CN105633194B - 基于悬空p‑n结量子阱的光致晶体管及其制备方法 - Google Patents

基于悬空p‑n结量子阱的光致晶体管及其制备方法 Download PDF

Info

Publication number
CN105633194B
CN105633194B CN201610132116.XA CN201610132116A CN105633194B CN 105633194 B CN105633194 B CN 105633194B CN 201610132116 A CN201610132116 A CN 201610132116A CN 105633194 B CN105633194 B CN 105633194B
Authority
CN
China
Prior art keywords
hanging
layer
photic
transistor
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610132116.XA
Other languages
English (en)
Other versions
CN105633194A (zh
Inventor
王永进
袁威
高绪敏
蔡玮
白丹
许银
朱桂遐
袁炜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CN201610132116.XA priority Critical patent/CN105633194B/zh
Publication of CN105633194A publication Critical patent/CN105633194A/zh
Application granted granted Critical
Publication of CN105633194B publication Critical patent/CN105633194B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/167Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers
    • H01L31/173Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers formed in, or on, a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Led Devices (AREA)

Abstract

本发明提供一种基于悬空p‑n结量子阱的光致晶体管及其制备方法,利用各向异性硅刻蚀技术,剥离去除器件结构下硅衬底层,得到基于悬空氮化物薄膜p‑n结量子阱的光致晶体管,进一步采用氮化物背后减薄刻蚀技术,获得超薄的悬空器件。本发明中,晶体管一端作为LED光源,另一端作为光电探测器,由于两个器件之间优异的光谱匹配特性,光电探测器能够感知LED器件发出的光,将光信号转成电信号输出,从而实现器件的光致晶体管特性;该晶体管作为两个共地的LED光源,独立地传输被调制的光信号,实现可见光无线通信的双通道发射;本发明晶体管可以作为两个共地的光电探测器,独立地感知空间光信号,实现可见光无线通信的双通道探测。

