CN106653896B - 一种用于可见光通信的InGaN量子点光电探测器及其制备方法 - Google Patents

一种用于可见光通信的InGaN量子点光电探测器及其制备方法 Download PDF

Info

Publication number
CN106653896B
CN106653896B CN201710002990.6A CN201710002990A CN106653896B CN 106653896 B CN106653896 B CN 106653896B CN 201710002990 A CN201710002990 A CN 201710002990A CN 106653896 B CN106653896 B CN 106653896B
Authority
CN
China
Prior art keywords
ingan
type gan
quantum dot
gan layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710002990.6A
Other languages
English (en)
Other versions
CN106653896A (zh
Inventor
刘晓燕
陈志涛
刘宁炀
任远
刘久澄
何晨光
张康
赵维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of Guangdong Academy of Sciences
Original Assignee
Guangdong Semiconductor Industry Technology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Semiconductor Industry Technology Research Institute filed Critical Guangdong Semiconductor Industry Technology Research Institute
Priority to CN201710002990.6A priority Critical patent/CN106653896B/zh
Publication of CN106653896A publication Critical patent/CN106653896A/zh
Application granted granted Critical
Publication of CN106653896B publication Critical patent/CN106653896B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Led Devices (AREA)

Abstract

一种用于可见光通信的InGaN量子点光电探测器及其制备方法,包括由下往上依次设置的衬底、n型GaN层、InGaN/GaN量子点结构层和p型GaN层,在p型GaN层的表面上设置有p型GaN欧姆接触结构,在n型GaN层露出的表面上设置有n型GaN欧姆接触结构,所述InGaN/GaN量子点结构层为(InGaN)n/(GaN)(n+1)的周期性结构,周期数n为1‑20,每层InGaN量子点的厚度为1‑5nm。本发明通过较薄的InGaN量子点即可以实现较高吸收系数,从而提高器件的量子效率和响应度,避免了传统InGaN基光电探测器中因为吸收系数低,需要外延厚膜InGaN层的工艺缺点,从而解决了InGaN材料生长中的一系列难题。

Description

一种用于可见光通信的InGaN量子点光电探测器及其制备 方法
技术领域
本发明涉及半导体光电子器件技术领域,具体是涉及一种用于可见光通信的InGaN量子点光电探测器及其制备方法。
背景技术
近年来,随着白光发光二极管被应用于通信系统的信号发射端,可见光通信技术(Visible-Light Communication,VLC)成为半导体照明向超越照明发展的重要趋势之一,同时VLC作为物联网领域的一种新技术、作为短距离通信方式的一种补充,引起了越来越多的关注。VLC技术是以可见光波(波长为380~780nm)作为传输媒介的一种短距离光无线通信方式,与通常采用的WiFi、ZigBee、RFID 等无线电波通信方式相比,具有对传输速率快、保密性好、无电磁污染、频谱无需授权等诸多优点。
然而,现行的VLC技术中,仍存在一些突出的问题,需要进一步的研究。目前可见光通信常用的光电探测器主要有三种:普通光电二极管(PD)(常用材料为Si和GaP)、雪崩光电二极管(APD)、图像传感器(阵列集成式PD),这些光电探测器虽然具有材料体系成熟、工艺技术稳定的优点、能够满足现有调制带宽与传输速率要求。但是这些探测器也存在光电转换效率不高、容易受到环境光背景干扰、灵敏度低、体积大、不利于集成等不足,严重限制了可见光通信技术的进一步发展。
相对于传统的Si、GaP材料,InGaN半导体因其较高的饱和电子迁移速率、波长可调范围广等的优点成为新型光电探测器的理想材料。同时,目前在VLC系统中用作发射端光源的白光LED主要有两种形式:1)InGaN/GaN多重量子阱蓝光LED激发黄光荧光粉发出白光;2)InGaN蓝光LED与红、绿LED组合发出白光,因此以InGaN为感光材料能够使探测器的吸收光谱与光源的发射光谱保持一致,由此可见,InGaN基可见光探测器在高速高效可见光通信中具有极大潜力。
InGaN基光电探测器主要有肖特基型、MSM型、p-i-n多量子阱型等结构类型,为保证量子效率和响应度,均需要生长比较厚的InGaN材料以增加对光子的吸收率。然而,由于InGaN的面内晶格常数比GaN大,在GaN上生长InGaN时,存在着因晶格失配引起的压应力,且随着InGaN厚度的增加,压应力会逐渐增大,形成三维岛状结构或者生成大量位错,使得晶体质量严重恶化。因此,生长高质量的厚膜InGaN材料仍面临着技术挑战,限制了InGaN基光电探测器在VLC系统中的实际应用。
发明内容
本发明的目的在于针对上述存在问题和不足,提供一种结构简单可靠、制造容易、吸收率高、材料厚度小的用于可见光通信的InGaN量子点光电探测器及其制备方法。
本发明的技术方案是这样实现的:
本发明所述的用于可见光通信的InGaN量子点光电探测器,包括具有p-i-n结构的InGaN量子点光电探测器本体,其特点是:所述InGaN量子点光电探测器本体包括由下往上依次设置的衬底、n型GaN层、InGaN/GaN量子点结构层和p型GaN层,其中所述p型GaN层的表面上设置有p型GaN欧姆接触结构,所述InGaN量子点光电探测器本体的一侧设置有缺口,通过所述缺口使n型GaN层露出表面,且在该表面上设置有n型GaN欧姆接触结构,所述InGaN/GaN量子点结构层为(InGaN)n/(GaN)(n+1)的周期性结构,周期数n为1-20,每层InGaN量子点的厚度为1-5nm。
其中,所述衬底为蓝宝石衬底、SiC衬底、GaN衬底、AlN衬底、MoW衬底或其它可以生长GaN材料的衬底。
所述n型GaN层、InGaN/GaN量子点结构层和p型GaN层采用金属有机物化学气相衬底外延法(MOCVD)、分子束外延法(MBE)或氢化物气相外延法(HVPE)进行设置。
本发明所述的用于可见光通信的InGaN量子点光电探测器的制备方法,其特点是包括以下步骤:
步骤一:在一衬底上依次外延生长n型GaN层、InGaN/GaN量子点结构层和p型GaN层,其中InGaN/GaN量子点结构层为(InGaN)n/(GaN)(n+1)的周期性结构,周期数n为1-20,每层InGaN量子点的厚度为1-5nm;
步骤二:通过光刻和干法刻蚀的方法去除部分的p型GaN层、InGaN/GaN量子点结构层和n型GaN层,使n型GaN层露出表面;
步骤三:在p型GaN的表面上制备p型GaN欧姆接触结构,并在n型GaN层露出的表面上制备n型GaN欧姆接触结构,即完成InGaN/GaN量子点光电探测器的制备。
其中,所述衬底为蓝宝石衬底、SiC衬底、GaN衬底、AlN衬底、MoW衬底或其它可以生长GaN材料的衬底。
上述步骤一中外延生长的方法为金属有机物化学气相衬底外延法(MOCVD)、分子束外延法(MBE)或氢化物气相外延法(HVPE)。
本发明所述的p-i-n结构InGaN基量子点光电探测器工作原理如下:当光子能量大于InGaN禁带宽度时,将激发InGaN产生电子-空穴对,电子和空穴作为光生载流子,一部分在量子点中弛豫到基态并进行辐射复合或非辐射复合;另一部分则逸出量子点并在电场的作用下作漂移运动,其中电子移向n区,空穴移向p区,形成光生电流。本发明所述的量子点光电探测器结构中,光激发产生的电子回到基态需要几百ps,而电子逃逸出量子点的时间只需要fs量级,因而电子更容易逸出量子点;本发明所述的量子点光电探测器具有p-i-n结构,通过调整p区和n区的掺杂浓度,其电场分布能够平衡电子的传输速率去匹配空穴的传输速率,有利于空穴的输运,减少由于空穴累积而产生的电流阻塞效应,使光生载流子可以持续从量子点传输出来,对光子吸收具有正反馈作用,从而提高了InGaN量子点光电探测器的吸收系数。
本发明与现有技术相比,具有以下优点:
本发明提出的一种具有p-i-n结构的InGaN量子点光电探测器,因为其具有高的光电吸收系数,从而提高了系统的量子效率,增加了器件的响应度,实现了InGaN基可见光探测器在VLC中的应用,而且只需很薄的InGaN的量子点就可以实现可见光通信中光电探测器的需求,这就避免了传统InGaN基光电探测器中因为吸收系数低,需要较厚的InGaN层作为光吸收层的缺点,从而解决了InGaN材料生长中的一系列难题。
下面结合附图对本发明作进一步的说明。
附图说明
图1为本发明实施例一制备InGaN量子点光电探测器的工艺流程图。
图2为本发明实施例一制备的InGaN量子点光电探测器的结构示意图。
具体实施方式
实施例一:
如图1-2所示,本发明实施例提供了一种InGaN量子点光电探测器的制造方法和通过该方法制备的芯片的结构,其制备方法包括以下步骤:
步骤一:在衬底1(该衬底1为蓝宝石衬底)上采用MOCVD依次外延生长n型GaN层2、InGaN/GaN量子点结构层3和p型GaN层4,具体的量子点结构为一层GaN/InGaN/GaN量子点结构,该InGaN量子点结构的厚度为5nm;
步骤二:通过光刻和干法刻蚀的方法去除部分的p型GaN层、InGaN/GaN量子点结构层和n型GaN层,使n型GaN层2露出表面21;
步骤三:在p型GaN层4的表面41上制备p型GaN欧姆接触结构6,并在n型GaN层2露出的表面21上制备n型GaN欧姆接触结构7,即完成InGaN/GaN量子点光电探测器的制备。
通过上述步骤制备的InGaN量子点光电探测器如图2所示,包括蓝宝石衬底1、n型GaN层2、InGaN/GaN量子点结构层3、p型GaN层4、p型GaN欧姆接触结构6和n型GaN欧姆接触结构7。由于在上述步骤二中,通过光刻和干法刻蚀的方法去除了部分的p型GaN层、InGaN/GaN量子点结构层和n型GaN层,因此在InGaN量子点光电探测器的一侧形成有缺口5,而该缺口5的底面即为n型GaN层2露出的表面21。
实施例二:
该实施例与实施例一的不同之处在于:
步骤一:在SiC衬底上采用MBE依次外延生长n型GaN层、InGaN/GaN量子点结构层和p型GaN层,具体的量子点结构为一层(InGaN)5/(GaN)6量子点结构,该InGaN量子点结构的厚度为4nm。
实施例三:
该实施例与实施例一的不同之处在于:
步骤一:在GaN衬底上采用HVPE依次外延生长n型GaN层、InGaN/GaN量子点结构层和p型GaN层,具体的量子点结构为一层(InGaN)10/(GaN)11量子点结构,该InGaN量子点结构的厚度为3nm。
实施例四:
该实施例与实施例一的不同之处在于:
步骤一:在AlN衬底上采用MBE依次外延生长n型GaN层、InGaN/GaN量子点结构层和p型GaN层,具体的量子点结构为一层(InGaN)15/(GaN)16量子点结构,该InGaN量子点结构的厚度为2nm。
实施例五:
该实施例与实施例一的不同之处在于:
步骤一:在MoW衬底上采用MOCVD依次外延生长n型GaN层、InGaN/GaN量子点结构层和p型GaN层,具体的量子点结构为一层(InGaN)20/(GaN)21量子点结构,该InGaN量子点结构的厚度为1nm。
本发明是通过实施例来描述的,但并不对本发明构成限制,参照本发明的描述,所公开的实施例的其他变化,如对于本领域的专业人士是容易想到的,这样的变化应该属于本发明权利要求限定的范围之内。

Claims (6)

1.一种用于可见光通信的InGaN量子点光电探测器,包括具有p-i-n结构的InGaN量子点光电探测器本体,其特征在于:所述InGaN量子点光电探测器本体包括由下往上依次设置的衬底(1)、n型GaN层(2)、InGaN/GaN量子点结构层(3)和p型GaN层(4),其中所述p型GaN层(4)的表面(41)上设置有p型GaN欧姆接触结构(6),所述InGaN量子点光电探测器本体的一侧设置有缺口(5),通过所述缺口(5)使n型GaN层(2)露出表面(21),且在该表面(21)上设置有n型GaN欧姆接触结构(7),所述InGaN/GaN量子点结构层(3)为(InGaN)n/(GaN)(n+1)的周期性结构,周期数n为1-20,每层InGaN量子点的厚度为1-5nm。
2.根据权利要求1所述的用于可见光通信的InGaN量子点光电探测器,其特征在于:所述衬底(1)为蓝宝石衬底、SiC衬底、GaN衬底、AlN衬底或MoW衬底。
3.根据权利要求1所述的用于可见光通信的InGaN量子点光电探测器,其特征在于:所述n型GaN层(2)、InGaN/GaN量子点结构层(3)和p型GaN层(4)采用金属有机物化学气相衬底外延法(MOCVD)、分子束外延法(MBE)或氢化物气相外延法(HVPE)进行设置。
4.一种用于可见光通信的InGaN量子点光电探测器的制备方法,该方法用于制备如上述权利要求1所述的InGaN量子点光电探测器,其特征在于包括以下步骤:
步骤一:在一衬底(1)上依次外延生长n型GaN层(2)、InGaN/GaN量子点结构层(3)和p型GaN层(4),其中InGaN/GaN量子点结构层(3)为(InGaN)n/(GaN)(n+1)的周期性结构,周期数n为1-20,每层InGaN量子点的厚度为1-5nm;
步骤二:通过光刻和干法刻蚀的方法去除部分的p型GaN层、InGaN/GaN量子点结构层和n型GaN层,使n型GaN层(2)露出表面(21);
步骤三:在p型GaN(4)的表面(41)上制备p型GaN欧姆接触结构(6),并在n型GaN层(2)露出的表面(21)上制备n型GaN欧姆接触结构(7),即完成InGaN/GaN量子点光电探测器的制备。
5.根据权利要求4所述的用于可见光通信的InGaN量子点光电探测器的制备方法,其特征在于:所述衬底(1)为蓝宝石衬底、SiC衬底、GaN衬底、AlN衬底或MoW衬底。
6.根据权利要求4所述的用于可见光通信的InGaN量子点光电探测器的制备方法,其特征在于:上述步骤一中外延生长的方法为金属有机物化学气相衬底外延法(MOCVD)、分子束外延法(MBE)或氢化物气相外延法(HVPE)。
CN201710002990.6A 2017-01-04 2017-01-04 一种用于可见光通信的InGaN量子点光电探测器及其制备方法 Active CN106653896B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710002990.6A CN106653896B (zh) 2017-01-04 2017-01-04 一种用于可见光通信的InGaN量子点光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710002990.6A CN106653896B (zh) 2017-01-04 2017-01-04 一种用于可见光通信的InGaN量子点光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN106653896A CN106653896A (zh) 2017-05-10
CN106653896B true CN106653896B (zh) 2018-05-18

Family

ID=58842503

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710002990.6A Active CN106653896B (zh) 2017-01-04 2017-01-04 一种用于可见光通信的InGaN量子点光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN106653896B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110459628A (zh) * 2019-07-31 2019-11-15 华南理工大学 一种多量子阱蓝光探测器及制备方法与应用
WO2022193234A1 (zh) 2021-03-18 2022-09-22 苏州晶湛半导体有限公司 感光单元及其GaN基图像传感器、显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7098487B2 (en) * 2002-12-27 2006-08-29 General Electric Company Gallium nitride crystal and method of making same
GB2460666A (en) * 2008-06-04 2009-12-09 Sharp Kk Exciton spin control in AlGaInN quantum dots
CN104051561B (zh) * 2014-07-04 2016-08-24 东南大学 一种氮化镓基紫外雪崩光电探测器
CN105405915B (zh) * 2015-12-04 2017-03-22 华南理工大学 一种InGaN基蓝光探测器及其制备方法
CN105742377B (zh) * 2016-02-22 2018-01-05 中山大学 一种具有带通滤波功能的可见光通信用光电探测器
CN105633194B (zh) * 2016-03-09 2017-12-29 南京邮电大学 基于悬空p‑n结量子阱的光致晶体管及其制备方法
CN206370429U (zh) * 2017-01-04 2017-08-01 广东省半导体产业技术研究院 一种用于可见光通信的InGaN量子点光电探测器

Also Published As

Publication number Publication date
CN106653896A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
CN105720130B (zh) 基于量子阱带间跃迁的光电探测器
CN107046071A (zh) 基于多孔DBR的InGaN基谐振腔增强型探测器芯片
KR102474696B1 (ko) 반도체 소자 및 제조 방법
KR102559993B1 (ko) 반도체 소자
Chiou et al. High detectivity InGaN-GaN multiquantum well pn junction photodiodes
CN105742377B (zh) 一种具有带通滤波功能的可见光通信用光电探测器
Jiang et al. Simultaneous light-emitting light-detecting functionality of InGaN/GaN multiple quantum well diodes
He et al. Monolithically integrated UVC AlGaN-based multiple quantum wells structure and photonic chips for solar-blind communications
CN106653896B (zh) 一种用于可见光通信的InGaN量子点光电探测器及其制备方法
KR102417710B1 (ko) 반도체 소자 패키지 및 그 제조 방법
CN206370429U (zh) 一种用于可见光通信的InGaN量子点光电探测器
KR102404269B1 (ko) 반도체 소자
US20210210646A1 (en) Broadband uv-to-swir photodetectors, sensors and systems
Chang et al. GaN-Based Schottky Barrier Photodetectors With a 12-Pair Mg $ _ {\rm x} $ N $ _ {\rm y} $–GaN Buffer Layer
KR102471689B1 (ko) 반도체 소자 패키지
KR102564122B1 (ko) 반도체 소자
TW202105760A (zh) 具有漸變或階梯式稀氮化物活性區域的短波紅外光電器件
CN106409965A (zh) 一种高速饱和单行载流子紫外光电二极管及制备方法
US10686091B2 (en) Semiconductor device
US6914315B2 (en) GaN-based heterostructure photodiode
KR102403821B1 (ko) 반도체 소자
US10950754B2 (en) Semiconductor device increasing light output
KR20180002212A (ko) 반도체 소자 모듈
Xiao et al. Optical and Communication Performance Investigation of UV and DUV Light-Stimulated Quantum Dots
US12027642B1 (en) Solar blind solid state gallium containing photodiode device and related method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 510651 No. 363, Changxin Road, Guangzhou, Guangdong, Tianhe District

Patentee after: Institute of semiconductors, Guangdong Academy of Sciences

Address before: 510651 No. 363, Changxin Road, Guangzhou, Guangdong, Tianhe District

Patentee before: GUANGDONG INSTITUTE OF SEMICONDUCTOR INDUSTRIAL TECHNOLOGY

CP01 Change in the name or title of a patent holder
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170510

Assignee: Guangzhou Aoqian Trading Co.,Ltd.

Assignor: Institute of semiconductors, Guangdong Academy of Sciences

Contract record no.: X2023980033600

Denomination of invention: An InGaN quantum dot photodetector for visible light communication and its preparation method

Granted publication date: 20180518

License type: Common License

Record date: 20230314

Application publication date: 20170510

Assignee: Xiangyi (Guangzhou) Technology Co.,Ltd.

Assignor: Institute of semiconductors, Guangdong Academy of Sciences

Contract record no.: X2023980033597

Denomination of invention: An InGaN quantum dot photodetector for visible light communication and its preparation method

Granted publication date: 20180518

License type: Common License

Record date: 20230314

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170510

Assignee: Foshan Oulaien Door and Window Co.,Ltd.

Assignor: Institute of semiconductors, Guangdong Academy of Sciences

Contract record no.: X2023980033677

Denomination of invention: An InGaN quantum dot photodetector for visible light communication and its preparation method

Granted publication date: 20180518

License type: Common License

Record date: 20230316

EE01 Entry into force of recordation of patent licensing contract