CN107240615B - 一种具有非极性吸收层的紫外探测器 - Google Patents

一种具有非极性吸收层的紫外探测器 Download PDF

Info

Publication number
CN107240615B
CN107240615B CN201710338137.1A CN201710338137A CN107240615B CN 107240615 B CN107240615 B CN 107240615B CN 201710338137 A CN201710338137 A CN 201710338137A CN 107240615 B CN107240615 B CN 107240615B
Authority
CN
China
Prior art keywords
layer
algan
ultraviolet detector
nonpolar
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710338137.1A
Other languages
English (en)
Other versions
CN107240615A (zh
Inventor
张�雄
代倩
吴自力
崔平
崔一平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201710338137.1A priority Critical patent/CN107240615B/zh
Publication of CN107240615A publication Critical patent/CN107240615A/zh
Application granted granted Critical
Publication of CN107240615B publication Critical patent/CN107240615B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种具有非极性吸收层的紫外探测器,包括:自下而上依次设置的衬底、AlN中间层、非掺杂AlGaN缓冲层、n型AlGaN层、非极性AlxGa1‑xN/AlyGa1‑yN多量子阱吸收分离层、非掺杂AlzGa1‑zN倍增层、p型AlGaN层,在p型AlGaN层上设置的p型欧姆电极,在n型AlGaN层上设置的n型欧姆电极,其中0<x<y<z<1。本发明的有益效果为:从根本上避免吸收层内的极化电场对p‑n结内建电场的补偿作用,提高紫外探测器的光生电流;此外,采用非极性AlxGa1‑xN/AlyGa1‑yN多量子阱作为紫外探测器的吸收层,由于量子效应的作用,因此可以进一步提高紫外探测器对紫外光的吸收系数和横向载流子迁移率,对提高紫外探测器的量子效率和灵敏度具有重大意义。

Description

一种具有非极性吸收层的紫外探测器
技术领域
本发明涉及化合物半导体光电子材料与器件制造领域,尤其是一种具有非极性吸收层的紫外探测器。
背景技术
紫外探测在军事和民用领域具有的重要应用价值和广阔的发展前景,如火焰探测、紫外告警与制导、化学和生物分析、紫外天文学研究以及卫星通信等领域。AlGaN材料在制备紫外探测器方面具有巨大的潜力。首先,AlxGa1-xN材料是直接带隙半导体材料,通过调节Al的组分x,可以使其对应的吸收波长在200-365nm之间,恰好覆盖由于臭氧层吸收紫外光而产生的太阳光谱盲区(220-290nm)。同时,AlGaN基紫外探测器还具有体积小、重量轻、寿命长、抗震性好、工作电压低、耐高温、耐腐蚀、抗辐射、量子效率高、无需滤光片等优点。
然而,现有的AlGaN基紫外探测器的量子效率和灵敏度依然很低,其主要原因为制备探测器吸收层的材料是极性材料。如图2所示,由于极性材料制备的吸收层,在垂直于吸收层的方向上存在强度高达MV/cm量级的极化电场,且极化电场的方向与p-n结内建电场的方向相反,因而对内建电场造成补偿,导致吸收层内的净电场减小,使得光生载流子不能被有效收集。此外,当吸收层为极性材料时,会使得吸收层的能带发生倾斜,产生附加势垒,阻碍光生载流子的输运,在极大程度上限制了紫外探测器性能的提高。
为提高紫外探测器的量子效率和灵敏度,现有技术通常采用在吸收层内制作光子晶体或金属纳米颗粒等方法来提高吸收层对光的吸收能力。然而现有技术无法从根本上解决极性材料作为吸收层时极化电场对内建电场的补偿作用所引起的探测器量子效率低的问题。若要从根本上解决此问题,需满足极化电场的方向与p-n结内建电场的方向相同或者垂直的要求,以消除极化电场对内建电场的补偿效应,提高紫外探测器的量子效率和灵敏度。
发明内容
本发明所要解决的技术问题在于,提供一种具有非极性吸收层的紫外探测器,能够有效的提高紫外探测器的量子效率和灵敏度。
为解决上述技术问题,本发明提供一种具有非极性吸收层的紫外探测器,包括:自下而上依次设置的衬底101、AlN中间层102、非掺杂AlGaN缓冲层103、n型AlGaN层104、非极性AlxGa1-xN/AlyGa1-yN多量子阱吸收分离层105、非掺杂AlzGa1-zN倍增层106、p型AlGaN层107,在p型AlGaN层107上设置的p型欧姆电极108,在n型AlGaN层104上设置的n型欧姆电极109,其中0<x<y<z<1。
优选地,所述非极性AlxGa1-xN/AlyGa1-yN多量子阱吸收分离层105材料可以为(11-20)、(10-10)面等非极性面材料。
优选地,所述衬底101可以为极性、半极性、非极性取向的蓝宝石、碳化硅、硅、氧化锌、氮化镓、氮化铝等材料。
优选地,所述AlN中间层102的厚度为15-5000nm,非掺杂AlGaN缓冲层103的厚度为50-5000nm,n型AlGaN层104的厚度为200-5000nm,非极性AlxGa1-xN/AlyGa1-yN多量子阱吸收分离层105的AlxGa1-xN量子阱的阱宽为1-10nm,AlyGa1-yN势垒的垒厚为1-30nm,重复周期数为3-50,非掺杂AlzGa1-zN倍增层106的厚度为100-250nm,p型AlGaN层107的厚度为50-500nm。
优选地,所述非极性AlxGa1-xN/AlyGa1-yN多量子阱吸收分离层105和非掺杂AlzGa1- zN倍增层106中Al组分的关系满足:0<x<y<z<1。
优选地,所述非掺杂AlzGa1-zN倍增层106既可为单层AlGaN外延层结构,也可以是AlGaN/AlGaN量子阱结构,其中量子阱的阱宽为1-10nm,垒厚为5-30nm,重复周期数为3-50。
优选地,所述p型欧姆电极108和n型欧姆电极109的材料为Ni、Al、Au、Ag或Ti中的任何一种金属或由以上多种金属构成的合金材料。
本发明的有益效果为:本发明提供的是一种具有非极性吸收层的紫外探测器,由于采用非极性材料作为吸收层的紫外探测器,在垂直于吸收层面的方向上不存在极化电场,因此可以从根本上避免吸收层内的极化电场对p-n结内建电场的补偿作用;同时,因为在非极性吸收层内存在平行于吸收层面的极化电场,可以加大电子和空穴在空间上的分离,因而能够提高紫外探测器的光生电流;此外,采用非极性AlxGa1-xN/AlyGa1-yN多量子阱作为紫外探测器的吸收层,由于量子效应的作用,因此可以进一步提高紫外探测器对紫外光的吸收系数和横向载流子迁移率,对提高紫外探测器的量子效率和灵敏度具有重大意义。
附图说明
图1为本发明具有非极性吸收层的紫外探测器的结构示意图。
图2为现有技术制备的紫外探测器结构示意图。
其中,101、衬底;102、AlN中间层;103、非掺杂AlGaN缓冲层;104、n型AlGaN层;105、非极性AlxGa1-xN/AlyGa1-yN多量子阱吸收分离层;106、非掺杂AlzGa1-zN倍增层;107、p型AlGaN层;108、p型欧姆电极;109、p型欧姆电极;201、衬底;202、AlN中间层;203、非掺杂AlGaN缓冲层;204、n型AlGaN层;205、极性AlxGa1-xN/AlyGa1-yN多量子阱吸收分离层;206、非掺杂AlzGa1-zN倍增层;207、p型AlGaN层;208、p型欧姆电极;209、n型欧姆电极。
具体实施方式
如图1所示,一种具有非极性吸收层的紫外探测器,包括:自下而上依次设置的衬底101、AlN中间层102、非掺杂AlGaN缓冲层103、n型AlGaN层104、非极性AlxGa1-xN/AlyGa1-yN多量子阱吸收分离层105、非掺杂AlzGa1-zN倍增层106、p型AlGaN层107,在p型AlGaN层107上设置的p型欧姆电极108,在n型AlGaN层104上设置的n型欧姆电极109,其中0<x<y<z<1。
非极性AlxGa1-xN/AlyGa1-yN多量子阱吸收分离层105材料可以为(11-20)、(10-10)面等非极性面材料。
衬底101可以为极性、半极性、非极性取向的蓝宝石、碳化硅、硅、氧化锌、氮化镓、氮化铝等材料。
AlN中间层102的厚度为15-5000nm,非掺杂AlGaN缓冲层103的厚度为50-5000nm,n型AlGaN层104的厚度为200-5000nm,非极性AlxGa1-xN/AlyGa1-yN多量子阱吸收分离层105的AlxGa1-xN量子阱的阱宽为1-10nm,AlyGa1-yN势垒的垒厚为1-30nm,重复周期数为3-50,非掺杂AlzGa1-zN倍增层106的厚度为100-250nm,p型AlGaN层107的厚度为50-500nm。
AlN中间层102的厚度为200nm,非掺杂AlGaN缓冲层103的厚度为500nm,n型AlGaN层104的厚度为2000nm,非极性AlxGa1-xN/AlyGa1-yN多量子阱吸收分离层105的AlxGa1-xN量子阱的阱宽为2nm,AlyGa1-yN势垒的垒厚为10nm,重复周期数为10,非掺杂AlzGa1-zN倍增层106的厚度为200nm,p型AlGaN层107的厚度为250nm。
非极性AlxGa1-xN/AlyGa1-yN多量子阱吸收分离层105和非掺杂AlzGa1-zN倍增层106中Al组分的关系满足:0<x<y<z<1。
非掺杂AlzGa1-zN倍增层106既可为单层AlGaN外延层结构,也可以是AlGaN/AlGaN量子阱结构,其中量子阱的阱宽为1-10nm,垒厚为5-30nm,重复周期数为3-50。
非掺杂AlzGa1-zN倍增层106既可为单层AlGaN外延层结构,也可以是AlGaN/AlGaN量子阱结构,其中量子阱的阱宽为2nm,垒厚为10nm,重复周期数为10。
p型欧姆电极108和n型欧姆电极109的材料为Ni、Al、Au、Ag或Ti中的任何一种金属或由以上多种金属构成的合金材料。
p型欧姆电极108材料为Ni/Au合金,n型欧姆电极109材料为Ti/Au合金。
尽管本发明就优选实施方式进行了示意和描述,但本领域的技术人员应当理解,只要不超出本发明的权利要求所限定的范围,可以对本发明进行各种变化和修改。

Claims (7)

1.一种具有非极性吸收层的紫外探测器,其特征在于,包括:自下而上依次设置的衬底(101)、AlN中间层(102)、非掺杂AlGaN缓冲层(103)、n型AlGaN层(104)、非极性AlxGa1-xN/AlyGa1-yN多量子阱吸收分离层(105)、非掺杂AlzGa1-zN倍增层(106)、p型AlGaN层(107),在p型AlGaN层(107)上设置的p型欧姆电极108,在n型AlGaN层(104)上设置的n型欧姆电极(109),其中0<x<y<z<1。
2.如权利要求1所述的具有非极性吸收层的紫外探测器,其特征在于,所述非极性AlxGa1-xN/AlyGa1-yN多量子阱吸收分离层(105)材料为(11-20)、(10-10)面非极性面材料。
3.如权利要求1所述的具有非极性吸收层的紫外探测器,其特征在于,所述衬底(101)为极性、半极性、非极性取向的蓝宝石、碳化硅、硅、氧化锌、氮化镓、氮化铝材料。
4.如权利要求1所述的具有非极性吸收层的紫外探测器,其特征在于,所述AlN中间层(102)的厚度为15-5000nm,非掺杂AlGaN缓冲层(103)的厚度为50-5000nm,n型AlGaN层(104)的厚度为200-5000nm,非极性AlxGa1-xN/AlyGa1-yN多量子阱吸收分离层(105)的AlxGa1-xN量子阱的阱宽为1-10nm,AlyGa1-yN势垒的垒厚为1-30nm,重复周期数为3-50,非掺杂AlzGa1-zN倍增层(106)的厚度为100-250nm,p型AlGaN层(107)的厚度为50-500nm。
5.如权利要求1所述的具有非极性吸收层的紫外探测器,其特征在于,所述非极性AlxGa1-xN/AlyGa1-yN多量子阱吸收分离层(105)和非掺杂AlzGa1-zN倍增层(106)中Al组分的关系满足:0<x<y<z<1。
6.如权利要求1所述的具有非极性吸收层的紫外探测器,其特征在于,所述非掺杂AlzGa1-zN倍增层(106)为单层AlGaN外延层结构,或是AlGaN/AlGaN量子阱结构,其中量子阱的阱宽为1-10nm,垒厚为5-30nm,重复周期数为3-50。
7.如权利要求1所述的具有非极性吸收层的紫外探测器,其特征在于,所述p型欧姆电极(108)和n型欧姆电极(109)的材料为Ni、Al、Au、Ag或Ti中的任何一种金属或由以上多种金属构成的合金材料。
CN201710338137.1A 2017-05-15 2017-05-15 一种具有非极性吸收层的紫外探测器 Active CN107240615B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710338137.1A CN107240615B (zh) 2017-05-15 2017-05-15 一种具有非极性吸收层的紫外探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710338137.1A CN107240615B (zh) 2017-05-15 2017-05-15 一种具有非极性吸收层的紫外探测器

Publications (2)

Publication Number Publication Date
CN107240615A CN107240615A (zh) 2017-10-10
CN107240615B true CN107240615B (zh) 2019-03-12

Family

ID=59984958

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710338137.1A Active CN107240615B (zh) 2017-05-15 2017-05-15 一种具有非极性吸收层的紫外探测器

Country Status (1)

Country Link
CN (1) CN107240615B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109616535B (zh) * 2018-12-06 2020-04-28 湖北大学 基于m面BeMgZnO薄膜的自发极化增强型光电探测器及其制备方法
CN110164996B (zh) * 2019-05-17 2021-03-09 东南大学 一种非极性algan基肖特基紫外探测器
CN110429146B (zh) * 2019-08-07 2020-11-03 北京大学 一种非极性面氮化物量子阱红外探测器及其制备方法
CN111785797B (zh) * 2020-08-11 2021-05-18 中国科学院长春光学精密机械与物理研究所 一种超薄量子阱结构AlGaN日盲紫外探测器及其制备方法
CN112018210B (zh) * 2020-09-18 2022-05-17 南京冠鼎光电科技有限公司 极化增强窄带AlGaNp-i-n型紫外探测器及其制备方法
CN114242814B (zh) * 2021-11-19 2024-03-08 华南理工大学 N极性面AlGaN基紫外光电探测器外延结构及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167458A (zh) * 2014-03-31 2014-11-26 清华大学 紫外探测器及其制备方法
US9024292B2 (en) * 2012-06-02 2015-05-05 Xiaohang Li Monolithic semiconductor light emitting devices and methods of making the same
CN104362213B (zh) * 2014-09-11 2016-06-15 东南大学 一种铝镓氮基日盲紫外探测器及其制备方法
CN106298990A (zh) * 2016-10-27 2017-01-04 东南大学 一种利用自发极化电场的非极性太阳能电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105977356B (zh) * 2016-05-17 2019-02-05 东南大学 一种具有复合电子阻挡层结构的紫外发光二极管

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9024292B2 (en) * 2012-06-02 2015-05-05 Xiaohang Li Monolithic semiconductor light emitting devices and methods of making the same
CN104167458A (zh) * 2014-03-31 2014-11-26 清华大学 紫外探测器及其制备方法
CN104362213B (zh) * 2014-09-11 2016-06-15 东南大学 一种铝镓氮基日盲紫外探测器及其制备方法
CN106298990A (zh) * 2016-10-27 2017-01-04 东南大学 一种利用自发极化电场的非极性太阳能电池

Also Published As

Publication number Publication date
CN107240615A (zh) 2017-10-10

Similar Documents

Publication Publication Date Title
CN107240615B (zh) 一种具有非极性吸收层的紫外探测器
CN106960887B (zh) 一种铝镓氮基日盲紫外探测器及其制备方法
TWI427803B (zh) 具有量子點嵌於能量屏障中之中段光感裝置
US9379271B2 (en) Variable range photodetector and method thereof
CN108305911B (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
US20150263203A1 (en) Intermediate band semiconductors, heterojunctions, and optoelectronic devices utilizing solution processed quantum dots, and related methods
CN106409968B (zh) AlGaN基超晶格雪崩型紫外探测器及其制备方法
CN106960885B (zh) 一种pin结构紫外光电探测器及其制备方法
CN104051561B (zh) 一种氮化镓基紫外雪崩光电探测器
CN108878576B (zh) 一种氧化镓基紫外探测器
CN105655437A (zh) 一种紫外雪崩光电探测器
JP2013504877A (ja) 接触遮断層を備える希薄iii−v族窒化物中間バンド太陽電池
CN106298990B (zh) 一种利用自发极化电场的非极性太阳能电池
CN113471326B (zh) 一种ⅲ族氮化物异质结光电探测器
Williams et al. Development of a high-band gap high temperature III-nitride solar cell for integration with concentrated solar power technology
JP2010186915A (ja) 太陽電池
CN103474503B (zh) 一种基于二维晶格的紫外单波长msm光电探测器
Li et al. Visualizing light-to-electricity conversion process in InGaN/GaN multi-quantum wells with ap–n junction
CN110137277B (zh) 非极性自支撑GaN基pin紫外光电探测器及制备方法
Li et al. Polarization-Assisted AlGaN Heterostructure-Based Solar-Blind Ultraviolet MSM Photodetectors With Enhanced Performance
CN207021269U (zh) 一种pin结构紫外光电探测器
US10686091B2 (en) Semiconductor device
Mori et al. Concentrating properties of nitride-based solar cells using different electrodes
Movla et al. Photocurrent and surface recombination mechanisms in the In_xGa_ {1-x} N\slashGaN different-sized quantum dot solar cells
Brazzini et al. Impact of AlN spacer on metal–semiconductor–metal Pt–InAlGaN/GaN heterostructures for ultraviolet detection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant