CN107513695A - 利用Nb掺杂调谐Ga2O3禁带宽度的方法 - Google Patents

利用Nb掺杂调谐Ga2O3禁带宽度的方法 Download PDF

Info

Publication number
CN107513695A
CN107513695A CN201710741284.3A CN201710741284A CN107513695A CN 107513695 A CN107513695 A CN 107513695A CN 201710741284 A CN201710741284 A CN 201710741284A CN 107513695 A CN107513695 A CN 107513695A
Authority
CN
China
Prior art keywords
film
energy gap
thin
film material
tuning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710741284.3A
Other languages
English (en)
Other versions
CN107513695B (zh
Inventor
邓金祥
张�浩
潘志伟
白志英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201710741284.3A priority Critical patent/CN107513695B/zh
Publication of CN107513695A publication Critical patent/CN107513695A/zh
Application granted granted Critical
Publication of CN107513695B publication Critical patent/CN107513695B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering

Abstract

利用Nb掺杂调谐Ga2O3禁带宽度的方法,属于半导体材料领域。使用射频磁控溅射设备在单晶抛光硅片(Si)上沉积一层Nb:Ga2O3薄膜材料。用一种管式炉慢退火的杂质激活工艺,使Nb:Ga2O3薄膜材料中Nb分布均匀化;使Nb离子迁移到晶格中的空位缺陷处,并由间隙位占据替代位;减少结构缺陷,提高结晶化程度,增大晶粒尺寸,进一步提高薄膜质量。与已有技术相比,本发明的特征在于通过选用Nb作为掺杂剂,Ga2O3的禁带宽度有更大的禁带宽度调谐范围。

Description

利用Nb掺杂调谐Ga2O3禁带宽度的方法
技术领域
本发明涉及三种利用Nb掺杂调谐Ga2O3禁带宽度的方法,属于半导体材料领域。
背景技术
Ga2O3是一种宽禁带半导体材料,其禁带宽度Eg=4.9eV,是目前所知的禁带最宽的透明导电材料。Ga2O3较大的禁带宽度,使其具有高的击穿电压,高的饱和电子漂移速率,热导率大和化学性质稳定等特点,因而Ga2O3在更短波长范围内工作的新一代光电器件中有着广泛的应用前景,如深紫外探测器,短波发光器件,透明电子器件等。
Ga2O3薄膜的禁带宽度决定了其光电器件对应的工作光波波长。单一的禁带宽度势必会限制Ga2O3在光电子器件领域的应用范围。为了拓展Ga2O3在光电器件中的应用领域,扩展其对应的工作光波的波长范围,大量科研者通过掺杂技术对Ga2O3薄膜在光学和电学的性能进行了改进。
目前,众多科研小组已经对Mg、Si、Mn、Eu、Pr、Nd、Sn等元素的掺入对Ga2O3薄膜带隙的影响进行了研究报道。Mn、Eu、Pr、Nd、Sn等元素的氧化物禁带间距都要比Ga2O3的小,在Ga2O3薄膜中掺入Mn、Eu、Pr、Nd、Sn等离子后,薄膜的禁带宽度均低于本征Ga2O3薄膜的禁带宽度。MgO的禁带宽度为7.8eV,SiO2的禁带宽度为8.9eV,这两者的禁带宽度均比Ga2O3的禁带宽度大。在Ga2O3薄膜中掺入Mg、Si等离子后,薄膜的禁带宽度均高于本征Ga2O3薄膜的禁带宽度。现有技术只能在高于或低于本征Ga2O3薄膜的禁带宽度方向进行禁带调谐。
综上所述,亟需一种对Ga2O3薄膜禁带宽度进行更大范围调谐的方法:既能获得高于本征Ga2O3薄膜的禁带宽度,又能获得低于本征Ga2O3薄膜的禁带宽度的禁带调谐的方法。
发明内容
本发明采用Nb作为掺杂剂,通过改变Nb:Ga2O3薄膜中Nb掺杂浓度,控制Nb:Ga2O3薄膜退火环境,改变Nb:Ga2O3薄膜厚度三种方法,既能制备低于本征Ga2O3禁带宽度的Nb:Ga2O3材料,又能制备高于本征Ga2O3禁带宽度的Nb:Ga2O3材料,实现了对Ga2O3材料禁带宽度更大的调谐范围。
本发明的目的可通过如下技术流程实现:
(1)使用射频磁控溅射设备在单晶抛光硅片(Si)上沉积一层Nb:Ga2O3薄膜材料。
Nb:Ga2O3薄膜的生长方式有两种:Nb靶材和Ga2O3靶材共溅射,获得掺杂均匀的Nb:Ga2O3薄膜材料;Nb靶材和Ga2O3靶材交替溅射,在衬底上分层生长Nb:Ga2O3薄膜材料。
(2)本发明采用一种管式炉慢退火的杂质激活工艺。目的是:使Nb:Ga2O3薄膜材料中Nb分布均匀化;使Nb离子迁移到晶格中的空位缺陷处,并由间隙位占据替代位;减少结构缺陷,提高结晶化程度,增大晶粒尺寸,进一步提高薄膜质量。
本发明提供的慢退火温度为1000℃;恒温时间60-240min内可调。慢速退火保护气体可使用高纯Ar、N2或O2(纯度99.999%)。通入保护气体后,开始升温,整个退火过程持续通气。
进一步,共溅射或者交替溅射得到的薄膜材料厚度为100-300nm。
进一步,共溅射得到的薄膜材料Nb掺杂质量百分比含量为0.8%-3%。
与已有技术相比,本发明的特征在于通过选用Nb作为掺杂剂,Ga2O3的禁带宽度有更大的禁带宽度调谐范围。
附图说明
图1为Ga2O3和Nb2O5薄膜交替沉积示意图:(1)Ga2O3沉积层(2)Nb2O5沉积层(3)Si衬底
图2为实施例1所获得薄膜的禁带宽度变化(Nb掺杂浓度对Nb:Ga2O3薄膜禁带的影响)
图3为实施例2所获得薄膜的禁带宽度变化(退火环境对Nb:Ga2O3薄膜禁带的影响)
图4为实施例3所获得薄膜的禁带宽度变化(薄膜厚度对Nb:Ga2O3薄膜禁带的影响)
具体实施方式
用以下实例进一步介绍本发明。
实施例1
(1)采用抛光的n型硅片作为衬底(电阻率2~4Ωcm,厚度为0.3mm)。将衬底分别用甲苯、丙酮、乙醇和去离子水各自超声清洗15min后放入手套箱干燥1小时。
(2)利用射频磁控溅射设备以分层生长的方式沉积Nb:Ga2O3薄膜材料,通过控制Nb2O5和Ga2O3靶材的溅射时间控制Nb的掺杂剂量。系统预真空度在1×10-3Pa以下。薄膜的生长气氛为Ar,工作气压为0.5Pa。Ga2O3和Nb2O5靶材的溅射功率均为80W,溅射时间分别为300s、10s交替和300s、40s交替,从而获得不同Nb掺杂含量的Nb:Ga2O3薄膜,其中薄膜厚度为250-260nm。
(3)将制备好的Nb:Ga2O3薄膜样品放入管式炉中进行氩气(Ar)保护退火。用机械泵将管式炉内气压抽至1Pa以下,通入高纯Ar(99.999%),使工作气压维持在一个大气压下,管式炉开始升温,在温度升至1000℃后保温240min,之后自然降温到室温,退火全程持续通入高纯Ar(99.999%)。
(4)用紫外-可见光分光计测量了薄膜样品的吸收光谱,并计算了薄膜样品的禁带宽度,发现Nb:Ga2O3薄膜的禁带宽度均低于4.9eV,且随着Nb掺杂量的增加而减小。
实施例2
(1)采用抛光的n型硅片作为衬底(电阻率2~4Ωcm,厚度为0.3mm)。将衬底分别用甲苯、丙酮、乙醇和去离子水各自超声清洗15min后放入手套箱干燥1小时。
(2)利用射频磁控溅射设备以共溅射方式沉积Nb:Ga2O3薄膜材料。系统预真空度在1×10-3Pa以下。薄膜的生长气氛为Ar,工作气压为0.6Pa。Ga2O3和Nb2O5靶材的溅射功率均为80W,溅射时间为50min,获得4个厚度为250nm且Nb掺杂含量相同(掺杂质量百分比含量为1.07%)的Nb:Ga2O3薄膜样品。
(3)将制备好的3个Nb:Ga2O3薄膜样品分别放入管式炉中进行Ar、O2和N2气氛退火。用机械泵将管式炉内气压抽至1Pa以下,通入高纯Ar(99.999%)、O2(99.999%)或N2(99.999%),之后使工作气压维持在一个大气压下,管式炉升温至1000℃后保温60min,之后自然降温到室温,退火全程持续通入高纯Ar、O2或N2
(4)用紫外-可见光分光计测量了薄膜样品的吸收光谱,并计算了薄膜样品的禁带宽度,发现Nb:Ga2O3薄膜在O2、Ar或N2气氛中退火后禁带宽度均高于4.9eV,且Eg(N2气氛退火)>Eg(Ar气氛退火)>Eg(O2气氛退火)>Eg(未退火)。
实施例3
(1)采用抛光的n型硅片作为衬底(电阻率2~4Ωcm,厚度为0.3mm)。将衬底分别用甲苯、丙酮、乙醇和去离子水各自超声清洗15min后放入手套箱干燥1小时。
(2)利用射频磁控溅射设备以共溅射方式沉积Nb:Ga2O3薄膜材料。系统预真空度在1×10-3Pa以下。薄膜的生长气氛为Ar,工作气压为0.6Pa。Ga2O3和Nb2O5靶材的溅射功率均为80W,通过控制共溅射镀膜时间,获得多个相同Nb掺杂含量(掺杂质量百分比含量为1.5%)却不同膜厚的Nb:Ga2O3薄膜样品。设置镀膜时间分别为20min,30min,40min,60min,获得厚度分别为100nm,150nm,200nm和300nm的四个Nb:Ga2O3薄膜样品。
(3)将制备好的Nb:Ga2O3薄膜样品放入管式炉中进行氮气(N2)保护退火。用机械泵将管式炉内气压抽至1Pa以下,通入高纯N2(99.999%),使工作气压维持在一个大气压下,管式炉开始升温,在温度升至1000℃后保温60min,之后自然降温到室温,退火全程持续通入高纯N2
(4)用紫外-可见光分光计测量了薄膜样品的吸收光谱,并计算了薄膜样品的禁带宽度,发现Nb:Ga2O3薄膜的禁带宽度均高于4.9eV,且随着膜厚的减小而增大。

Claims (3)

1.利用Nb掺杂调谐Ga2O3禁带宽度的方法,其特征在于:
(1)使用射频磁控溅射设备在单晶抛光硅片上沉积一层Nb:Ga2O3薄膜材料;
Nb:Ga2O3薄膜的生长方式为以下两种之一:Nb靶材和Ga2O3靶材共溅射,获得掺杂均匀的Nb:Ga2O3薄膜材料;Nb靶材和Ga2O3靶材交替溅射,在衬底上分层生长Nb:Ga2O3薄膜材料;
(2)在管式炉中慢退火,慢退火温度为1000℃;恒温时间60-240min,慢速退火保护气体为Ar、N2或O2;通入保护气体后,开始升温,整个退火过程持续通气。
2.根据权利要求1所述的方法,其特征在于:共溅射或者交替溅射得到的薄膜材料厚度为100-300nm。
3.根据权利要求1所述的方法,其特征在于:共溅射得到的薄膜材料Nb掺杂质量百分比含量为0.8%-3%。
CN201710741284.3A 2017-08-25 2017-08-25 利用Nb掺杂调谐Ga2O3禁带宽度的方法 Expired - Fee Related CN107513695B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710741284.3A CN107513695B (zh) 2017-08-25 2017-08-25 利用Nb掺杂调谐Ga2O3禁带宽度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710741284.3A CN107513695B (zh) 2017-08-25 2017-08-25 利用Nb掺杂调谐Ga2O3禁带宽度的方法

Publications (2)

Publication Number Publication Date
CN107513695A true CN107513695A (zh) 2017-12-26
CN107513695B CN107513695B (zh) 2019-02-19

Family

ID=60724014

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710741284.3A Expired - Fee Related CN107513695B (zh) 2017-08-25 2017-08-25 利用Nb掺杂调谐Ga2O3禁带宽度的方法

Country Status (1)

Country Link
CN (1) CN107513695B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108878552A (zh) * 2018-07-03 2018-11-23 北京镓族科技有限公司 一种带隙纵向梯度分布Al和Fe共掺杂Ga2O3薄膜的制法
CN109554679A (zh) * 2019-01-21 2019-04-02 北京工业大学 一种利用Nb掺杂增强Ga2O3薄膜光催化降解有机污染物的方法
CN110195217A (zh) * 2019-06-26 2019-09-03 北京工业大学 一种制备β-Ga2O3薄膜方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050217568A1 (en) * 2004-03-30 2005-10-06 American Superconductor Corporation Deposition of buffer layers on textured metal surfaces
CN105895262A (zh) * 2016-03-30 2016-08-24 武汉光谷创元电子有限公司 透明导电薄膜及其制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050217568A1 (en) * 2004-03-30 2005-10-06 American Superconductor Corporation Deposition of buffer layers on textured metal surfaces
CN105895262A (zh) * 2016-03-30 2016-08-24 武汉光谷创元电子有限公司 透明导电薄膜及其制造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YAN JIN-LIANG ET AL.: ""Optical Properties of N-doped β-Ga2O3 Films Deposited by RF Magnetron Sputtering"", 《ACTA PHOTONICA SINICA》 *
张易军: ""掺杂Ga2O3薄膜的理论与实验研究"", 《中国优秀硕士学位论文全文数据库·基础科学辑》 *
马艳彬等: ""后退火对射频磁控溅射制备β-Ga2O3 薄膜的影响"", 《真空》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108878552A (zh) * 2018-07-03 2018-11-23 北京镓族科技有限公司 一种带隙纵向梯度分布Al和Fe共掺杂Ga2O3薄膜的制法
CN108878552B (zh) * 2018-07-03 2020-10-13 北京镓族科技有限公司 一种带隙纵向梯度分布Al和Fe共掺杂Ga2O3薄膜的制法
CN109554679A (zh) * 2019-01-21 2019-04-02 北京工业大学 一种利用Nb掺杂增强Ga2O3薄膜光催化降解有机污染物的方法
CN110195217A (zh) * 2019-06-26 2019-09-03 北京工业大学 一种制备β-Ga2O3薄膜方法
CN110195217B (zh) * 2019-06-26 2021-06-04 北京工业大学 一种制备β-Ga2O3薄膜方法

Also Published As

Publication number Publication date
CN107513695B (zh) 2019-02-19

Similar Documents

Publication Publication Date Title
Zhu et al. Transparent and conductive indium doped cadmium oxide thin films prepared by pulsed filtered cathodic arc deposition
JP4397511B2 (ja) 低抵抗ito薄膜及びその製造方法
Anders et al. High quality ZnO: Al transparent conducting oxide films synthesized by pulsed filtered cathodic arc deposition
Kwak et al. Discharge power dependence of structural and electrical properties of Al-doped ZnO conducting film by magnetron sputtering (for PDP)
CN107513695B (zh) 利用Nb掺杂调谐Ga2O3禁带宽度的方法
Kumar et al. Investigations on opto-electronical properties of DC reactive magnetron sputtered zinc aluminum oxide thin films annealed at different temperatures
Lu et al. Comparative study of AZO and ITO thin film sputtered at different temperatures and their application in Cu 2 ZnSnS 4 solar cells
Hashimoto et al. High mobility titanium-doped In2O3 thin films prepared by sputtering/post-annealing technique
Wang et al. Improving crystallization and electron mobility of indium tin oxide by carbon dioxide and hydrogen dual-step plasma treatment
Zhao et al. Optical and electrical characterization of gradient AZO thin film by magnetron sputtering
Yue et al. Structural and optical properties of Zn-doped β-Ga2O3 films
Yusof et al. Fabrication and characterization of copper doped zinc oxide by using Co-sputtering technique
CN103617831A (zh) 一种高迁移率的铝掺杂氧化锌透明导电薄膜及其制备方法
Shu-Wen A Study of annealing time effects on the properties of Al: ZnO
CN109449247B (zh) 锡掺杂氧化钼薄膜、基于锡掺杂氧化钼薄膜的宽光谱光电探测器阵列及其制备方法
Silva et al. High optoelectronic quality of AZO films grown by RF-magnetron sputtering for organic electronics applications
KR101005973B1 (ko) 도전 적층체 및 이의 제조방법
JP5035857B2 (ja) 低抵抗ito薄膜及びその製造方法
Sun et al. Properties of indium molybdenum oxide films fabricated via high-density plasma evaporation at room temperature
KR100739457B1 (ko) 마그네트론 코스퍼터링법을 이용한 금속 도핑 ZnO 박막의 제조방법
US20190334042A1 (en) Transparent conducting film based on zinc oxide
Yu et al. Structural and physical properties of Ni and Al co-doped ZnO films grown on glass by direct current magnetron co-sputtering
Liang Study on the Properties of ZnO-TFT Prepared by Magnetron Sputtering
TWI676996B (zh) 透明導電膜、使用此之裝置或太陽能電池及透明導電膜之製造方法
Cheon et al. Improvement in properties of indium tin oxide thin films by electron beam irradiation

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190219

Termination date: 20210825

CF01 Termination of patent right due to non-payment of annual fee