Description

基于悬空p-n结量子阱的光致晶体管及其制备方法
技术领域
本发明属于信息材料与器件领域,涉及一种悬空p-n结量子阱的光致晶体管及其制备技术。
背景技术
氮化物材料特别是GaN材料,具有更高的禁带宽度,更大的电子饱和漂移速度,更强的临近击穿电场,更高的热导率以及热稳定性等特性,是制备高频、高温、高压、大功率器件的理想材料。而基于硅衬底氮化物材料的光致晶体管器件,通过利用各向异性硅刻蚀技术,剥离去除器件结构下硅衬底层,得到基于悬空氮化物薄膜p-n结量子阱的光致晶体管,进一步采用氮化物背后减薄刻蚀技术,获得超薄的悬空器件。该器件一端的LED光源发出的光,由另一端的光电探测器感知到,实现器件的光致晶体管特性;该器件作为两个共地的LED光源,独立地传输被调制的光信号,实现可见光无线通信的双通道发射;该器件作为两个共地的光电探测器,独立地感知空间光信号,实现可见光无线通信的双通道探测。这为发展面向可见光无线通信、光传感的氮化物光子及光学微电子器件提供了新的方向。
发明内容
技术问题:本发明提供一种基于悬空p-n结量子阱的光致晶体管,将该晶体管一端作为LED光源,另一端作为光电探测器、两个共地的LED光源、两个共地的光电探测器,分别实现器件的光致晶体管特性、可见光无线通信的双通道发射和可见光无线通信的双通道探测,本发明同时提供一种该晶体管的制备方法。
技术方案:本发明的基于悬空p-n结量子阱的光致晶体管,以硅基氮化物晶片为载体,包括硅衬底层、设置在所述硅衬底层上的外延缓冲层、设置在所述外延缓冲层上的两个p-n结量子阱器件;所述p-n结量子阱器件由n-GaN层、InGaN/GaN多量子阱、p-GaN层、p-电极和n-电极构成,在所述n-GaN层上表面有刻蚀出的阶梯状台面,所述阶梯状台面包括下台面和位于下台面上的上台面,所述InGaN/GaN多量子阱、p-GaN层、p-电极从下至上依次连接设置在上台面的上方,所述n-电极设置在下台面上,为两个p-n结量子阱器件所共用;在所述n-GaN层下方设置有贯穿硅衬底层、外延缓冲层至n-GaN层中的空腔,使得p-n结量子阱器件悬空。
进一步的,本发明的基于悬空p-n结量子阱的光致晶体管中,所述p-电极由依次连接的悬空p-电极区、p-电极导电区和p-电极引线区组成;所述n-电极由相互连接的n-电极导电区和n-电极引线区组成,两个p-n结量子阱器件的悬空p-电极区和部分n-电极导电区、部分n-电极引线区构成悬空电极区,所述空腔位于悬空电极区的下方。
进一步的,本发明的基于悬空p-n结量子阱的光致晶体管中,所述p-n结量子阱器件在硅基氮化物晶片的氮化物层上实现。
进一步的,本发明的基于悬空p-n结量子阱的光致晶体管中,所述p-电极和n-电极均为Ni/Au电极,即沉积的金属材料为Ni/Au。
本发明的制备上述基于悬空p-n结量子阱的光致晶体管的方法,包括以下步骤:
步骤(1)在硅基氮化物晶片背后对硅衬底层进行减薄抛光;
步骤(2)在硅基氮化物晶片上表面均匀涂上一层光刻胶,采用曝光技术在光刻胶层上定义出n-GaN台阶区域,所述n-GaN台阶区域包括下台面和上台面;
步骤(3)采用反应离子束刻蚀n-GaN台阶区域,得到阶梯状台面;
步骤(4)在硅基氮化物晶片上表面均匀涂上一层光刻胶,光刻定义出位于上台面的p-n结量子阱器件的p-电极窗口区域、位于下台面的p-n结量子阱器件的n-电极窗口区域,然后在所述p-电极窗口区域与n-电极窗口区域分别蒸镀Ni/Au,形成欧姆接触,实现p-电极与n-电极,去除残余光刻胶后,即得到p-n结量子阱器件;
步骤(5)在硅基氮化物晶片顶层涂胶保护,防止刻蚀过程中损伤表面器件,在硅基氮化物晶片的硅衬底层下表面旋涂一层光刻胶层,利用背后对准技术,定义出一个对准并覆盖p-n结量子阱器件悬空部分的背后刻蚀窗口;
步骤(6)将外延缓冲层作为刻蚀阻挡层,利用背后深硅刻蚀技术,通过背后刻蚀窗口将所述硅衬底层贯穿刻蚀至外延缓冲层的下表面;
步骤(7)采用氮化物背后减薄刻蚀技术,从下往上对外延缓冲层和n-GaN层进行氮化物减薄处理,形成一个空腔;
步骤(8)去除残余光刻胶,获得基于悬空p-n结量子阱的光致晶体管器件。
进一步的,本发明制备方法中,所述步骤(4)中的蒸镀Ni/Au,采用剥离工艺和温度控制在5005℃的氮气退火技术实现。
进一步的,本发明制备方式中,步骤(7)中的氮化物背后减薄刻蚀技术为离子束轰击或反应离子束刻蚀技术。
进一步的,本发明制备方式中,所述步骤(4)中定义的p-电极窗口区域包括依次连接的悬空p-电极区窗口、p-电极导电区窗口和p-电极引线区窗口,所述n-电极窗口区域包括相互连接的n-电极导电区窗口和n-电极引线区窗口。
本发明通过曝光技术和氮化物刻蚀工艺,将LED、光电探测器转移到顶层氮化物器件层。利用各向异性硅刻蚀技术,剥离去除器件结构下硅衬底层和外延缓冲层,进一步采用氮化物背后减薄刻蚀技术,获得超薄的基于悬空p-n结量子阱的光致晶体管。
本发明中,晶体管一端作为LED光源,另一端作为光电探测器,由于两个器件之间优异的光谱匹配特性,光电探测器能够感知LED器件发出的光,将光信号转成电信号输出,从而实现器件的光致晶体管特性。
本发明的基于悬空p-n结量子阱的光致晶体管,可以将该晶体管作为两个共地的LED光源,独立地传输被调制的光信号,实现可见光无线通信的双通道发射。可以将该晶体管作为两个共地的光电探测器,独立地感知空间光信号,实现可见光无线通信的双通道探测。本发明器件以光子作为信息传输载体,很好地解决了信号传输时畸变失真、能量损耗等问题;同时,本器件既可以作为两个LED光源,也可作为两个光电探测器,实现器件的多功能应用。
有益效果:本发明与现有技术相比,具有以下优点:
本发明的基于悬空p-n结量子阱的光致晶体管区别于传统电致晶体管以电子作为传输载体,采用光子作为信息传输的载体,使信息在传输中所造成的信息畸变和失真极小,光传输、转换时能量消耗和散发热量极低。同时,光致晶体管器件既可作为LED光源,也可作为光电探测器使用;同时,实现晶体管源、漏极的双向利用。解决了器件的多功能应用问题,功能更加全面且制作工艺简洁,为平面光子集成开创了一种新的光致晶体管器件。
本发明器件将光源、光电探测器集成在同一芯片上,LED器件发出的光,在另一端被光电探测器探测到,利用量子阱器件的电光效应和光电效应,实现光致晶体管特性;
本发明器件可作为两个LED光源,采用共地结构,独立地传输被调制的光信号,实现可见光无线通信的双通道发射;
本发明器件可作为两个光电探测器,采用共地结构,独立地感知空间传输的光信号,实现可见光无线通信的双通道探测。
本发明的基于悬空p-n结量子阱的光致晶体管,其制备技术与硅加工技术兼容,可实现面向可见光波段光通信、光传感的平面光子集成器件。
附图说明
图 1 是本发明基于悬空p-n结量子阱的光致晶体管结构示意图。
图 2 是本发明基于悬空p-n结量子阱的光致晶体管俯视图。
图 3 是本发明基于悬空p-n结量子阱的光致晶体管的制造流程图。
图中有:1-硅衬底层;2-外延缓冲层;3-n-GaN;4-InGaN/GaN多量子阱;5-p-GaN层;6-p-电极;7-n-电极;8-悬空p-电极区;9-p-电极导电区;10-p-电极引线区;11-n-电极导电区;12-n-电极引线区;13-悬空电极区。
具体实施方式
下面结合实施例和说明书附图对本发明作进一步的说明。
图1、图2给出了本发明的基于悬空p-n结量子阱的光致晶体管的结构示意图。该器件以硅基氮化物晶片为载体,包括硅衬底层1、设置在所述硅衬底层1上的外延缓冲层 2、设置在所述外延缓冲层2上的p-n结量子阱的光致晶体管器件,所述p-n结量子阱的光致晶体管器件由p-n结、p-电极6和n-电极7组成,所述p-n结包括从下至上依次连接设置的n-GaN层3、InGaN/GaN多量子阱4和p-GaN层5,所述p-电极6设置在p-GaN层5上,在所述n-GaN层3上表面有刻蚀出的阶梯状台面,所述阶梯状台面包括下台面和位于下台面上的上台面,所述上台面与InGaN/GaN多量子阱4的底面连接,所述n-电极7设置在下台面上;在所述n-GaN层3下方设置有贯穿硅衬底层1、外延缓冲层2至n-GaN层3底面的空腔,使得光致晶体管器件悬空。进一步的,本发明的基于悬空p-n结量子阱的光致晶体管中,所述p-电极6由依次连接的悬空p-电极区8、p-电极导电区9和p-电极引线区10组成;所述n-电极7由相互连接的n-电极导电区11和n-电极引线区12组成,所述空腔处于两个悬空电极区13的下方。
本发明的基于悬空p-n结量子阱的光致晶体管,所述的InGaN/GaN多量子阱4中,铟氮化镓InGaN与氮化镓GaN间隔沉积形成量子阱层。
本发明的基于悬空p-n结量子阱的光致晶体管,所述LED器件、光电探测器均在硅基氮化物晶片的氮化物层上实现。
本发明的另一个优选实施例中,LED器件的p-电极和n-电极均为Ni/Au电极,即沉积的金属材料为镍-金合金Ni/Au。
本发明的制备上述硅衬底基于悬空p-n结量子阱的光致晶体管的方法,包括以下步骤:
1)在硅基氮化物晶片背后对硅衬底层1进行减薄抛光;
2)在硅基氮化物晶片上表面均匀涂上一层光刻胶;
3)采用曝光技术在光刻胶层上定义出两个n-GaN台阶区域,所述n-GaN台阶区域包括下台面和上台面;
4)采用反应离子束刻蚀n-GaN台阶区域;
5)去除残余光刻胶,得到阶梯状台面、位于上台面的光致晶体管器件的源极p-GaN层5、漏极的p-GaN层5、InGaN/GaN多量子阱4;
6)在硅基氮化物晶片上表面均匀涂上一层光刻胶,光刻定义出位于上台面光致晶体管源、漏极的p-电极窗口区域、位于下台面的光致晶体管器件栅极的n-电极窗口区域,然后在所述p-电极窗口区域与n-电极窗口区域分别蒸镀Ni/Au,形成欧姆接触,实现p-电极6与n-电极7,去除残余光刻胶后,即得到光致晶体管的电极;
7)在硅基氮化物晶片顶层涂胶保护,防止刻蚀过程中损伤表面器件,
8)在硅基氮化物晶片的硅衬底层1下表面旋涂一层光刻胶层;
9)利用背后对准技术,定义出一个对准并覆盖器件的悬空电极区13的背后刻蚀窗口;
10)将外延缓冲层2作为刻蚀阻挡层,利用背后深硅刻蚀技术,通过背后刻蚀窗口将所述硅衬底层1贯穿刻蚀至外延缓冲层2的下表面;
11)采用氮化物背后减薄刻蚀技术,从下往上对外延缓冲层2和n-GaN层3进行氮化物减薄处理,形成一个空腔;
12)去除残余光刻胶,即获得硅衬底悬空光致晶体管器件。
上述实施例仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和等同替换,这些对本发明权利要求进行改进和等同替换后的技术方案,均落入本发明的保护范围。

Claims (8)

1.一种基于悬空p-n结量子阱的光致晶体管,其特征在于,该晶体管以硅基氮化物晶片为载体,包括硅衬底层(1)、设置在所述硅衬底层(1)上的外延缓冲层(2)、设置在所述外延缓冲层(2)上的两个p-n结量子阱器件;所述p-n结量子阱器件由n-GaN层(3)、InGaN/GaN多量子阱(4)、p-GaN层(5)、p-电极(6)和n-电极(7)构成,在所述n-GaN层(3)上表面有刻蚀出的阶梯状台面,所述阶梯状台面包括下台面和位于下台面上的上台面,所述InGaN/GaN多量子阱(4)、p-GaN层(5)、p-电极(6)从下至上依次连接设置在上台面的上方,所述n-电极(7)设置在下台面上,为两个p-n结量子阱器件所共用;在所述n-GaN层(3)下方设置有贯穿硅衬底层(1)、外延缓冲层(2)至n-GaN层(3)中的空腔,使得p-n结量子阱器件悬空。
2.根据权利要求1所述的基于悬空p-n结量子阱的光致晶体管,其特征在于,所述p-电极(6)由依次连接的悬空p-电极区(8)、p-电极导电区(9)和p-电极引线区(10)组成;所述n-电极(7)由相互连接的n-电极导电区(11)和n-电极引线区(12)组成;两个p-n结量子阱器件的悬空p-电极区(8)和部分n-电极导电区(11)、部分n-电极引线区(12)构成悬空电极区(13),所述空腔位于悬空电极区(13)的下方。
3.根据权利要求1所述的基于悬空p-n结量子阱的光致晶体管,其特征在于,所述p-n结量子阱器件在硅基氮化物晶片的氮化物层上实现。
4.根据权利要求1、2或3所述的基于悬空p-n结量子阱的光致晶体管,其特征在于,所述p-电极(6)和n-电极(7)均为Ni/Au电极,即沉积的金属材料为Ni/Au。
5.一种制备权利要求1、2、3或4所述基于悬空p-n结量子阱的光致晶体管的方法,其特征在于,该方法包括以下步骤:
步骤(1)在硅基氮化物晶片背后对硅衬底层(1)进行减薄抛光;
步骤(2)在硅基氮化物晶片上表面均匀涂上一层光刻胶,采用曝光技术在光刻胶层上定义出n-GaN台阶区域,所述n-GaN台阶区域包括下台面和上台面;
步骤(3)采用反应离子束刻蚀n-GaN台阶区域,得到阶梯状台面;
步骤(4)在硅基氮化物晶片上表面均匀涂上一层光刻胶,光刻定义出位于上台面的p-n结量子阱器件的p-电极窗口区域、位于下台面的p-n结量子阱器件的n-电极窗口区域,然后在所述p-电极窗口区域与n-电极窗口区域分别蒸镀Ni/Au,形成欧姆接触,实现p-电极(6)与n-电极(7),去除残余光刻胶后,即得到光致晶体管的电极;
步骤(5)在硅基氮化物晶片顶层涂胶保护,防止刻蚀过程中损伤表面器件,在硅基氮化物晶片的硅衬底层(1)下表面旋涂一层光刻胶层,利用背后对准技术,定义出一个对准并覆盖p-n结量子阱器件悬空部分的背后刻蚀窗口;
步骤(6)将外延缓冲层(2)作为刻蚀阻挡层,利用背后深硅刻蚀技术,通过背后刻蚀窗口将所述硅衬底层(1)贯穿刻蚀至外延缓冲层(2)的下表面;
步骤(7)采用氮化物背后减薄刻蚀技术,从下往上对外延缓冲层(2)和n-GaN层(3)进行氮化物减薄处理,形成一个空腔;
步骤(8)去除残余光刻胶,获得基于悬空p-n结量子阱的光致晶体管。
6.根据权利要求5所述的制备基于悬空p-n结量子阱的光致晶体管的方法,其特征在于,所述步骤(4)中的蒸镀Ni/Au,采用剥离工艺和温度控制在500±5℃的氮气退火技术实现。
7.根据权利要求5所述的制备基于悬空p-n结量子阱的光致晶体管的方法,其特征在于,所述步骤(7)中的氮化物背后减薄刻蚀技术为离子束轰击或反应离子束刻蚀技术。
8.根据权利要求5、6或7所述的制备基于悬空p-n结量子阱的光致晶体管的方法,其特征在于,所述步骤(4)中定义的p-电极窗口区域包括依次连接的悬空p-电极区窗口、p-电极导电区窗口和p-电极引线区窗口,所述n-电极窗口区域包括相互连接的n-电极导电区窗口和n-电极引线区窗口。
CN201610132116.XA 2016-03-09 2016-03-09 基于悬空p‑n结量子阱的光致晶体管及其制备方法 Active CN105633194B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610132116.XA CN105633194B (zh) 2016-03-09 2016-03-09 基于悬空p‑n结量子阱的光致晶体管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610132116.XA CN105633194B (zh) 2016-03-09 2016-03-09 基于悬空p‑n结量子阱的光致晶体管及其制备方法

Publications (2)

Publication Number Publication Date
CN105633194A CN105633194A (zh) 2016-06-01
CN105633194B true CN105633194B (zh) 2017-12-29

Family

ID=56047929

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610132116.XA Active CN105633194B (zh) 2016-03-09 2016-03-09 基于悬空p‑n结量子阱的光致晶体管及其制备方法

Country Status (1)

Country Link
CN (1) CN105633194B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106653896B (zh) * 2017-01-04 2018-05-18 广东省半导体产业技术研究院 一种用于可见光通信的InGaN量子点光电探测器及其制备方法
CN107169564B (zh) * 2017-03-28 2020-07-03 南京邮电大学 一种记忆增强及认知识别神经元的类脑器件及其制备方法
CN107195708A (zh) * 2017-03-31 2017-09-22 南京邮电大学 一种基于光致晶体管的双模式类脑神经元芯片
CN107369737B (zh) * 2017-06-30 2019-01-18 上海集成电路研发中心有限公司 一种光敏器件及其制备方法
CN114975649A (zh) * 2022-05-11 2022-08-30 南京邮电大学 用于环境感知的硅衬底氮化镓光子集成芯片及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1677683A (zh) * 2005-04-27 2005-10-05 中国科学院上海技术物理研究所 紫外双波段氮化镓探测器
CN102583215A (zh) * 2011-12-26 2012-07-18 南京邮电大学 基于硅衬底氮化物的悬空纳米光子器件及其制备方法
CN103633203A (zh) * 2013-05-08 2014-03-12 南京邮电大学 悬空氮化物薄膜led器件及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030034491A1 (en) * 2001-08-14 2003-02-20 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices for detecting an object
US6878975B2 (en) * 2002-02-08 2005-04-12 Agilent Technologies, Inc. Polarization field enhanced tunnel structures
CN103779452B (zh) * 2014-01-21 2016-10-05 南京邮电大学 悬空氮化物薄膜led器件及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1677683A (zh) * 2005-04-27 2005-10-05 中国科学院上海技术物理研究所 紫外双波段氮化镓探测器
CN102583215A (zh) * 2011-12-26 2012-07-18 南京邮电大学 基于硅衬底氮化物的悬空纳米光子器件及其制备方法
CN103633203A (zh) * 2013-05-08 2014-03-12 南京邮电大学 悬空氮化物薄膜led器件及其制备方法

Also Published As

Publication number Publication date
CN105633194A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
US10514500B2 (en) Device integrating suspended LED, optical waveguide and photoelectric detector on same chip, and fabrication method thereof
CN105633194B (zh) 基于悬空p‑n结量子阱的光致晶体管及其制备方法
US10386574B2 (en) Integrated photonic device comprising hollowed silicon substrate-based LED and optical waveguide and manufacturing method thereof
CN107104119B (zh) 硅衬底悬空led直波导耦合集成光子器件及其制备方法
US10008645B2 (en) Integrated colour LED micro-display
CN103650171B (zh) 将半导体装置结合到支持衬底的方法
CN107195690A (zh) 基于p‑n结量子阱二极管器件的全双工通信芯片及制备方法
Shi et al. Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics
CN105742383B (zh) 悬空p‑n结量子阱器件和光波导单片集成系统及其制备方法
TW201006015A (en) A light emitting element, a light emitting device, a method of manufacturing a light emitting element and a method of manufacturing a light emitting device
CN109417082A (zh) 半导体器件以及包括半导体器件的显示装置
CN103650266A (zh) 包含电和光学互连的半导体晶片接合
CN107482031B (zh) GaN基微米级LED阵列及其制备方法
CN107195733B (zh) 基于机械剥离的毫米级可转移led器件及其制备方法
Yang et al. Multi-dimensional spatial light communication made with on-chip InGaN photonic integration
TWI246786B (en) Substrate-free flip chip light emitting diode and manufacturing method thereof
US20110001155A1 (en) Light-emitting device and manufacturing method thereof
Qin et al. Transferrable monolithic multicomponent system for near-ultraviolet optoelectronics
US20130023074A1 (en) Using isolated epitaxial structures in glue bonding for multiple group-iii nitride leds on a single substrate
CN107086198B (zh) 将衬底接合到半导体发光器件的方法
CN110600990B (zh) 一种基于柔性衬底的GaN基激光器与HEMT的器件转移制备方法
US20130020582A1 (en) Rapid fabrication methods for forming nitride based semiconductors based on freestanding nitride growth substrates
Yuan et al. 286 nm monolithic multicomponent system
US20130023073A1 (en) Using non-isolated epitaxial structures in glue bonding for multiple group-iii nitride leds on a single substrate
CN109524516A (zh) 基于机械剥离的可转移逻辑芯片及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant