TWI246786B - Substrate-free flip chip light emitting diode and manufacturing method thereof - Google Patents

Substrate-free flip chip light emitting diode and manufacturing method thereof Download PDF

Info

Publication number
TWI246786B
TWI246786B TW094114854A TW94114854A TWI246786B TW I246786 B TWI246786 B TW I246786B TW 094114854 A TW094114854 A TW 094114854A TW 94114854 A TW94114854 A TW 94114854A TW I246786 B TWI246786 B TW I246786B
Authority
TW
Taiwan
Prior art keywords
light
layer
emitting diode
substrate
electrode
Prior art date
Application number
TW094114854A
Other languages
Chinese (zh)
Other versions
TW200640032A (en
Inventor
Ching-Chung Chen
Original Assignee
Chunghwa Picture Tubes Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chunghwa Picture Tubes Ltd filed Critical Chunghwa Picture Tubes Ltd
Priority to TW094114854A priority Critical patent/TWI246786B/en
Application granted granted Critical
Publication of TWI246786B publication Critical patent/TWI246786B/en
Priority to DE102006019373A priority patent/DE102006019373A1/en
Priority to GB0608131A priority patent/GB2426123B/en
Priority to GB0708932A priority patent/GB2437848B/en
Priority to FR0651612A priority patent/FR2885455A1/en
Publication of TW200640032A publication Critical patent/TW200640032A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

A substrate-free LED device is provided. The LED device comprises a substrate, an epitaxial layer disposed on the substrate, a first electrode disposed on a portion of the epitaxial layer, a second electrode disposed on another portion of the epitaxial layer, and a protection layer, disposed over the epitaxial layer. It is noted that in the LED device, the substrate comprises, for example but not limited to, high heat-sink substrate, and the protection layer comprises, for example but not limited to, high heat-sink, high transparent material.

Description

1246786 13245twf.doc/g 九、發明說明: 【發明所屬之技術領域] 本發明是有關於一種發光二極體及其製造方法,且特 別是有關於一種無基板之覆晶式發光二極體及其製造方 法。 【先前技術】 發光二極體(Light emitting diode, LED)已經是廣泛 用作發光裝置的半導體元件。發光二極體的發光晶片通常 由二-五族化合物之半導體所組成,例如填化鎵(Gap)、 砷化鎵(GaAs)或氮化鎵(GaN)。發光二極體的發光原 理是將電能轉換為光能,此轉換方式是藉由施加電流於此 化合物之半導體而產生電子與電洞來完成。接著,額外的 能量經由電子與電洞的結合而釋放出來,因此發光二極體 能夠發光。一般而言,發光二極體具有反應速度快(一般 約為1(Γ9秒之間)、單色性佳、體積小、低耗電量、低污 染(無汞含量)、可靠度高以及製程上適於量產等優點。 因此,發光二極體的應用非常廣泛,例如包括交通燈號、 大體積的顯示面板以及許多可攜式電子裝置的顯示介面等 等0 原則上,發光二極體的基本結構包括一 Ρ型與一 Ν型 之三-五族化合物的蟲晶層(epitaxy layer)以及介於兩層 之間的一發光層(light emitting layer)。發光二極體裝置 的發光效率是依賴於發光層之内部量子效率(internal quantum efficiency )與此裝置的光取出效率(light 5 1246786 13245twf.doc/g extraction efficiency )。大體上,增加内部量子效率的方法 包括改善發光層的品質與結構設計。大體上,增加光取出 效率的方法包括減少發光層所發射的光由於發光二極體内 部的反射而被吸收所造成的光損失。 傳統上,許多不同種類的發光二極體的結構與製造方 法已被發展出來。在此’以美國弟6,462,358號專利所揭 露之發光二極體的結構與製造方法為例說明之。圖1A至 圖1B繪示習知之一種發光二極體裝置之製造過程的剖面 不思圖。睛參考圖1A ’蟲晶結構1〇〇包括一 'N型石申化蘇1246786 13245twf.doc/g IX. Description of the Invention: [Technical Field] The present invention relates to a light-emitting diode and a method of manufacturing the same, and more particularly to a flip-chip light-emitting diode without a substrate and Its manufacturing method. [Prior Art] A light emitting diode (LED) has been widely used as a semiconductor element of a light-emitting device. The light-emitting diode of the light-emitting diode is usually composed of a semiconductor of a two-five compound, such as gallium (Gap), gallium arsenide (GaAs) or gallium nitride (GaN). The principle of illumination of a light-emitting diode is to convert electrical energy into light energy, which is accomplished by applying a current to the semiconductor of the compound to create electrons and holes. Then, the extra energy is released through the combination of electrons and holes, so that the light-emitting diode can emit light. In general, light-emitting diodes have a fast reaction speed (generally about 1 (Γ9 seconds), good monochromaticity, small volume, low power consumption, low pollution (no mercury content), high reliability, and process Therefore, it is suitable for mass production, etc. Therefore, the application of the light-emitting diode is very wide, for example, including a traffic light, a large-sized display panel, and a display interface of many portable electronic devices, etc. In principle, the light-emitting diode The basic structure includes an epitaxy layer of a Ρ-type and a Ν-type tri-five compound and a light emitting layer between the two layers. Luminous efficiency of the light-emitting diode device It depends on the internal quantum efficiency of the luminescent layer and the light extraction efficiency of the device (light 5 1246786 13245 twf.doc/g extraction efficiency). In general, the method of increasing the internal quantum efficiency includes improving the quality of the luminescent layer and Structural design. In general, the method of increasing the light extraction efficiency includes reducing the light loss caused by the light emitted by the light-emitting layer being absorbed by the reflection inside the light-emitting diode. Traditionally, the structure and manufacturing method of many different types of light-emitting diodes have been developed. The structure and manufacturing method of the light-emitting diode disclosed in U.S. Patent No. 6,462,358 is hereby incorporated by reference. 1B is a cross-sectional view showing a manufacturing process of a conventional light-emitting diode device. The eye is referenced to FIG. 1A. 'The insect crystal structure 1' includes an 'N-type stone Shenhuasu.

基板 102、一|虫刻終止層(etching stop layer) 104、一 N 型磷化鋁鎵銦(AlxGaq) 〇·5Ιη〇·5Ρ之下包覆層(i〇wer cladding layer) 106(0.5^^1.0)、一磷化鋁鎵銦(AlxGai x) ο·5ΐη〇·5Ρ 之主動層(active layer) 108 (〇Sxs〇.45)、一 p 型石粦化銘鎵銦(AlxGa^x ) 〇 JnojP之上包覆層11〇 (0·5<χ<1·0)、一 ρ型遙晶層ιΐ2與多個ρ型歐姆接點U4a 與 114b。 接著,α月參考圖1B,一透光黏接層(tranSparent adhesive layer) 122與一透明基板124形成於p型磊晶層 112之上並且覆蓋p型歐姆接點114&與U4b。此透明基板 124藉由加壓與加熱透光黏接層122於攝氏25〇度左右一 段時間,而連接至P型歐姆接點114&與U4b以及磊晶層 112。透光黏接層122由熱固性樹脂苯基環丁烯樹脂 (B-staged bisbenzocydobutene,BCB)或其他透光黏接材 料’例如環氧樹脂(epoxy),所組成。透明基板124包括 6 1246786 13245twf.d〇c/g =土板或非晶質基板,例如藍f石(哪此)基板、玻 =反;:化鎵基板、磷化石申鎵(GaAsP)基板、硒化鋅 其& 土板、琉化鋅(ZnS)基板、砸化鋅硫(znsse) 基板或呶化矽(Sic)基板。The substrate 102, an etching stop layer 104, an N-type aluminum gallium indium arsenide (AlxGaq) 〇·5Ιη〇·5Ρ under the cladding layer (i〇wer cladding layer) 106 (0.5^^ 1.0), aluminum gallium indium phosphide (AlxGai x) ο·5ΐη〇·5Ρ active layer 108 (〇Sxs〇.45), a p-type 粦 粦 铭 镓 镓 镓 镓 (AlxGa^x ) 〇 The JnojP has a cladding layer 11 0 (0·5 < χ <1·0), a ρ-type crystal layer ι 2 and a plurality of p-type ohmic contacts U4a and 114b. Next, referring to FIG. 1B, a transparent adhesive layer 122 and a transparent substrate 124 are formed over the p-type epitaxial layer 112 and cover the p-type ohmic contacts 114 & and U4b. The transparent substrate 124 is connected to the P-type ohmic contacts 114 & and U4b and the epitaxial layer 112 by pressurizing and heating the light-transmitting adhesive layer 122 at a temperature of about 25 degrees Celsius for a period of time. The light-transmitting adhesive layer 122 is composed of a B-staged bisbenzocy dobutene (BCB) or other light-transmitting adhesive material such as epoxy. The transparent substrate 124 includes 6 1246786 13245 twf.d〇c/g = earth plate or amorphous substrate, such as blue f stone (which) substrate, glass = reverse; gallium substrate, phosphide gallium (GaAsP) substrate, Zinc selenide, a soil plate, a zinc telluride (ZnS) substrate, a zinc antimonide zinc (znsse) substrate or a germanium telluride (Sic) substrate.

