CN110195217A - 一种制备β-Ga2O3薄膜方法 - Google Patents

一种制备β-Ga2O3薄膜方法 Download PDF

Info

Publication number
CN110195217A
CN110195217A CN201910559237.6A CN201910559237A CN110195217A CN 110195217 A CN110195217 A CN 110195217A CN 201910559237 A CN201910559237 A CN 201910559237A CN 110195217 A CN110195217 A CN 110195217A
Authority
CN
China
Prior art keywords
film
passed
nitrogen
deposition
prepare
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910559237.6A
Other languages
English (en)
Other versions
CN110195217B (zh
Inventor
邢艳辉
张尧
韩军
曹旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201910559237.6A priority Critical patent/CN110195217B/zh
Publication of CN110195217A publication Critical patent/CN110195217A/zh
Application granted granted Critical
Publication of CN110195217B publication Critical patent/CN110195217B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)

Abstract

一种制备β‑Ga2O3薄膜方法属于微电子技术领域,解决制备β‑Ga2O3薄膜存在混相和晶体质量差的问题。该方法先利用等离子体增强原子层沉积在蓝宝石衬底上生长Ga2O3薄膜,然后再进行高温退火重结晶,将亚稳态的Ga2O3转化为稳态的,最后采用金属有机物化学气相沉积技术生长β‑Ga2O3薄膜。本发明制备单相β‑Ga2O3方法可为后面再制备较厚的β‑Ga2O3材料和器件奠定基础。

Description

一种制备β-Ga2O3薄膜方法
技术领域
本发明属于微电子技术领域,涉及半导体材料科学技术领域,具体涉及一种制备β-Ga2O3薄膜方法。
背景技术
在继宽禁带半导体材料SiC/GaN之后,超宽带隙(UWB)半导体是一种新兴的半导体,与传统小带隙Si基芯片相比,它的工作温度和功率都要高得多。因此,超宽带隙(UWB)半导体它在节能减排、信息技术以及国防装备等领域有重要的应用前景。超宽禁带半导体氧化镓(Ga2O3)材料具有有α,β,γ,δ,ε五种同分异构体晶体结构,其中β-Ga2O3结构最为稳定并能和其他四种氧化镓之间互相转化。β-Ga2O3在日盲紫外和可见光区域具有优良的透光率(>80%),已经很好的适合了日盲紫外探测区域的需要,不需要通过掺杂等手段来调节其禁带宽度。β-Ga2O3击穿场强高,在功率耐压器件中也有广阔的应用前景。然而制备β-Ga2O3单晶材料十分困难,且价格昂贵。目前报道的用于制备β-Ga2O3的方法包括射频磁控溅射、分子束外延、金属有机物化学气相淀积(MOCVD)、脉冲激光沉积和原子层沉积(ALD)等等。其中原子层沉积法是脉冲交替,逐层成膜,周期循环沉积的,在每个周期中,设备可控制沉积在衬底材料分子的量,且沉积过程受温度影响效果较弱,沉积的薄膜具有良好的共形性和均匀性。但是用该法沉积的Ga2O3薄膜处于亚稳态,易转化为多晶形式Ga2O3,无法得到期望的β-Ga2O3单晶,进而影响包括日盲紫外探测器在内的基于β-Ga2O3的光电器件的性能。因此,需要找到一种便于制备高晶体质量、高光电性能的β-Ga2O3薄膜的方法。
发明内容
针对沉积过程中存在的上述问题,本发明提出了一种β-Ga2O3薄膜的制备方法,通过此法获得的制得的β-Ga2O3薄膜具有较高的晶体质量和光学特性。
本发明提出的技术方案如下:
一种制备β-Ga2O3方法,包括如下步骤:
选择蓝宝石衬底;
利用等离子体增强原子层沉积法在蓝宝石生长Ga2O3薄膜,
将沉积后的Ga2O3薄膜在LPCVD管式炉中退火,
再采用MOCVD技术生长Ga2O3
一种制备β-Ga2O3方法,其特征在于包括如下步骤:
(1)选c面蓝宝石衬底,等离子体增强原子层沉积Ga2O3薄膜时,设置射频等离子体功率为1800-2000W,沉积温度为240-270℃,以氮气为载气;
(2)等离子体增强原子层沉积依次为:①通入TMGa源0.1-0.2s,TMGa流量为190-220sccm;②通入氮气5-10s;③通入氧气15-25s,氧气的流量为190-220sccm;④通入氮气5-10s;⑤将①步到④步依顺序循环重复400-440次;
(3)向LPCVD管式炉中通入氮气,将沉积的Ga2O3薄膜放入炉中,退火时炉中温度为850-1050℃;退火时间为0.5-2小时。
(4)将退火后的薄膜进行金属有机物化学气相沉积(MOCVD)生长β-Ga2O3,生长温度550-650℃。
所述的β-Ga2O3制备方法,其机理和特点在于:
本发明中,首先采用等离子体增强原子层在蓝宝石衬底上沉积Ga2O3材料,辅助了ALD能量增强,使用的反应剂活性提高。等离子体用于激活脉冲中的氧气,可加快沉积速率并降低反应需要的温度。在沉积过程中通入纯净氮气,将前一步反应残留的反应物及生产的其他物质吹扫并排出反应室,保证下一步反应时薄膜具有清洁表面,避免沉积的薄膜中存在杂质,进而保证薄膜具有较高的晶体质量。其次,沉积后Ga2O3容易以多晶形式的存在,高温热退火处理制备出β-Ga2O3关键是对积聚或重熔的粒子实现重结晶的过程,该步骤可将沉积的亚稳态Ga2O3薄膜转化为需要的β-Ga2O3。退火过程采用氮气气氛下,相比于其他常见气体(如氧气),在这个过程中氮气可以起到载气的作用,提高了原子表面迁移率,并且在高温的条件下使Ga和O原子能够获得足够的能量迁移到合适的位置,尤其是对在晶界存在许多与O和Ga缺陷有关的悬挂键,这些缺陷倾向于在合并过程中形成较大的晶粒。而且在原子层沉积过程中所采用的Ga/O剂量的条件下,氮气的稳定性也保障了在高温退火条件下不会与沉积的Ga2O3薄膜发生反应生成杂质,进而避免晶体质量的降低,从而使Ga2O3具有较高的光学性能。最后,再采用MOCVD生长β-Ga2O3,是以热处理后的Ga2O3为基底,且已经将亚稳态的Ga2O3转化稳态的,在此基础上,再次生长利于获得高质量的β相Ga2O3
附图说明
图1为β-Ga2O3工艺制备流程;
图2为沉积后Ga2O3薄膜XPS能谱图;
图3为沉积后Ga2O3薄膜表面AFM图;
图4为1000℃退火处理0.5小时后Ga2O3薄膜表面AFM图;
图5为MOCVD生长的Ga2O3薄膜XRD的θ-2θ扫描曲线;
图6为MOCVD沉积后的Ga2O3薄膜透射谱。
具体实施方式
下面结合附图对本发明的技术方案作更清晰完整的描述,凡是对本发明技术方案进行修改或等同替换,而不脱离本发明技术方案的范围,均应涵盖在本发明的保护范围内。
具体实施步骤包括:
(1)选(0001)面蓝宝石衬底;利用等离子体增强原子层沉积法在蓝宝石生长Ga2O3薄膜,射频等离子体功率为2000W,加热衬底保持到250℃恒定,以氮气为载气;
(2)等离子体增强原子层沉积依次为:①然后通入TMGa源0.1s,TMGa流量为200sccm;②然后通入氮气5s;③然后通入氧气20s,氧气的流量为200sccm;④然后通入氮气5s;⑤然后将①步到④步周期循环420个周期后进入下一步;
(3)向管式炉中通入氮气,将沉积的Ga2O3薄膜放入LPCVD管式炉中,将管式炉中温度加热至1000℃,热退火0.5小时;
(4)以退火后的薄膜为基底,再进行(MOCVD)生长β-Ga2O3,生长温度550℃,生长时间40min;一般时间范围为35-60min。
图2表明:PEALD沉积的薄膜表面及近表面区域有Ga元素和O元素的存在,且无其他杂质原子的混入。
从图3可以看出:在PEALD沉积后的Ga2O3表面存在一些大晶粒,即图中的白色斑点。
与图3相比,从图4中可发现:由于重结晶过程导致高温退火0.5小时后Ga2O3表面较大晶粒数量减少,晶粒尺寸减小而密集。
由图5可看出:MOCVD沉积后Ga2O3薄膜XRD扫描曲线,显示了在19.0°,38.9°和59.2°出现较高强度β相Ga2O3(-201)晶系的特征峰,因此表面获得了β-Ga2O3
图6显示了用本制备方法制得的β-Ga2O3薄膜在紫外及可见光范围内的透射光谱,可以看到:对于350nm到更长波长的入射光,透射率超过80%;而对于波长在300nm以下的光,透射率迅速下降,表明薄膜具有良好的光谱选择性,可用于制备高性能的日盲紫外探测器件。

Claims (1)

1.一种制备β-Ga2O3薄膜方法,其特征在于,包括以下步骤:
(1)选c面蓝宝石衬底,等离子体增强原子层沉积Ga2O3薄膜时,设置射频等离子体功率为1800-2000W,沉积温度为240-270℃,以氮气为载气;
(2)等离子体增强原子层沉积时,①先通入TMGa源0.1-0.2s,TMGa流量为190-220sccm;②通入氮气5-10s;③通入氧气15-25s,氧气的流量为190-220sccm;④通入氮气5-10s;⑤将①步到④步依顺序循环重复400-440次;
(3)向LPCVD管式炉中通入氮气,将沉积的Ga2O3薄膜放入炉中,退火时炉中温度为850-1050℃;退火时间为0.5-2小时;
(4)将退火后的薄膜再放到MOCVD系统生长β-Ga2O3,,生长温度550-650℃。
CN201910559237.6A 2019-06-26 2019-06-26 一种制备β-Ga2O3薄膜方法 Active CN110195217B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910559237.6A CN110195217B (zh) 2019-06-26 2019-06-26 一种制备β-Ga2O3薄膜方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910559237.6A CN110195217B (zh) 2019-06-26 2019-06-26 一种制备β-Ga2O3薄膜方法

Publications (2)

Publication Number Publication Date
CN110195217A true CN110195217A (zh) 2019-09-03
CN110195217B CN110195217B (zh) 2021-06-04

Family

ID=67755134

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910559237.6A Active CN110195217B (zh) 2019-06-26 2019-06-26 一种制备β-Ga2O3薄膜方法

Country Status (1)

Country Link
CN (1) CN110195217B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110854233A (zh) * 2019-11-17 2020-02-28 金华紫芯科技有限公司 一种Ga2O3薄膜基日盲紫外探测器、制备方法及应用
CN110911270A (zh) * 2019-12-11 2020-03-24 吉林大学 一种高质量氧化镓薄膜及其同质外延生长方法
CN110993504A (zh) * 2019-10-14 2020-04-10 西安电子科技大学 基于SiC衬底的Ga2O3薄膜的制备方法及基于SiC衬底的Ga2O3薄膜
CN111524995A (zh) * 2020-04-21 2020-08-11 昌吉学院 β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器及其制备方法
CN112647130A (zh) * 2020-11-20 2021-04-13 山东大学 一种低压化学气相沉积生长氧化镓薄膜的方法
CN112877674A (zh) * 2021-01-11 2021-06-01 复旦大学 一种含量可精确调控的Sn掺杂氧化镓膜材料的生长方法
CN113066902A (zh) * 2021-03-25 2021-07-02 北京邮电大学 一种通过氧空位浓度调控ε相氧化镓光电响应性能的方法
CN113517172A (zh) * 2021-06-07 2021-10-19 西安电子科技大学 一种β-Ga2O3薄膜及其制备方法
CN113643960A (zh) * 2021-06-07 2021-11-12 西安电子科技大学 一种基于脉冲法的β-Ga2O3薄膜及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101967680A (zh) * 2010-11-04 2011-02-09 山东大学 一种在氧化镁衬底上制备单斜晶型氧化镓单晶薄膜的方法
CN102618843A (zh) * 2012-03-23 2012-08-01 复旦大学 非晶铟镓锌氧化物薄膜的原子层淀积制备方法
CN107513695A (zh) * 2017-08-25 2017-12-26 北京工业大学 利用Nb掺杂调谐Ga2O3禁带宽度的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101967680A (zh) * 2010-11-04 2011-02-09 山东大学 一种在氧化镁衬底上制备单斜晶型氧化镓单晶薄膜的方法
CN102618843A (zh) * 2012-03-23 2012-08-01 复旦大学 非晶铟镓锌氧化物薄膜的原子层淀积制备方法
CN107513695A (zh) * 2017-08-25 2017-12-26 北京工业大学 利用Nb掺杂调谐Ga2O3禁带宽度的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FENGFENG SHI等: "《Annealing effects on properties of Ga2O3 films deposited by plasma-enhanced atomic layer deposition》", 《MATERIALS LETTERS》 *
XUEJIAN DU等: "《Characterization of homoepitaxial β-Ga2O3 films prepared by metal–organic chemical vapor deposition》", 《JOURNAL OF CRYSTAL GROWTH》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993504A (zh) * 2019-10-14 2020-04-10 西安电子科技大学 基于SiC衬底的Ga2O3薄膜的制备方法及基于SiC衬底的Ga2O3薄膜
CN110854233A (zh) * 2019-11-17 2020-02-28 金华紫芯科技有限公司 一种Ga2O3薄膜基日盲紫外探测器、制备方法及应用
CN110854233B (zh) * 2019-11-17 2021-09-07 金华紫芯科技有限公司 一种Ga2O3薄膜基日盲紫外探测器、制备方法及应用
CN110911270A (zh) * 2019-12-11 2020-03-24 吉林大学 一种高质量氧化镓薄膜及其同质外延生长方法
CN110911270B (zh) * 2019-12-11 2022-03-25 吉林大学 一种高质量氧化镓薄膜及其同质外延生长方法
CN111524995B (zh) * 2020-04-21 2022-02-15 昌吉学院 β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器及其制备方法
CN111524995A (zh) * 2020-04-21 2020-08-11 昌吉学院 β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器及其制备方法
CN112647130A (zh) * 2020-11-20 2021-04-13 山东大学 一种低压化学气相沉积生长氧化镓薄膜的方法
CN112647130B (zh) * 2020-11-20 2022-04-01 山东大学 一种低压化学气相沉积生长氧化镓薄膜的方法
CN112877674A (zh) * 2021-01-11 2021-06-01 复旦大学 一种含量可精确调控的Sn掺杂氧化镓膜材料的生长方法
CN113066902A (zh) * 2021-03-25 2021-07-02 北京邮电大学 一种通过氧空位浓度调控ε相氧化镓光电响应性能的方法
CN113643960A (zh) * 2021-06-07 2021-11-12 西安电子科技大学 一种基于脉冲法的β-Ga2O3薄膜及其制备方法
CN113517172A (zh) * 2021-06-07 2021-10-19 西安电子科技大学 一种β-Ga2O3薄膜及其制备方法
CN113517172B (zh) * 2021-06-07 2023-02-10 西安电子科技大学 一种β-Ga2O3薄膜及其制备方法
CN113643960B (zh) * 2021-06-07 2024-03-19 西安电子科技大学 一种基于脉冲法的β-Ga2O3薄膜及其制备方法

Also Published As

Publication number Publication date
CN110195217B (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
CN110195217A (zh) 一种制备β-Ga2O3薄膜方法
Ferekides et al. High efficiency CSS CdTe solar cells
CN106917072A (zh) 一种使用辅助衬底大面积清洁制备单层二硫化钼薄膜的方法
Jung et al. Hydrogenated amorphous and crystalline SiC thin films grown by RF-PECVD and thermal MOCVD; comparative study of structural and optical properties
CN111725072B (zh) 一种电子浓度稳定的高质量氧化镓薄膜及其制备方法
Misaki et al. Epitaxial growth and characterization of ZnGeN2 by metalorganic vapor phase epitaxy
CN109065438A (zh) AlN薄膜的制备方法
JPS60145992A (ja) 炭化珪素単結晶基板の製造方法
CN109411328B (zh) 一种通过掺杂铁降低结晶温度的氧化镓薄膜制备方法
CN108987257B (zh) 利用卤化物气相外延法在Si衬底上生长Ga2O3薄膜的方法
Doroody et al. Temperature difference in close-spaced sublimation (CSS) growth of CdTe thin film on ultra-thin glass substrate
CN107768234A (zh) 一种获得高质量AlN模板的方法
Singh et al. Growth and characterization of co-sputtered Al-doped ZnGa2O4 films for enhancing deep-ultraviolet photoresponse
CN108428618A (zh) 基于石墨烯插入层结构的氮化镓生长方法
CN108538969B (zh) 一种氮化铝层裂纹的消除方法和应用
CN106252211A (zh) 一种AlN外延层的制备方法
Li et al. Properties of ZnO thin films grown on Si substrates by photo-assisted MOCVD
CN108878588A (zh) 基于石墨烯插入层结构的氮化镓基光电探测器的制备方法
CN101871097B (zh) 一种致密PbSe多晶薄膜的简单制备方法
Li et al. Influence of Oxygen on Ga2O3 Deposition at Low Temperature by MOCVD
CN108330536A (zh) PA-MBE同质外延高质量GaN单晶薄膜的制备方法
CN110923665B (zh) 一种具有择优取向的Ga2O3和SnO2混相膜的制备方法
Dermenji et al. Effects of annealing on elemental composition and quality of CZTSSe thin films obtained by spray pyrolysis
Zhilyaev et al. Chloride vapor-phase epitaxy of gallium nitride at a reduced source temperature
CN114908418B (zh) 一种在导电型氧化镓衬底上制备同质外延氧化镓薄膜的方法及hvpe设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant