、溅射功率或者激光的脉冲功率来调节,气体源则通过质量流量计来控制;p型层的厚度为10 nm~500 nm,厚度可通过生长时间的长短控制。
薄膜制备完后先后用丙酮、异丙醇IPA(丙醇)等化学试剂对薄膜的表面进行清洗,以得到干净的表面;然后用光学掩膜的方法在薄膜上面做图案,把需要刻蚀的部分裸露出来,不需要刻蚀的部分则用光刻胶覆盖,然后采用标准ICP刻蚀的方法把p型层和i型层薄膜刻蚀掉,使部分n型层裸露出来。
刻蚀完的样品用丙酮、异丙醇(IPA)和去离子水清洗干净。然后进行光刻掩膜,用电子束蒸镀(热蒸发)的方法在其上面镀上金属电极,完成器件的制备,所制备的电极包括权利要求7所提及的各种金属,根据所需接触的不同进行选择。

Claims (8)

1.一种基于极化诱导空穴法的ZnO基p-i-n结构紫外探测器,其特征在于,包括:衬底,衬底上生长的缓冲层,缓冲层上生长的n型ZnO层,i型ZnO层,p型MgZnO层,以及n、p型层上的金属接触电极;其中,
n型ZnO层的厚度为50 nm~5 μm,i型ZnO层的厚度为10 nm~500 nm,p型MgZnO层的厚度为10 nm~500 nm;在n型ZnO和p型MgZnO层上面的为金属接触电极;其中,p型MgZnO层为Mg组份梯度线性渐变的O极性MgZnO合金,利用梯度应变产生的极化场诱导离化空穴,产生高浓度的三维空穴气体。
2.根据权利要求1的基于极化诱导空穴法的ZnO基p-i-n结构紫外探测器,其特征在于,所述的衬底选自蓝宝石Al2O3、单晶硅Si、单晶氮化镓GaN、单晶砷化镓GaAs和单晶氧化镁MgO。
3.根据权利要求1的基于极化诱导空穴法的ZnO基p-i-n结构紫外探测器,其特征在于,所述缓冲层是Mg、MgO、ZnO、BeO、BeZnO和MgZnO之中的一种或多种材料组成。
4. 根据权利要求1的基于极化诱导空穴法的ZnO基p-i-n结构紫外探测器,其特征在于,所述n型ZnO层为掺Ga或Al的ZnO,其电子浓度控制在1017/cm3 ~ 1020/cm3范围内。
5. 根据权利要求1的基于极化诱导空穴法的ZnO基p-i-n结构紫外探测器,其特征在于,所述i型ZnO层为高温生长的ZnO薄膜,其本征载流子浓度控制在1014/cm3 ~ 1016/cm3范围内。
6. 根据权利要求1的基于极化诱导空穴法的ZnO基p-i-n结构紫外探测器,其特征在于,所述p型MgZnO层为Mg组份梯度线性渐变的MgZnO薄膜,受主掺杂元素包括Li、Na、P、As或N,通过控制MgZnO层中Mg组份梯度渐变产生的极化场,利用极化场对空穴进行诱导离化,产生高浓度的三维空穴气,空穴浓度在1016/cm3 ~ 1019/cm3范围内。
7. 根据权利要求1的基于极化诱导空穴法的ZnO基p-i-n结构紫外探测器,其特征在于,所述接触金属电极选自钛、铝、镍、铂、金、银、钼、钽、钴、鋯和钨W单层金属或金属复合层;接触电极层的厚度为30 nm~500 nm,在接触电极上再蒸镀有一层10 nm~500 nm厚的金Au层。
8.一种如权利要求1-7之一所述的基于极化诱导空穴法的ZnO基p-i-n结构紫外探测器的制备方法,其特征在于,具体步骤为:
①衬底清洗,其中蓝宝石衬底Al2O3、GaN单晶衬底的清洗步骤为:在H2SO4:HCl=3:1的酸中加热15 min ~ 45 min,之后分别在丙酮和异丙醇IPA中超声清洗15 min ~ 45 min,然后用去离子水冲洗干净,最后用氮气枪吹干装入生长腔,在生长腔中用500℃~900℃的高温处理15 min ~ 60 min,把表面的水蒸气和有机物除掉;Si衬底的清洗步骤为:先在硫酸H2SO4和双氧水H2O2中清洗1 min~5 min,接着在氢氟酸HF中清洗1 min~ 3 min,把Si表面的SiO2氧化层腐蚀掉,紧接着在氨水NH3.H2O和双氧水H2O2中清洗3 min~15 min,最后在盐酸HCl中清洗3 min~15 min后用去离子水冲干净,用氮气枪吹干然后装入生长腔直接生长;GaAs衬底和MgO衬底则不需要生长前清洗;
② 在衬底清洗完后,开始缓冲层的生长,生长方法包括:磁控溅射法、分子束外延法、金属有机气相沉积法或激光脉冲沉积法;
③ 生长完缓冲层后,开始n型ZnO层的生长,n型ZnO的厚度通过生长时间的长短控制,掺杂元素为Al或Ga;接着开始i型层ZnO的生长,生长温度比n型层的生长温度高100℃~200℃,生长条件为富氧状态;接着开始p型MgZnO层的生长;MgZnO层中的Mg含量从0%~30%梯度渐变,掺杂元素为Li、Na、N、As、P;生长方法包:括磁控溅射法、分子束外延法、金属有机气相沉积法或激光脉冲沉积法;其中p型MgZnO层5为Mg组份梯度线性渐变的O极性MgZnO合金,利用梯度应变产生的极化场诱导离化空穴,产生高浓度的三维空穴气体;
④ 薄膜制备完后,先用丙酮、异丙醇IPA化学试剂对薄膜的表面进行清洗,得到干净的表面;然后用光学掩膜的方法在薄膜上面做图案,把需要刻蚀的部分裸露出来,不需要刻蚀的部分则用光刻胶覆盖;然后采用ICP刻蚀的方法把裸露部分的p型层和i型层薄膜刻蚀掉,使部分n型层裸露出来;
⑤ 再次把刻蚀完的样品用丙酮、异丙醇和去离子水清洗干净,然后进行光刻掩膜,用电子束蒸镀的方法在上面镀上金属电极。
CN201710028232.1A 2017-01-16 2017-01-16 一种ZnO基p‑i‑n结构紫外探测器及其制备方法 Pending CN106876504A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710028232.1A CN106876504A (zh) 2017-01-16 2017-01-16 一种ZnO基p‑i‑n结构紫外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710028232.1A CN106876504A (zh) 2017-01-16 2017-01-16 一种ZnO基p‑i‑n结构紫外探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN106876504A true CN106876504A (zh) 2017-06-20

Family

ID=59157590

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710028232.1A Pending CN106876504A (zh) 2017-01-16 2017-01-16 一种ZnO基p‑i‑n结构紫外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN106876504A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107681017A (zh) * 2017-09-26 2018-02-09 中国科学院长春光学精密机械与物理研究所 一种自下而上生长AlGaN基紫外及深紫外探测器阵列的方法
CN107681028A (zh) * 2017-10-24 2018-02-09 江门市奥伦德光电有限公司 一种垂直结构ZnO基LED芯片及其制备方法
CN108022982A (zh) * 2017-11-02 2018-05-11 五邑大学 一种基于ZnO基透明太阳能电池的智能窗及其制备方法
CN110164993A (zh) * 2019-06-05 2019-08-23 中国科学院长春光学精密机械与物理研究所 一种紫外波段多波长探测器及其制备方法
CN114464693A (zh) * 2022-04-12 2022-05-10 北京中科海芯科技有限公司 一种光电探测器及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103972310A (zh) * 2014-04-30 2014-08-06 中国科学院长春光学精密机械与物理研究所 一种氧化锌基p型材料的制备方法
CN103972311A (zh) * 2014-04-30 2014-08-06 中国科学院长春光学精密机械与物理研究所 一种氧化锌基p型材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103972310A (zh) * 2014-04-30 2014-08-06 中国科学院长春光学精密机械与物理研究所 一种氧化锌基p型材料的制备方法
CN103972311A (zh) * 2014-04-30 2014-08-06 中国科学院长春光学精密机械与物理研究所 一种氧化锌基p型材料的制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107681017A (zh) * 2017-09-26 2018-02-09 中国科学院长春光学精密机械与物理研究所 一种自下而上生长AlGaN基紫外及深紫外探测器阵列的方法
CN107681028A (zh) * 2017-10-24 2018-02-09 江门市奥伦德光电有限公司 一种垂直结构ZnO基LED芯片及其制备方法
CN107681028B (zh) * 2017-10-24 2023-08-29 江门市奥伦德光电有限公司 一种垂直结构ZnO基LED芯片及其制备方法
CN108022982A (zh) * 2017-11-02 2018-05-11 五邑大学 一种基于ZnO基透明太阳能电池的智能窗及其制备方法
CN110164993A (zh) * 2019-06-05 2019-08-23 中国科学院长春光学精密机械与物理研究所 一种紫外波段多波长探测器及其制备方法
CN114464693A (zh) * 2022-04-12 2022-05-10 北京中科海芯科技有限公司 一种光电探测器及其制备方法

Similar Documents

Publication Publication Date Title
CN106876504A (zh) 一种ZnO基p‑i‑n结构紫外探测器及其制备方法
US9231132B2 (en) Process for manufacturing solar cell equipped with electrode having mesh structure
CN109686809B (zh) 一种iii族氮化物半导体可见光雪崩光电探测器及制备方法
CN102361046B (zh) AlGaN基MSM结构日盲型紫外探测器及其制备方法
JPH0758354A (ja) 薄膜光電池デバイスの製造方法
CN111244203B (zh) 基于Ga2O3/CuI异质PN结的日光盲紫外探测器
WO2018082251A1 (zh) 一种带有GaN纳米线阵列的紫外探测器及其制作方法
CN104733561B (zh) 一种氮化物量子阱红外探测器及其制备方法
CN106960885B (zh) 一种pin结构紫外光电探测器及其制备方法
Hazra et al. A p-silicon nanowire/n-ZnO thin film heterojunction diode prepared by thermal evaporation
RU2354009C1 (ru) Способ изготовления фотоэлектрических преобразователей на основе многослойной структуры
CN111403505A (zh) 一种双极型可见光探测器及其制备方法
JP2012119569A (ja) 窒化物半導体素子
CN112054086A (zh) 一种具有横向结硅基光电探测器的制备方法
RU2419918C1 (ru) Способ получения чипов солнечных фотоэлементов
RU2368038C1 (ru) Способ изготовления чипов многослойных фотопреобразователей
KR101619110B1 (ko) 반도체 광전소자 및 이의 제조방법
CN113675297A (zh) 一种氧化镓/氮化镓异质结光电探测器及其制备方法
JP2014220351A (ja) 多接合太陽電池
JP2000036609A (ja) 太陽電池の製造方法と薄膜半導体の製造方法、薄膜半導体の分離方法及び半導体形成方法
RU2575972C1 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОПРЕОБРАЗОВАТЕЛЯ НА ОСНОВЕ GaSb
CN100454585C (zh) Pin结构氮化镓基紫外探测器及其制作方法
RU2676221C1 (ru) Способ изготовления импульсного фотодетектора
CN101924160B (zh) In2O3/PbTe异质结中红外光伏型探测器及其制备方法
CN109378361A (zh) 一种实现低电压下AlGaN探测器雪崩倍增的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170620