然後H具有雜性之綱舰職板搬。如 終止層104的組成成分為光吸收材料,例如磷化銦 叙或坤化_ (A1GaAs),職刻終止層⑽必須藉由上 ,相同的_,以腐細完全去除。接著請參考圖ΐβ, 部分下包覆層1〇6、主動層108與上包覆層11〇藉由乾式 钱刻或濕式_製料以移除,使得部分蟲晶層m暴露 於外。接下來,將暴露於外的磊晶層112的較低部分移除, 以形成一通迢132,其暴露出p型歐姆接點n4b。再來, 斤N型歐姆接點134形成於下包覆層1〇6之上。之後,一 第一金屬打線層(metal bonding layer) 136形成於磊晶層 2之上,並且通道132被銅或|g所填滿,以形成連接p 型歐姆接點114b的一電極通道132。接著,一第二金屬打 線層138形成於N型歐姆接點134之上。最後,一發光二 極體蟲晶結構15〇即可形成。 、 根據上述,在習知發光二極體裝置的製造過程中,因 為黏接層122和基板124必須為透光,所以上述黏接層i22 基板124之材料的散熱效率eff]ciency)非常 差。因此,習知發光二極體裝置的壽命並不長。此外,具 有較仏光牙透率之基板的價格高昂,例如藍寶石。然而, 如果使用一具有較差光穿透率的基板,價格或許可以降 7 1246786 13245twf.doc/g 低,但是習知發光二極體裝置的發光效率也會跟著降低。 另外,為了促進習知發光二極體裝置之光穿透率,透明某 板124的表面必須經過拋光處理,而此製程更為複雜而^ 使得產量降低。 _ ” 【發明内容】Then H has a hybrid board of the ship. If the composition of the termination layer 104 is a light absorbing material, such as indium phosphide or quinone (A1GaAs), the termination layer (10) must be completely removed by sacrificial by the same _. Next, referring to Figure ΐβ, part of the lower cladding layer 〇6, the active layer 108 and the upper cladding layer 11 are removed by dry-cut or wet-type materials, so that part of the insect layer m is exposed. Next, the lower portion of the exposed epitaxial layer 112 is removed to form a via 132 that exposes the p-type ohmic junction n4b. Further, a pound N-type ohmic contact 134 is formed on the lower cladding layer 1〇6. Thereafter, a first metal bonding layer 136 is formed over the epitaxial layer 2, and the via 132 is filled with copper or |g to form an electrode via 132 connecting the p-type ohmic contact 114b. Next, a second metal wiring layer 138 is formed over the N-type ohmic contact 134. Finally, a light-emitting diode crystal structure of 15 〇 can be formed. According to the above, in the manufacturing process of the conventional light-emitting diode device, since the adhesive layer 122 and the substrate 124 must be transparent, the heat dissipation efficiency eff]ciency of the material of the adhesive layer i22 is extremely poor. Therefore, the life of the conventional light-emitting diode device is not long. In addition, substrates having a higher light transmittance are expensive, such as sapphire. However, if a substrate having poor light transmittance is used, the price may be lowered by 7 1246786 13245 twf.doc/g, but the luminous efficiency of the conventional light-emitting diode device is also lowered. In addition, in order to promote the light transmittance of the conventional light-emitting diode device, the surface of the transparent plate 124 must be polished, and the process is more complicated and the yield is lowered. _ ” [Summary of the Invention]

有鑑於此,本發明的目的就是在提供一血美 二極體裝纽其製造紐,其巾此㈣二極^置不^要 傳統透明基板。因此,本發明之發光二極體裝置的成本 降低,散熱效率提升並且簡化發光二極體裝置的製造過程。 基於上述目的或其他目的,本發明提出一種發光二極 體的製造方法,包括下列步驟。首先,提供一第一基板並 且形成-蟲晶層於第-基板上。其次,形成—接合基板於 磊,層上,且磊晶層與接合基板之間藉由一黏接層黏接。 接著,移除第-基板。再來,形成一第一電極於蟲晶層上。 移除部分蟲晶層’以形成—移除後之蟲晶層。形成一第二 除後Μ晶層h然後’形成-第二基板於第I 電極與第二基板之上。移除接合基板與賴層,以 一保護層於磊晶層上。 取 依照本發明的較佳實施例所述,上述之第—基板例如 包括砷化鎵、氧化鋁或碳化矽基板。 依照本發明的較佳實施例所述,上述之蟲晶層之材料 ^ ^括化合物之半導體(例如氮化鎵、珅化鎵或氮 化銦)、三元化合物之半導體(例如珅她鎵)或是四 化合物之半導體(例如磷化IS鎵銦,AlInGaP)。 1246786 】3245twf.doc/g 勺括=本T】的較佳實施例所述,上述之接合基板例如 包括玻璃、矽基板或氧化鋁(αι2ο3)基板。 依照本發明的較佳實施例所述,上述之 乾式飯刻製程或濕式餘刻製程而移除。 ^ 交佳實施例所述,上述之移除後之磊晶 i -於蟲晶層之一電流分佈層的厚度,以及 弟一電極連接至磊晶層之電流分佈層。 鲁 (疋ρ ϋ -電極例如包括Ν型歐姆接觸電極 電極例如包括ρ型歐姆接觸電極。 如是::本= 較佳實施例所述,上述之電流分佈層例 疋m極例如包括Ρ魏姆接觸電極以及 電極例如包括N型歐姆接觸電極。 依照本發明的較佳實施例所述,上 總厚度例如是相同於第二電極崎^ 依照本發明的較佳實施例所述,上述之第 包括高散熱性基板,其材質例如包細或喊。土 ° 今’上紅倾層包括高 放心性且问透光性基板,其材 恤邮祕ecarbQn,DLC)、二氧化⑽鑽= 矽(SiNx)。 :¾乳化 基於上述目的或其他目的,本發明提 體的製造方法,其包括下列步驟。首先,提供-第反 9 1246786 13245twf.doc/g 形成一;^&曰曰層於弟一基板上。其次,形成一第一電極於磊 晶層上。移除部分磊晶層,以形成一移除後之磊晶層。接 著,形成一第二電極於移除後之磊晶層上。形成一第二基 板於第一電極與第二基板之上。移除第一基板以及形成一 保護層於磊晶層上。 健、本發明的較佳實關所述,上述之第—基板例如 • 包括砷化鎵、氧化鋁或碳化矽基板。 • γ &照本發明的較佳實施例所述,上述之蟲晶層的材料 列如包括一元化合物之半導體(例如氮化録、神化錄或 化銦)、,元化合物之半導體(例如砷化鋁鎵)或是四^ 化合物之半導體(例如磷化紹鎵銦)。 的較佳實施例所述,上述之第-基板經由 乾式蝕刻製程或濕式蝕刻製程而移除。 依照本發明的較佳實施例所述,上述之石曰 層=剩下的厚度小於蟲晶層之一電厚= 電極連接至蟲晶層之電流分佈層。叫度以及弟 依照本發明的較佳實施例所述,上㈣ 1°是ρ型、第—電極例如包括Ν型歐姆接觸例 電極例如包括P型歐姆接觸電極/姆_电細及弟二 如是^型本實^所述’上述之電流分佈層例 電極例如包歐姆接觸電極以及第二 依照本發明的較佳實施例所述 曰曰層的她屋声々,丨Λ i <之弟一電極與蟲 尽度例如疋相同於第二電極與移除後之蟲晶層的 10 1246786 13245twf.doc/g 總厚度。 ^照本發明的触實施綱述,上述之第二基板例如 包括南散熱性基板,其材質例如包紗或陶究。 一依照本發_較佳實施綱述,上述之健層例如包 括南散熱性且高透光性基板,其材質例如包括類鑽石碳 (DLC)、二氧化矽或氮化矽。 基於上述目的或其他目的,本發明提出-種發光二極 =置:其包括-基板、配置於基板上之_^層、配置 二匕Γθ層上之—第—電極、配置於▲晶層、之另-部份 、、J:! 一 Ϊ極以及配置於磊晶層之上的-保護層。值得 义崎光二極體裝置中,上述基板例如包括高 ^基板’而健層例如包括高散熱性且高透光性之材 依照本發明的較佳實施例所述,上述之蟲晶 ϋΓί括二元化合物之半導體(例如氮化鎵、較鎵或ΐ ,,因)、二7L化合物之半導體(例 : 化合物之半導體(例如概_銦)。m疋四π 依照本發_較佳實施酬述,上述Μ晶 部份的厚度小於磊晶層<一#4 9 〜 極連接至Μ層佈層的厚度,而第二電 如齡佈層μ 疋^%極例如包括Ν型歐姆接觸電極以及 电極例如包括Ρ型歐姆接觸電極。 、 依照本發明的較佳實施例所述,上述之電流分佈層例 11 1246786 13245twf.doc/g t是N型、第-電極例如包括p型歐姆接觸電極以及第二 黾極例如包括N型歐姆接觸電極。 依照本發明的較佳實施例所述,上述之第一電極與部 分蠢晶層的總厚度例如是相同於第二電極與蟲晶層之另一 部份的總厚度。 1¾本發明的錄實施酬述,上述 板的材質例如包括矽或陶瓷。 门欣…I /土 …依照本發明的較佳實施例所述,上述之高散熱性且高 透光性基板的材質例如包括類鑽石碳(DLC)、二氧化石夕 或氮化石夕。 基於上述,在本發明的發光二極體裝置中,因為習知 發光二極體的基板已被配置於蟲晶層另一側之高散熱性基 板所取代,所以散熱效率已被提升且發光二極體裝置的結 構強度仍可維持。此外,由於提供一高散熱性且高透光性 的保護層,所以發光二極體之表面具有絕佳的光穿透率, 並且發光二極體也具有絕佳的發光效率。另外,本發明之 • f光二極體裝置的表面不需經過拋光處理。因此,本發明 hi、咼叙光效率、南散熱效率、低成本、製造過程簡化、 以及高產量的發光二極體裝置及其製造方法。 為讓本务明之上述和其他目的、特徵和優點能更明顯 易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說 明如下。 【實施方式】 在此,藉由參考繪示本發明之較佳實施例的相關圖 12 1246786 13245twf.d〇c/g 式’我們將對於本發明作更為詳細說明。雖然本發明能夠 以"午多不同形式的實施例在此具體說明,但是本發明不應 理解為限定於以下將被提及的實施例 。確切地說,這些實 施例是作為完整與完全地揭露本發明之用,並且充分地傳 ,本發明之範圍給任何熟習此技藝者。在此必須提及的 疋以下的説明中相同的號碼指稱相同的元件。 圖2A至圖2G繪示本發明一較佳實施例之一種發光二 極體I置之製造過程的剖面示意圖。請參考圖2A,首先, 提供一第一基板202。在本發明之一實施例中',第一基板 202 =如包括砷化鎵基板、氧化鋁基板或碳化矽基板。此 外,第一基板202例如為透光或非透光。接著,一磊晶層 =4形成於第一基板202之上。在本發明之一實施例中, 『曰曰層204例如包括兩元化合物之半導體(例如氮化鎵、 申化鎵、氮化銦)、三元化合物之半導體(例如坤化銘録) 或四元化合物之半導體(例如磷化鋁鎵銦)。 接著,請苓考圖2B,例如使用一熱壓合製程將一接合 基板206藉由一黏接層208而配置於磊晶層204之上。在 本發明之一實施例中,熱壓合製程的溫度範圍可例如在攝 氏200度至攝氏250度之間。接合基板2〇6例如包括玻璃 基板石夕基板或氧化鋁基板。值得注意的是,接合基板 /、疋作為支持遙晶層204和第一基板202,以避免損傷或 皮、之用。因此,接合基板2〇6和黏接層208將在後續製 程的步驟中被移除。所以,接合基板2〇6和黏接層2〇8 ^ 例如包括低成本之透光或非透光材料。然而,在習知發光 13 1246786 13245twf.doc/g 置t,接合基板2G6和黏接層施必須是透光且 ^後η月茶考圖2C’第—基板2〇2例如以使用 t#(exc^lae^ ΐ二多i ,請參考圖2D,—電極212形成於 初曰曰詹204之上。再來,例如以姓刻製程將部分蟲晶層綱 移除’因此形成-移除後之蟲晶層肌。值得注意^是, 如同圖2D靖示’移除後之蟲晶層鳥所剩下的厚产小 於蟲晶層204之電流分佈層21()的厚度。然後,有另^ Ϊ 2二形Ϊ於移除後之磊晶層2〇4&之上,並且連接至磊晶 ^ 之电流分佈層210。在本發明之一實施例中,電流 分佈層2K)是P獅型,且電極212包括N费型歐姆 接觸電極,而電極214則包括p型他型歐姆接觸電極。因 此,兩電極212和214配置於磊晶層2〇4的同一側上。在 本考X明之另一貫施例中,電極212和蟲晶層204的總厚度 相近或,等於電極2丨4和移除後之磊晶層2〇4&的總厚度。 接著,睛參考圖2E,電極212和214黏接至一第二基 板216上。第二基板216例如包括高散熱性基板。高散熱 性矽基板的材質包括矽或陶瓷。請參考圖2F,接合基板 206和黏接層208例如藉由钮刻製程而被移除。接著,請 芩考圖2F,一保護層218例如經由沈積製程而形成於磊晶 層204之上。保護層218例如包括由類鑽石碳、二氧化矽 或氮化矽所組成之高散熱性且高透光性的材質。然後,整 個第二基板216被切割並且分為多個覆晶式發光二極體晶 14 1246786 13245twf.doc/g 片220。基於上述,由於發光層只被高散熱性且高透光性 的保護層218所包覆,所以發光二極體晶片22〇具有較佳 的發光效率以及高散熱效率。此外,由於習知發光二機體 曰曰片之基板被咼政熱性之第二基板216所取代,因此發光 二極體晶片220的結構強度仍可維持。在本發明之一實施 例中,發光二極體晶片220和圖2A至圖2G所繪示的製造 過程例如是作為三元/四元化合物之半導體的紅光/黃光發 光二極體裝置。 在此,提供本發明之一種發光二極體晶片'與裝置之製 造方式的另一實施例。圖3A至圖3E繪示本發明另一較佳 貫施例之一種發光二極體裝置之製造過程的剖面示意圖。 ,參考圖3A,首先,提供一第一基板3〇2。在本發明之一 貫施例中,第一基板302例如包括砷化鎵基板,氧化鋁基 板或碳^矽基板。此外,第一基板3〇2例如為透光或非透 光。接著,一磊晶層304形成於第一基板302之上。在本 毛月之貝知例中,蟲晶層304例如包括兩元化合物之半 導體(例如氮化鎵,绅化鎵,氮化銦)、三元化合物之半 導體(例如坤化_)或四元化合物之半導體(例如磷化 鋁鎵銦)。 然後,請參考圖3B,一電極312形成於磊晶層3〇4 之上。再來,例如以蝕刻製程將部分磊晶層304移除,因 而=成一移除後之磊晶層304a。值得注意的是,如同圖3β 所、%不,移除後之磊晶層3〇4a所剩下的厚度小於磊晶層 3〇4之電流分佈層31〇的厚度。因此,有另一電極314形 15 I246786 ^ 3245twf.doc/g 成於移除後之蟲晶層304a之上,並且連接至蟲B展3〇 之電流分佈層310。在本發明之一實施例中,電流^佈層 310是P型/N型,且電極312包括N型/p型歐姆接觸電極= 而電極314則包括P型/N型歐姆接觸電極。因此,兩電極 12和314配置於遙晶層304的同一侧上。在本發明之另 —貫施例中,電極312和磊晶層3〇4的總厚度相近或相等 於黾極314和移除後之蟲晶層3〇4a的總厚度。 丨接著,明參考圖3C,電極312和314黏著於一第二基 板316。第二基板316例如包括高散熱性基板。高散熱性 矽基板的材質包括矽或陶瓷。然後,請參考圖3D,第一基 ,302例如以使用準分子雷射(exdmer丨北灯)的乾式蝕^ 製程而被移除或以濕式蝕刻製程而被移除。接著,請參考 圖3E,一保濩層318例如經由沈積製程而形成於磊晶層 ^04之上。保瘦層318例如包括由類鑽石碳、二氧化矽或 ^化矽所組成之高散熱性且高透光性的材質。然後,整個 第二基板316被切割並且分為多個覆晶式發光二極體晶片 320。由於發光層只被高散熱性且高透光性的保護層318 所,因此發光二極體晶片32〇具有較佳的發光效率以 ,,散熱效=。此外,由於習知發光二機體晶片之基板被 阿散熱性之第二基板316所取代,因此發光二極體晶片320 的結構強度仍可維持。在本發明之一實施例中,發光二極 體晶片320和圖3A至圖3E所繪示的製造過程例如是用於 二=化合物之半導體(例如氮化鎵)的發光二極體,或例 如疋含氮化物之半導體的發光二極體,用以發出藍光或綠 16 1246786 13245twf.doc/g 光0 在本發明之一實施例中,磊晶層3〇4的厚度可介於約 100奈米至約150奈米的範圍之間,並且其厚度可隨著磊 晶層304材料的不同而有所變化。此外,磊晶層3〇4的厚 度也可隨著其相應的彩色濾光片(color filter)而有所^ 化,例如k供紅光之遙晶層304的厚度也許和提供綠光之 磊晶層的厚度有所不同。移除後之磊晶層3〇4a的厚度可介 於約30奈米至約50奈米的範圍之間,且電極312的厚度 可介於約100奈米至約200奈米的範圍之間,'而電極314 的厚度可介於約100奈米至約2〇〇奈米的範圍之間。 在此,將以圖2G或圖3E對於本發明之一發光二極體 衣置作一說明。请參考圖2G與圖3E,發光二極體裝置 220/320例如包括基板216/316、磊晶層2〇4/3〇4、電極 212/312與214/314、以及保護層218/318。值得注意的是, 基板216/316例如包括高散熱性基板,而保護層218/318 例如包括高散熱性與高透光性的基板。至於發光二極體裝 置220/320的外型輪廓與性質已於上述的實施例中加以說 明,於此不再贅述。 基於上述,在本發明的發光二極體裝置中,由於習知 發光二極體的基板已被配置於磊晶層另一側之高散熱性基 板所代替,因此散熱效率已被提升且發光二極體的結構強 度仍可維持。此外,由於提供一高散熱性且高透光性的保 護層’因此發光二極體之表面具有較佳的光穿透率,並且 發光二極體裝置也具有較佳的發光效率。另外,本發明之 17In view of the above, the object of the present invention is to provide a blood-semiconductor diode package to manufacture a button, and the (4) two-pole device does not require a conventional transparent substrate. Therefore, the cost of the light-emitting diode device of the present invention is lowered, the heat dissipation efficiency is improved, and the manufacturing process of the light-emitting diode device is simplified. Based on the above objects or other objects, the present invention provides a method of manufacturing a light-emitting diode comprising the following steps. First, a first substrate is provided and a worm layer is formed on the first substrate. Next, the bonding substrate is formed on the layer, and the epitaxial layer and the bonding substrate are bonded by an adhesive layer. Next, the first substrate is removed. Then, a first electrode is formed on the insect layer. Part of the worm layer is removed to form a removed worm layer. A second post-deuteration layer h is formed and then a second substrate is formed over the first electrode and the second substrate. The bonding substrate and the germanium layer are removed to form a protective layer on the epitaxial layer. According to a preferred embodiment of the present invention, the first substrate includes, for example, a gallium arsenide, aluminum oxide or tantalum carbide substrate. According to a preferred embodiment of the present invention, the material of the above-mentioned insect layer is a semiconductor of a compound (for example, gallium nitride, gallium antimonide or indium nitride), a semiconductor of a ternary compound (for example, germanium gallium). Or a semiconductor of a four compound (such as phosphatized IS gallium indium, AlInGaP). 1246786] 3245 twf.doc/g Spikes = The preferred embodiment of the present invention, wherein the bonded substrate comprises, for example, a glass, a germanium substrate or an alumina (αι2ο3) substrate. In accordance with a preferred embodiment of the present invention, the dry rice engraving process or the wet remnant process is removed. ^ In the preferred embodiment, the above-mentioned removed epitaxial i - the thickness of one of the current distribution layers of the insect layer, and the electrode-connected to the current distribution layer of the epitaxial layer. Lu (疋ρ ϋ -electrode, for example, including a Ν-type ohmic contact electrode, for example, includes a p-type ohmic contact electrode. If it is:: This is a preferred embodiment, the above-described current distribution layer 疋m pole includes, for example, Ρ 姆 接触 contact The electrode and the electrode, for example, comprise an N-type ohmic contact electrode. According to a preferred embodiment of the invention, the total thickness is, for example, the same as the second electrode, according to a preferred embodiment of the invention, the above-mentioned The heat-dissipating substrate is made of, for example, a thin or shattered material. The earth's red layer includes a high-reliability and light-transmissive substrate, and its material is ecarbQn (DLC), and the second (10) diamond = 矽 (SiNx) . : 3⁄4 Emulsification A method of producing the extract of the present invention based on the above object or other objects, which comprises the following steps. First, provide - the first counter 9 1246786 13245twf.doc / g to form a ^ ^ ^ 曰曰 layer on the substrate. Next, a first electrode is formed on the epitaxial layer. A portion of the epitaxial layer is removed to form a removed epitaxial layer. Next, a second electrode is formed on the removed epitaxial layer. A second substrate is formed over the first electrode and the second substrate. The first substrate is removed and a protective layer is formed on the epitaxial layer. As described in the preferred embodiment of the present invention, the above-mentioned first substrate includes, for example, gallium arsenide, aluminum oxide or tantalum carbide substrate. • γ & According to a preferred embodiment of the present invention, the material layer of the above-mentioned worm layer is, for example, a semiconductor including a mono-compound (for example, nitriding, deuterated or indium), a semiconductor of a meta-compound (for example, arsenic) Aluminium gallium) or a semiconductor of a compound (such as phosphorus indium gallium). In a preferred embodiment, the first substrate is removed via a dry etching process or a wet etching process. In accordance with a preferred embodiment of the present invention, the sarcophagus layer described above = the remaining thickness is less than one of the thickness of the worm layer = the current distribution layer to which the electrode is attached to the worm layer. In accordance with a preferred embodiment of the present invention, the upper (four) 1° is a p-type, and the first electrode includes, for example, a Ν-type ohmic contact example electrode including, for example, a P-type ohmic contact electrode/m_electricity and a second The above-mentioned current distribution layer example electrode, such as an ohmic contact electrode, and a second embodiment of the sputum layer according to the preferred embodiment of the present invention, 丨Λi < The electrode and insect endurance, for example, 疋 is the same as the total thickness of the first electrode and the removed wormhole layer of 10 1246786 13245 twf.doc/g. According to the embodiment of the present invention, the second substrate includes, for example, a south heat-dissipating substrate made of, for example, a yarn or a ceramic. According to a preferred embodiment of the present invention, the above-mentioned layer includes, for example, a south heat-dissipating and highly translucent substrate made of, for example, diamond-like carbon (DLC), cerium oxide or tantalum nitride. Based on the above object or other objects, the present invention provides a light-emitting diode that includes a substrate, a layer disposed on the substrate, a first electrode disposed on the second θ layer, and a ▲ crystal layer. The other part, J:!, a drain and a protective layer placed on the epitaxial layer. In the Yisaki optical diode device, the substrate includes, for example, a high substrate, and the protective layer includes, for example, a material having high heat dissipation and high light transmittance. According to a preferred embodiment of the present invention, the above-mentioned insect crystals include a semiconductor of a compound (for example, gallium nitride, gallium or germanium, germanium), a semiconductor of two 7L compounds (for example, a semiconductor of a compound (for example, indium). m疋四π according to the present invention The thickness of the above-mentioned twin portion is smaller than the thickness of the epitaxial layer < one #4 9 〜 is connected to the thickness of the Μ layer, and the second electric such as 龄 % % % % 例如The electrode includes, for example, a Ρ-type ohmic contact electrode. According to a preferred embodiment of the present invention, the current distribution layer example 11 1246786 13245 twf.doc/gt is an N-type, and the first electrode includes, for example, a p-type ohmic contact electrode. The second drain includes, for example, an N-type ohmic contact electrode. According to a preferred embodiment of the present invention, the total thickness of the first electrode and the partial stray layer is, for example, the same as the second electrode and the other layer of the insect layer. The total thickness of the part. 13⁄4 The material of the above-mentioned board includes, for example, tantalum or ceramics. Door Xin...I/Soil... According to a preferred embodiment of the present invention, the material of the above-mentioned high heat dissipation and high light transmittance substrate includes, for example, Diamond-like carbon (DLC), silica dioxide or nitrite. Based on the above, in the light-emitting diode device of the present invention, since the substrate of the conventional light-emitting diode has been disposed on the other side of the crystal layer The heat-dissipating substrate is replaced, so the heat dissipation efficiency is improved and the structural strength of the light-emitting diode device can be maintained. Further, since a protective layer having high heat dissipation and high light transmittance is provided, the surface of the light-emitting diode is provided. It has excellent light transmittance, and the light-emitting diode also has excellent light-emitting efficiency. In addition, the surface of the f-light diode device of the present invention does not need to be polished. Therefore, the present invention hi, 咼叙光Efficiency, south heat dissipation efficiency, low cost, simplified manufacturing process, and high-yield light-emitting diode device and its manufacturing method. In order to make the above and other objects, features and advantages of the present invention more obvious and easy to understand, DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S) The following is a detailed description of the following embodiments. [Embodiment] Referring now to the drawings, FIG. 12 1246786 13245 twf.d〇c/ g will be described in more detail in the present invention. Although the invention can be specifically described herein in various embodiments, the invention should not be construed as limited to the embodiments which will be described below. Rather, these embodiments are intended to cover the invention as a complete and complete disclosure, and the scope of the invention is to be understood by those skilled in the art. 2A to 2G are schematic cross-sectional views showing a manufacturing process of a light-emitting diode I according to a preferred embodiment of the present invention. Referring to FIG. 2A, first, a first substrate 202 is provided. In an embodiment of the present invention, the first substrate 202 includes, for example, a gallium arsenide substrate, an aluminum oxide substrate, or a tantalum carbide substrate. Further, the first substrate 202 is, for example, light transmissive or non-transparent. Next, an epitaxial layer = 4 is formed on the first substrate 202. In one embodiment of the present invention, the germanium layer 204 includes, for example, a semiconductor of a binary compound (eg, gallium nitride, gallium nitride, indium nitride), a semiconductor of a ternary compound (eg, Kunming inscription) or four. A semiconductor of a compound (for example, aluminum gallium indium phosphide). Next, referring to FIG. 2B, a bonding substrate 206 is disposed on the epitaxial layer 204 by an adhesive layer 208, for example, using a thermal bonding process. In one embodiment of the invention, the temperature range of the thermocompression bonding process can be, for example, between 200 degrees Celsius and 250 degrees Celsius. The bonding substrate 2〇6 includes, for example, a glass substrate or an alumina substrate. It is worth noting that the bonding substrate /, 疋 serves as the supporting tele-crystal layer 204 and the first substrate 202 to avoid damage or skin. Therefore, the bonding substrate 2〇6 and the bonding layer 208 will be removed in the subsequent steps of the process. Therefore, the bonding substrate 2〇6 and the bonding layer 2〇8^ include, for example, a low-cost transparent or non-transmissive material. However, in the conventional illuminating 13 1246786 13245 twf.doc / g set t, the bonding substrate 2G6 and the adhesive layer must be light-transmitting and then the η月茶考图2C'---the substrate 2 〇 2, for example, using t# ( Exc^lae^ ΐ二多i, please refer to Figure 2D, the electrode 212 is formed on the first 曰曰 204 204. Then, for example, the part of the worm layer is removed by the last name process. The worm layer muscle. It is worth noting that, as shown in Fig. 2D, the remaining thickness of the removed worm layer is less than the thickness of the current distribution layer 21 () of the worm layer 204. Then, there is another ^ Ϊ 2 is formed on the removed epitaxial layer 2〇4& and is connected to the epitaxial current distribution layer 210. In one embodiment of the invention, the current distribution layer 2K) is a P-shi Type, and the electrode 212 includes an N-type ohmic contact electrode, and the electrode 214 includes a p-type ohmic contact electrode. Therefore, the two electrodes 212 and 214 are disposed on the same side of the epitaxial layer 2A4. In another embodiment of this test, the total thickness of the electrode 212 and the crystal layer 204 is similar or equal to the total thickness of the electrode 2丨4 and the removed epitaxial layer 2〇4& Next, referring to Fig. 2E, the electrodes 212 and 214 are bonded to a second substrate 216. The second substrate 216 includes, for example, a highly heat-dissipating substrate. The material of the high heat dissipation 矽 substrate includes tantalum or ceramic. Referring to FIG. 2F, the bonding substrate 206 and the bonding layer 208 are removed, for example, by a button engraving process. Next, referring to FIG. 2F, a protective layer 218 is formed over the epitaxial layer 204, for example, via a deposition process. The protective layer 218 includes, for example, a material having high heat dissipation and high light transmittance composed of diamond-like carbon, cerium oxide or tantalum nitride. Then, the entire second substrate 216 is cut and divided into a plurality of flip-chip light-emitting diode crystals 14 1246786 13245 twf.doc/g sheet 220. Based on the above, since the light-emitting layer is covered only by the protective layer 218 having high heat dissipation and high light transmittance, the light-emitting diode wafer 22 has better luminous efficiency and high heat dissipation efficiency. In addition, since the substrate of the conventional light-emitting diode is replaced by the second substrate 216 of the heat-receiving heat, the structural strength of the light-emitting diode wafer 220 can be maintained. In one embodiment of the present invention, the light-emitting diode wafer 220 and the fabrication process illustrated in Figures 2A through 2G are, for example, red/yellow light emitting diode devices as semiconductors of ternary/quaternary compounds. Here, another embodiment of a method of fabricating a light-emitting diode wafer and apparatus of the present invention is provided. 3A-3E are cross-sectional views showing the manufacturing process of a light emitting diode device according to another preferred embodiment of the present invention. Referring to FIG. 3A, first, a first substrate 3〇2 is provided. In one embodiment of the present invention, the first substrate 302 includes, for example, a gallium arsenide substrate, an alumina substrate or a carbon substrate. Further, the first substrate 3〇2 is, for example, light transmissive or non-transmissive. Next, an epitaxial layer 304 is formed over the first substrate 302. In the case of the present invention, the crystal layer 304 includes, for example, a semiconductor of a binary compound (for example, gallium nitride, gallium antimonide, indium nitride), a semiconductor of a ternary compound (for example, kunhua _) or quaternary. A semiconductor of a compound (eg, aluminum gallium indium phosphide). Then, referring to FIG. 3B, an electrode 312 is formed on the epitaxial layer 3〇4. Further, a portion of the epitaxial layer 304 is removed, for example, by an etching process, and thus becomes a removed epitaxial layer 304a. It is to be noted that, as shown in Fig. 3β and %, the thickness of the epitaxial layer 3〇4a after removal is smaller than the thickness of the current distribution layer 31〇 of the epitaxial layer 3〇4. Therefore, another electrode 314 15 I246786 ^ 3245 twf.doc/g is formed on the removed worm layer 304a and is connected to the current distribution layer 310 of the worm. In one embodiment of the invention, the current layer 310 is P-type/N-type, and the electrode 312 includes an N-type/p-type ohmic contact electrode = and the electrode 314 includes a P-type/N-type ohmic contact electrode. Therefore, the two electrodes 12 and 314 are disposed on the same side of the crystal layer 304. In another embodiment of the invention, the total thickness of the electrode 312 and the epitaxial layer 3〇4 is similar or equal to the total thickness of the drain 314 and the removed layer 3a 4a. Next, referring to Figure 3C, electrodes 312 and 314 are adhered to a second substrate 316. The second substrate 316 includes, for example, a highly heat-dissipating substrate. High heat dissipation The material of the ruthenium substrate includes tantalum or ceramic. Then, referring to Fig. 3D, the first substrate 302 is removed, for example, by a dry etching process using an excimer laser (exdmer), or removed by a wet etching process. Next, referring to FIG. 3E, a cap layer 318 is formed over the epitaxial layer ^04, for example, via a deposition process. The thin layer 318 includes, for example, a material having high heat dissipation and high light transmittance composed of diamond-like carbon, cerium oxide or cerium oxide. Then, the entire second substrate 316 is cut and divided into a plurality of flip-chip light emitting diode chips 320. Since the light-emitting layer is only provided by the protective layer 318 having high heat dissipation and high light transmittance, the light-emitting diode chip 32 has better light-emitting efficiency and heat dissipation effect=. In addition, since the substrate of the conventional light-emitting diode chip is replaced by the heat-dissipating second substrate 316, the structural strength of the light-emitting diode chip 320 can be maintained. In one embodiment of the present invention, the light emitting diode chip 320 and the manufacturing process illustrated in FIGS. 3A to 3E are, for example, light emitting diodes for a semiconductor of two = compound, such as gallium nitride, or for example A light-emitting diode of a nitride-containing semiconductor for emitting blue light or green light 16 1246786 13245 twf.doc/g light 0 In one embodiment of the invention, the thickness of the epitaxial layer 3 〇 4 may be between about 100 nm The range of meters to about 150 nanometers, and the thickness thereof may vary depending on the material of the epitaxial layer 304. In addition, the thickness of the epitaxial layer 3〇4 may also be varied with its corresponding color filter, for example, the thickness of the red crystal layer 304 for red light may provide a green light. The thickness of the crystal layer is different. The thickness of the epitaxial layer 3〇4a after removal may be between about 30 nm and about 50 nm, and the thickness of the electrode 312 may be between about 100 nm and about 200 nm. And the thickness of the electrode 314 may range between about 100 nanometers to about 2 nanometers. Here, a light-emitting diode garment of the present invention will be described with reference to Fig. 2G or Fig. 3E. Referring to FIG. 2G and FIG. 3E, the light emitting diode device 220/320 includes, for example, a substrate 216/316, an epitaxial layer 2〇4/3〇4, electrodes 212/312 and 214/314, and a protective layer 218/318. It is to be noted that the substrate 216/316 includes, for example, a highly heat-dissipating substrate, and the protective layer 218/318 includes, for example, a substrate having high heat dissipation and high light transmittance. The outline and properties of the LED device 220/320 have been described in the above embodiments and will not be described again. Based on the above, in the light-emitting diode device of the present invention, since the substrate of the conventional light-emitting diode has been replaced by the high heat-dissipating substrate disposed on the other side of the epitaxial layer, the heat dissipation efficiency has been improved and the light-emitting efficiency has been improved. The structural strength of the polar body is still maintained. Further, since a protective layer having high heat dissipation and high light transmittance is provided, the surface of the light-emitting diode has a better light transmittance, and the light-emitting diode device also has a preferable light-emitting efficiency. In addition, the present invention 17

1246786 13245twf.doc/g 电光一極體襄置的表面不需經過拋光處理。因此,本發明 提供一高發光效率、高散熱效率、低成本、製造過程簡化、 以及高產量的發光二極體裝置及其製造方法。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限^本發明,任何熟習此技藝者,在不脫離本發明之精 和範圍内,當可作些許之更動與潤飾,因此本發 : 範圍當視後附之申請專利範圍所界定者為準。 ”叹 【圖式簡單說明】 圖1Α至圖1Β繪示習知之一種發光二極體裝 & 過程的剖面示意圖。 衣& 圖2A至圖2G繪示本發明一較佳實施例之一種 極體裝置之製造過程的剖面示意圖。 '尤一 圖3A至圖3E繪示本發明另一較佳實施例之〜 —極體I置之製造過程的剖面示意圖。 【主要元件符號說明】 1 〇〇 ·县晶結構 102 : N型砷化鎵基板 104 ··蝕刻終止層 106 :下包覆層 108 :主動層 110 :上包覆層 112 · P型蟲晶層 114a、114b · P型歐姆接點 122 ·透光黏接層 18 1246786 13245twf.doc/g 124 :透明基板 132 :通道 134 : N型歐姆接點 138 :第二金屬打線層 15 0 :發光二極體蠢晶結構 202、302 :第一基板 204、304 :磊晶層 204a、304a :移除後之磊晶層 206 :接合基板 208 :黏接層 210、310 :電流分佈層 212、214、312、314 ··電極 216、316 :第二基板 218、318 :保護層 220、320 :覆晶式發光二極體晶片1246786 13245twf.doc/g The surface of the electro-optical pole device does not need to be polished. Accordingly, the present invention provides a light-emitting diode device having high luminous efficiency, high heat dissipation efficiency, low cost, simplified manufacturing process, and high yield, and a method of manufacturing the same. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and it is intended that the invention may be modified and modified without departing from the scope of the invention. Hair: The scope is subject to the definition of the patent application scope attached. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A to FIG. 1A are schematic cross-sectional views showing a conventional LED package process. FIG. 2A to FIG. 2G illustrate a pole according to a preferred embodiment of the present invention. FIG. 3A to FIG. 3E are schematic cross-sectional views showing a manufacturing process of a preferred embodiment of the present invention. [Main component symbol description] 1 〇〇 · County crystal structure 102: N-type gallium arsenide substrate 104 · · Etch stop layer 106 : Lower cladding layer 108 : Active layer 110 : Upper cladding layer 112 · P-type insect layer 114a , 114b · P-type ohmic junction 122 · Light-transmissive bonding layer 18 1246786 13245twf.doc / g 124 : Transparent substrate 132 : Channel 134 : N-type ohmic contact 138 : Second metal wiring layer 15 0 : Light-emitting diode stray structure 202 , 302 : a substrate 204, 304: epitaxial layer 204a, 304a: removed epitaxial layer 206: bonding substrate 208: bonding layer 210, 310: current distribution layer 212, 214, 312, 314 · electrodes 216, 316: Second substrate 218, 318: protective layer 220, 320: flip-chip light emitting diode chip

1919

Claims (1)

1246786 13245twf.doc/g 十、申請專利範圍: 1·一種發光二極體的製造方法,包括下列步驟·· 提供一第一基板; 形成一磊晶層於該第一基板上; 形成一接合基板於該磊晶層上,而該磊晶層與該接合 基板之間藉由一黏接層黏接; 移除該第一基板;1246786 13245twf.doc/g X. Patent application scope: 1. A method for manufacturing a light-emitting diode, comprising the steps of: providing a first substrate; forming an epitaxial layer on the first substrate; forming a bonding substrate On the epitaxial layer, the epitaxial layer and the bonding substrate are bonded by an adhesive layer; the first substrate is removed; law 法 法, 化銦 形成一第一電極於該磊晶層上; 移除部分該蟲晶層,以形成—移除後之蟲晶層; 形成一第二電極於該移除後之磊晶層上; 形成一第二基板於該第一電極與該第二基板之上; 移除該接合基板與該黏接層;以及 形成一保護層於該磊晶層上。 t申請專利翻第1項所述之發光二極體的製造方 :中:亥弟-基板包括砷化鎵、氧化鋁或碳化矽基板。 3盆U請專利範圍第i項所述之發光二極體的製造方 其中綠晶層之材質包括二元化合物之半導體。 專利乾圍第3項所述之發光二極體的製造方 了 d物之半導體包括氮化鎵、_化鎵或氮 法,1項所述之發光二極體的製造方 -中该猫日日層之材質包括三元化合物之半導體。 2申請專·㈣5 述 體 法’其中該三说合物之半導體包括坤化_ 20 1246786 13245twf.doc/g 、7.如中請專利範圍第}項所述之發光二極體的製造方 法’其中該蟲晶層之㈣包括四元化合物之半導體。 、8.如中請專利範圍第7項所述之發光二極體的製造万 法,其巾該四元化合物之半導體包括舰麟銦。 9.如申請專利範圍第丨項所述之 法’其愧接合魏包括朗、魏板或氧她基板。 1〇·如申請翻範圍第1項所述之發光二極體的製造a method, indium forming a first electrode on the epitaxial layer; removing a portion of the crystal layer to form a removed parasitic layer; forming a second electrode after the removed epitaxial layer Forming a second substrate on the first electrode and the second substrate; removing the bonding substrate and the bonding layer; and forming a protective layer on the epitaxial layer. The manufacturer of the light-emitting diode described in Item 1 is: The medium: the substrate is a substrate including gallium arsenide, aluminum oxide or tantalum carbide. 3 Basin U Please, in the manufacture of the light-emitting diode according to item i of the patent range, wherein the material of the green layer includes a semiconductor of a binary compound. The manufacture of the light-emitting diode according to the third paragraph of the patent circumscribing method includes a gallium nitride, a gallium arsenide or a nitrogen method, and a manufacturing method of the light-emitting diode described in the above--the cat day The material of the day layer includes a semiconductor of a ternary compound. 2Applications · (4) 5 The descriptive method 'The semiconductor of the three-representation includes Kunhua _ 20 1246786 13245twf.doc/g, 7. The method for manufacturing the light-emitting diode according to the scope of the patent scope' Wherein (4) of the worm layer comprises a semiconductor of a quaternary compound. 8. The method of manufacturing a light-emitting diode according to item 7 of the patent scope, wherein the semiconductor of the quaternary compound comprises a ship-indium. 9. The method of claim </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; 1〇·If you apply for the manufacture of the light-emitting diode described in item 1 j ’其中該第-基板經由乾式侧製程或 而移除。 /1.如申請專利範圍第〗項所述之發光二極體的製造 其中該移除後之蠢晶層所剩下的厚度小於該蟲晶層 L刀佈層的厚度,以及該第二電極連接至該蟲晶層 之该電流分佈層。 12·如申請專利範圍帛1項所述之發光二極體的製造 其中該電流分佈層是p型,該第—電極包括N型歐 ;觸私極,以及該第二電極包括P型歐姆接觸電極。 13·如申請專利範圍第1項所述之發光二極體的製造 其中該電流分佈収㈣,該第—電極包括p型歐 :觸電極,以及該第二電極包括N型歐姆接觸電極。 方去4·如申凊專利範圍第1項所述之發光二極體的製造 ,其中該第一電極與該磊晶層的總厚度相同於該第二 電極與該移除後之磊晶層的總厚度。 、15·如申凊專利範圍第1項所述之發光二極體的製造 套其中该第二基板包括高散熱性基板。 21 1246786 13245twf.doc/g 16. 如申請專利範圍第15項所述之發光二極體的製造 方法,其中该咼散熱性石夕基板的材質包括石夕或陶莞。 17. 如申請專利範圍第1項所述之發光二極體的製造 方法,其中該保護層包括高散熱性且高透光 美 、18·如申請專利範圍第17項所述之發光二極^的製造 方法,其中該南散熱性且高透光性基板的材質包括類鑽石 碳(diamond-like carbon,DLC)、二氧化矽(si〇2)或氮 化矽(SiNx)。 19. 種發光一極體的製造方法,包括下列步驟: 提供一第一基板; 形成一蟲晶層於該第一基板上; 形成一第一電極於該磊晶層上; 移除部分該磊晶層,以形成一移除後之磊晶層; 形成一第二電極於該移除後之磊晶層上; 形成一第二基板於該第一電極與該第二基板之上; 移除該第一基板;以及 形成一保護層於該磊晶層上。 20. 如申請專利範圍第19項所述之發光二極體的製造 方法,其中該第-基板包括神化鎵、氧化銘或碳化絲板。 、21.如申請專利範圍第19項所述之發光二極體的製造 方法,其中該蠢晶層之材質包括二元化合物之半導體。 22·=請專利範圍第21項所述之發光;體的製造 —70化合物之半導體包括氮化鎵、珅化鎵或 氮化銦。 22 1246786 13245twf.doc/g 23. 如申請專利範圍第19項所述之發光二極體的製造 方法,其中該遙晶層之材質包括三元化合物之半導體。 24. 如申明專利範圍第23項所述之發光二極體的製造 方法’其中該三元素化合物之轉體包括$化紹鎵。 - 、25.如申#專利範圍帛19項所述之發光二極體的製造 方法’其中該蟲晶層之材質包括四元化合物之半導體。 26.,申請專利範圍第25項所述之發光二極體的製造 • ,、中邊四7°化合物之半導體包括碟化銘鎵銦。 古、、I::月ί利範圍第19項所述之發光二極體的製造 而移除I、4第—基板經由乾式⑽製程或濕錢刻製程 28.如申請專利範圍第^項所 方法,其中該移除後之磊日 之-雷-八你二ί 所剩下的厚度小於該磊晶層 之該電流分佈層。 I亥弟一电極連接至該蟲晶層 _ 方、/92料·㈣19韻叙發光二極體的f造 姆接觸電極,以及該第一電丄:弟』%極包括N型歐 方、、/甘1 範圍第19項所述之發光二極體的制、告 / ,八中该電流分佈層,該 D衣1^ 姆接觸電極,以及哕筮-带此A1 私極匕括P型歐 _ μ弟—电極包括N型歐姆接觸雷柘 31·如申請專利範圍第19項所述之發 ° 〇 $法,其中該第—電極^二=製造 電極與該移除後之蟲晶層的總厚;。、厂子度相同於該第二 23 1246786 13245twf.doc/g 32·如申請專利範圍第19項所述之發光二極體的製造 方法’其中違帛二基板包括高散熱性基板。 33·如申請專利範圍第32項所述之發光二極體的製造 方法,其巾該高散紐絲板的材質包紗或陶竞。 34·如申請專利範圍第19項所述之發光二極體的製造 方法,其中該保護層包括高散熱性且高透光性之基板。 35·如申睛專利範圍第34項所述之發光二極體的製造 方法’其中該高散熱性且高透光性基板的材質包括類鑽石 碳(DLC)、二氧化石夕或氮化矽。 、 36·—種發光二極體裝置,包括: 一基板; 一蠢晶層,配置於該基板上; 一第一電極,配置於部分該磊晶層上; 一第二電極,配置於該磊晶層之另一部份上;以及 一保護層,配置於該磊晶層之上; 其中该基板包括高散熱性基板,且該保護層包括高散 熱性且高透光性之材質。 37·如申請專利範圍第36項所述之發光二極體裝置, 其中該蟲晶層之材質包括二元化合物之半導體。 38·如申請專利範圍第37項所述之發光二極體裝置, 其中該二元化合物之半導體包括氮化鎵、砷化鎵或氮化銦。 39·如申請專利範圍第%項所述之發光二極體裝置, 其中該蟲晶層之材質包括三元化合物之半導體。 40·如申請專利範圍第39項所述之發光二極體裝置, 24j ' wherein the first substrate is removed via a dry side process or . /1. The manufacture of the light-emitting diode according to claim </ RTI> wherein the thickness of the stray layer after the removal is less than the thickness of the L-layer layer of the worm layer, and the second electrode Connected to the current distribution layer of the insect layer. 12. The manufacture of a light-emitting diode according to claim 1, wherein the current distribution layer is p-type, the first electrode comprises an N-type ohmic; the haptic pole, and the second electrode comprises a P-type ohmic contact electrode. 13. The manufacture of a light-emitting diode according to claim 1, wherein the current distribution is (4), the first electrode comprises a p-type ohmic contact electrode, and the second electrode comprises an N-type ohmic contact electrode. The manufacture of the light-emitting diode according to the first aspect of the invention, wherein the total thickness of the first electrode and the epitaxial layer is the same as the second electrode and the removed epitaxial layer The total thickness. 15. The manufacture of a light-emitting diode according to claim 1, wherein the second substrate comprises a highly heat-dissipating substrate. The method for manufacturing a light-emitting diode according to claim 15, wherein the material of the heat-dissipating stone substrate comprises Shi Xi or Tao Wan. 17. The method for manufacturing a light-emitting diode according to claim 1, wherein the protective layer comprises a high heat dissipation and a high light transmittance, and the light-emitting diode according to item 17 of the patent application scope is provided. The manufacturing method of the south heat dissipating and high light transmissive substrate comprises diamond-like carbon (DLC), cerium oxide (si〇2) or tantalum nitride (SiNx). 19. A method of fabricating a light-emitting body, comprising the steps of: providing a first substrate; forming a lining layer on the first substrate; forming a first electrode on the epitaxial layer; removing a portion of the ray a seed layer to form a removed epitaxial layer; forming a second electrode on the removed epitaxial layer; forming a second substrate over the first electrode and the second substrate; removing The first substrate; and a protective layer is formed on the epitaxial layer. 20. The method of fabricating a light-emitting diode according to claim 19, wherein the first substrate comprises a deuterated gallium, an oxide or a carbonized wire. 21. The method of producing a light-emitting diode according to claim 19, wherein the material of the stray layer comprises a semiconductor of a binary compound. 22·=Please disclose the luminescence described in item 21 of the patent; manufacture of the body—the semiconductor of the 70 compound includes gallium nitride, gallium antimonide or indium nitride. The method of manufacturing a light-emitting diode according to claim 19, wherein the material of the crystal layer comprises a semiconductor of a ternary compound. 24. The method of fabricating a light-emitting diode according to claim 23, wherein the three-element compound is fused to include gallium. - 25. The method for producing a light-emitting diode according to claim 19, wherein the material of the crystal layer comprises a semiconductor of a quaternary compound. 26. The manufacture of the light-emitting diode according to item 25 of the patent application scope. The semiconductor of the four-phase compound of the middle side includes a dish of gallium indium. Ancient, I:: The manufacture of the light-emitting diode according to item 19 of the month ίli range removes the I, 4 first substrate through the dry (10) process or the wet money engraving process 28. As claimed in the patent scope The method, wherein the removed Lei Rizhi-Ray-Eight-Yu is less than the current distribution layer of the epitaxial layer. I Haidi one electrode is connected to the worm layer _ square, /92 material · (d) 19 rhyme light emitting diode f-m electrode contact electrode, and the first electric 丄: the younger "% pole includes N-type European side, / / Gan 1 range of the light-emitting diode according to the 19th item, /, the eight current distribution layer, the D clothing 1 ^ contact electrode, and the 哕筮-band A1 private pole including P type _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The total thickness of the layer; The manufacturing method of the light-emitting diode according to the invention of claim 19, wherein the two substrates comprise a highly heat-dissipating substrate. 33. The method for manufacturing a light-emitting diode according to claim 32, wherein the high-density silk plate material is wrapped in a yarn or a ceramic. The method of manufacturing a light-emitting diode according to claim 19, wherein the protective layer comprises a substrate having high heat dissipation and high light transmittance. 35. The method for manufacturing a light-emitting diode according to claim 34, wherein the material of the high heat dissipation and high light transmittance substrate comprises diamond-like carbon (DLC), dioxide dioxide or tantalum nitride. . And a light-emitting diode device comprising: a substrate; a doped layer disposed on the substrate; a first electrode disposed on a portion of the epitaxial layer; a second electrode disposed on the bar And a protective layer disposed on the epitaxial layer; wherein the substrate comprises a high heat dissipation substrate, and the protective layer comprises a material having high heat dissipation and high light transmittance. 37. The light-emitting diode device of claim 36, wherein the material of the insect layer comprises a semiconductor of a binary compound. 38. The light emitting diode device of claim 37, wherein the semiconductor of the binary compound comprises gallium nitride, gallium arsenide or indium nitride. 39. The illuminating diode device of claim 1 , wherein the material of the worm layer comprises a semiconductor of a ternary compound. 40. The light-emitting diode device according to claim 39, 24 44. 如中請專·㈣36項所述之發光二極 if該電流fί層是p型,該第—電極包括n型歐姆接觸 包亟’以及5彡第—電極包括p型歐姆接觸電極。 45. 如申請專利範圍第36項所述之發光二極體裝置, :中該電流^層〇型’該第—電極包括p型歐姆接觸 “極,以及5亥第一電極包括N型歐姆接觸電極。 1246786 13245twf.doc/g 其中該三元化合物之半導體包括4化铭鎵。 36 , ,、中忒猫日日層之材質包括四元化合物之半導體。 苴中=如=^咖第41項所述之發光二極體裝置, ,、中该四70化合物之半導體包㈣她鎵銦。 1中專利範圍第36項所述之發光二極體裝置, 2 層之另—部份的厚度小於該遙晶層之1汽分 =的厚度’以及該第二電極連接至該2層之該電流分 46.如申明專利範圍第36項所述之發光二極體裝置, 其中4第-電極與該部分i晶層的總厚度相同於該第二電 極與ό亥蟲晶層之另一部份的總厚度。 Ο·,申請專利範圍第36項所述之發光二極體裝置, 其中該高散熱性矽基板的材質包括矽或陶瓷。 48·如申明專利範圍弟36項所述之發光二極體裝置, 其中該高散熱性且高透光性基板的材質包括類鑽石碳 (DLC)、二氧化矽或氮化矽。 2544. The light-emitting diode according to item (4) 36. If the current layer is p-type, the first electrode includes an n-type ohmic contact package ’ and the fifth electrode includes a p-type ohmic contact electrode. 45. The light-emitting diode device according to claim 36, wherein: the current electrode comprises a p-type ohmic contact "pole", and the first electrode of the 5 ohm includes an N-type ohmic contact Electrode 1246786 13245twf.doc/g The semiconductor of the ternary compound includes 4 ing ming. 36 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The light-emitting diode device, the semiconductor package of the four-70 compound (four) her gallium indium. The light-emitting diode device according to claim 36 of the patent scope, the thickness of the other part of the two layers is less than a thickness of the vapor layer of the remote layer and a current component of the second electrode connected to the layer 2. The light-emitting diode device of claim 36, wherein the fourth electrode is The total thickness of the portion of the i-layer is the same as the total thickness of the second electrode and the other portion of the layer of the worm. The illuminating diode device of claim 36, wherein the height is high. The material of the heat dissipation 矽 substrate includes bismuth or ceramic. 48· The light-emitting diode device of claim 36, wherein the material of the high heat dissipation and high light transmittance substrate comprises diamond-like carbon (DLC), cerium oxide or tantalum nitride.
TW094114854A 2005-05-09 2005-05-09 Substrate-free flip chip light emitting diode and manufacturing method thereof TWI246786B (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
TW094114854A TWI246786B (en) 2005-05-09 2005-05-09 Substrate-free flip chip light emitting diode and manufacturing method thereof
DE102006019373A DE102006019373A1 (en) 2005-05-09 2006-04-23 Substrate-free flip chip light emitting diode and method for its production
GB0608131A GB2426123B (en) 2005-05-09 2006-04-25 Substrate-free flip chip light emitting diode and manufacturing method thereof
GB0708932A GB2437848B (en) 2005-05-09 2006-04-25 Substrate-free chip light emitting diode and manufacturing method thereof
FR0651612A FR2885455A1 (en) 2005-05-09 2006-05-04 RETURNED CHIP ELECTROLUMINESCENT DIODE WITHOUT SUBSTRATE, AND METHOD OF MANUFACTURING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW094114854A TWI246786B (en) 2005-05-09 2005-05-09 Substrate-free flip chip light emitting diode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI246786B true TWI246786B (en) 2006-01-01
TW200640032A TW200640032A (en) 2006-11-16

Family

ID=36589747

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094114854A TWI246786B (en) 2005-05-09 2005-05-09 Substrate-free flip chip light emitting diode and manufacturing method thereof

Country Status (4)

Country Link
DE (1) DE102006019373A1 (en)
FR (1) FR2885455A1 (en)
GB (1) GB2426123B (en)
TW (1) TWI246786B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109671810A (en) * 2017-10-16 2019-04-23 鼎元光电科技股份有限公司 Light emitting diode and its manufacturing method without substrate

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008006757A1 (en) 2008-01-30 2009-08-06 Osram Opto Semiconductors Gmbh Surface-mountable component e.g. thin film LED, for being assembled on mother board i.e. printed circuit board, has semiconductor chip with rear side contact connected with contact structure that is arranged on surface of substrate
DE102008021402B4 (en) * 2008-04-29 2023-08-10 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Surface mount light emitting diode module and method for manufacturing a surface mount light emitting diode module
DE102009060759A1 (en) 2009-12-30 2011-07-07 OSRAM Opto Semiconductors GmbH, 93055 A radiation-emitting device, module with a radiation-emitting device and method for producing a radiation-emitting device
US9601657B2 (en) * 2011-03-17 2017-03-21 Epistar Corporation Light-emitting device
TWI646701B (en) * 2017-09-29 2019-01-01 鼎元光電科技股份有限公司 Light-emitting diode without substrate and manufacturing method thereof
TWI635605B (en) * 2017-11-02 2018-09-11 錼創顯示科技股份有限公司 Micro-led display panel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11154774A (en) * 1997-08-05 1999-06-08 Canon Inc Surface light emission type semiconductor device, manufacture thereof, and display device using the same
US20040211972A1 (en) * 2003-04-22 2004-10-28 Gelcore, Llc Flip-chip light emitting diode
US6806112B1 (en) * 2003-09-22 2004-10-19 National Chung-Hsing University High brightness light emitting diode
US20050191777A1 (en) * 2003-09-22 2005-09-01 National Chung-Hsing University Method for producing light emitting diode with plated substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109671810A (en) * 2017-10-16 2019-04-23 鼎元光电科技股份有限公司 Light emitting diode and its manufacturing method without substrate

Also Published As

Publication number Publication date
GB2426123B (en) 2007-09-26
GB0608131D0 (en) 2006-06-07
GB2426123A (en) 2006-11-15
TW200640032A (en) 2006-11-16
DE102006019373A1 (en) 2006-11-23
FR2885455A1 (en) 2006-11-10

Similar Documents

Publication Publication Date Title
KR101438818B1 (en) light emitting diode
JP4557542B2 (en) Nitride light emitting device and high luminous efficiency nitride light emitting device
TW550834B (en) Light emitting diode and its manufacturing method
TW540167B (en) Semiconductor light emitting device and method
TW541732B (en) Manufacturing method of LED having transparent substrate
TWI447966B (en) Semiconductor light emitting device and method of fabricating semiconductor light emitting device
TWI246786B (en) Substrate-free flip chip light emitting diode and manufacturing method thereof
US20110140078A1 (en) Light-emitting device and method of making the same
US8179039B2 (en) Light emitting device, method of manufacturing the same, light emitting device package, and illumination system
TWI253770B (en) Light emitting diode and manufacturing method thereof
TW200828633A (en) Light emitting device package and method for manufacturing the same
TW200535925A (en) Laser lift-off of sapphire from a nitride flip-chip
JP4843235B2 (en) Group III nitride semiconductor light emitting device manufacturing method
TW201126693A (en) Top view type of light emitting diode package structure and fabrication thereof
JP4393306B2 (en) Semiconductor light emitting element, method for manufacturing the same, and semiconductor device
WO2012174950A1 (en) Deep ultraviolet semiconductor light-emitting device and method of fabricating the same
US20110001155A1 (en) Light-emitting device and manufacturing method thereof
TWI237407B (en) Light emitting diode having an adhesive layer and manufacturing method thereof
TW201519471A (en) Optoelectronic device and method for manufacturing the same
KR20090105462A (en) Vertical structured group 3 nitride-based light emitting diode and its fabrication methods
KR20090106294A (en) vertical structured group 3 nitride-based light emitting diode and its fabrication methods
JP2004319685A (en) Element and device for semiconductor light emitting
JP5644711B2 (en) Light emitting chip manufacturing method, light emitting chip, and joined body
TWI436497B (en) Method for forming a light-emitting device
TW201117413A (en) Method for manufacturing light-emitting diode

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees