WO2022193234A1 - 感光单元及其GaN基图像传感器、显示装置 - Google Patents

感光单元及其GaN基图像传感器、显示装置 Download PDF

Info

Publication number
WO2022193234A1
WO2022193234A1 PCT/CN2021/081548 CN2021081548W WO2022193234A1 WO 2022193234 A1 WO2022193234 A1 WO 2022193234A1 CN 2021081548 W CN2021081548 W CN 2021081548W WO 2022193234 A1 WO2022193234 A1 WO 2022193234A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive
subunit
type
semiconductor layer
layer
Prior art date
Application number
PCT/CN2021/081548
Other languages
English (en)
French (fr)
Inventor
程凯
Original Assignee
苏州晶湛半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州晶湛半导体有限公司 filed Critical 苏州晶湛半导体有限公司
Priority to CN202180091815.3A priority Critical patent/CN116897431A/zh
Priority to US17/778,963 priority patent/US11942491B2/en
Priority to PCT/CN2021/081548 priority patent/WO2022193234A1/zh
Publication of WO2022193234A1 publication Critical patent/WO2022193234A1/zh

Links

Images

Classifications

    • H01L27/1461
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • H01L27/14
    • H01L27/146
    • H01L27/14645
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors

Definitions

  • the present application relates to the field of semiconductor technology, and in particular, to a photosensitive unit, a GaN-based image sensor and a display device thereof.
  • the image sensor uses the photoelectric conversion function of the photoelectric device to convert the light image on the photosensitive surface into an electrical signal that is proportional to the light image.
  • the image sensor is a functional device that divides the light image on its light-receiving surface into many small units and converts them into usable electrical signals.
  • Image sensors are classified into light guide tubes and solid-state image sensors. Compared with light guide tubes, solid-state image sensors have the characteristics of small size, light weight, high integration, high resolution, low power consumption, long life and low price, so they have been widely used in various industries.
  • CMOS image sensors use a CMOS structure.
  • CMOS image sensors need to cooperate with filters to achieve full color, which is not conducive to the integration of image sensors.
  • the purpose of the present invention is to provide a photosensitive unit, its GaN-based image sensor, and a display device, which can improve integration and reduce volume.
  • a photosensitive unit comprising:
  • the materials of the blue light photosensitive layer are all GaN-based materials containing In; the composition size of In in the materials of the red light photosensitive layer, the green light photosensitive layer and the blue light photosensitive layer is different, so that according to the received light Different wavelengths cause the corresponding red light photosensitive subunits, the green light photosensitive subunits, and the blue light photosensitive subunits to generate or not to generate photosensitive signals.
  • the red light photosensitive subunit, the green light photosensitive subunit and the blue light photosensitive subunit all generate photosensitive signals
  • the red light photoreceptor unit and the green light photoreceptor unit generate a photosensitive signal
  • red light photosensitive subunit If the red light is irradiated, only the red light photosensitive subunit generates a photosensitive signal.
  • the red light photosensitive subunit includes: an N-type first semiconductor layer and a P-type first semiconductor layer, and the N-type first semiconductor layer and the P-type first semiconductor layer are respectively located in the red light Both sides of the photosensitive layer;
  • the green light photosensitive subunit includes: an N-type second semiconductor layer and a P-type second semiconductor layer, the N-type second semiconductor layer and the P-type second semiconductor layer are respectively located in the Both sides of the green light photosensitive layer;
  • the blue light photosensitive subunit includes: an N-type third semiconductor layer and a P-type third semiconductor layer, and the N-type third semiconductor layer and the P-type third semiconductor layer are respectively located in the on both sides of the blue light-sensitive layer.
  • composition range of In in the red light photosensitive layer is 0.4-0.6;
  • composition range of In in the green light photosensitive layer is 0.2-0.3;
  • composition range of In in the blue light photosensitive layer is 0.01-0.1.
  • a second aspect of the present invention provides a GaN-based image sensor, comprising:
  • a substrate including a photosensitive processing circuit formed on the substrate
  • the metal interconnection layer having a metal interconnection structure
  • a plurality of photosensitive units according to any one of the above are located on the metal interconnection layer, and the red light photosensitive subunits, the green light photosensitive subunits, and the blue light photosensitive subunits pass through the metal interconnection structure It is electrically connected to the photosensitive processing circuit to obtain blue light incident signals, green light incident signals and red light incident signals.
  • the red light photosensitive subunit includes: an N-type first semiconductor layer and a P-type first semiconductor layer, and the N-type first semiconductor layer and the P-type first semiconductor layer are respectively located in the red light Both sides of the photosensitive layer;
  • the green light photosensitive subunit includes: an N-type second semiconductor layer and a P-type second semiconductor layer, the N-type second semiconductor layer and the P-type second semiconductor layer are respectively located in the Both sides of the green light photosensitive layer;
  • the blue light photosensitive subunit includes: an N-type third semiconductor layer and a P-type third semiconductor layer, and the N-type third semiconductor layer and the P-type third semiconductor layer are respectively located in the two sides of the blue light photosensitive layer; wherein, the N-type first semiconductor layer, the N-type second semiconductor layer and the N-type third semiconductor layer, or the P-type first semiconductor layer, the P-type first semiconductor layer, the N-type second semiconductor layer and the N-type third semiconductor layer;
  • the P-type second semiconductor layer and the P-type third semiconductor layer are connected to
  • the photosensitive processing circuit detects a photosensitive signal generated by the photosensitive unit
  • the photosensitive processing circuit detects a photosensitive signal from the red photosensitive subunit, the green photosensitive subunit, and the blue photosensitive subunit in the photosensitive unit, the photosensitive signal is stored as the blue light incident Signal;
  • the photosensitive processing circuit detects a photosensitive signal only from both the red light photosensitive subunit and the green light photosensitive subunit in the photosensitive unit, the photosensitive signal is stored as the green light incident signal;
  • the photosensitive processing circuit detects a photosensitive signal only from the red light photosensitive subunits in the photosensitive unit, the photosensitive signal is stored as the red light incident signal.
  • a third aspect of the present invention provides a display device including the GaN-based image sensor according to any one of the above, the display device further comprising: a display driving circuit, an input end of the display driving circuit from the photosensitive processing circuit receiving the red light incident signal, the green light incident signal and the blue light incident signal of the photosensitive unit in the first area and generating the corresponding red display driving signal, green display driving signal and blue display driving signal;
  • the output end of the display driving circuit is connected to the metal interconnection structure, and the red display driving signal, the green display driving signal and the blue display driving signal are transmitted to the second region through the metal interconnection structure
  • the red light-emitting sub-unit, the green light-emitting sub-unit and the blue light-emitting sub-unit wherein, the red light-emitting sub-unit is the red-light photosensitive sub-unit, the green light-emitting sub-unit is the green-light photo-sensitive sub-unit, and the The blue light-emitting subunit is the blue light photosensitive subunit.
  • the first area and the second area are the same area, or the area of the first area is larger than the area of the second area, or the area of the first area is smaller than the area of the second area area.
  • the metal interconnect structure in the first area when the photosensitive unit in the first area is photosensitive, the metal interconnect structure is connected to the photosensitive processing circuit and disconnected from the display driving circuit; the metal interconnection structure in the second area is When the light-emitting unit is displayed, the metal interconnection structure is disconnected from the photosensitive processing circuit and connected to the display driving circuit; the photosensitive function and the display function are performed in a time-sharing manner.
  • GaN-based photosensitive materials with different In compositions as the red light photosensitive layer, green light photosensitive layer and blue light photosensitive layer, according to the wavelength of the received light, the corresponding red light photosensitive subunit, green photosensitive subunit and The blue light photosensitive subunit generates or does not generate photosensitive signals.
  • red light photoreceptor units, green light photoreceptor units and blue light photoreceptor units can be fabricated at the same time, which improves the integration of photoreceptor units and also The integration degree of the GaN-based image sensor and the display device including the photosensitive unit is improved, and the miniaturization of the GaN-based image sensor and the display device is facilitated.
  • FIG. 1 is a schematic cross-sectional structure diagram of a photosensitive unit according to a first embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional structure diagram of the GaN-based image sensor according to the first embodiment of the present invention
  • FIG. 3 is a block diagram of a display device according to a second embodiment of the present invention.
  • FIG. 4 is a block diagram of a display device according to a third embodiment of the present invention.
  • P-type first semiconductor layer 111b Red light photosensitive layer 111c
  • FIG. 1 is a schematic cross-sectional structure diagram of a photosensitive unit according to a first embodiment of the present invention.
  • the photosensitive unit 11 includes:
  • the materials of the blue light photosensitive layer 113c of 113 are all GaN-based materials containing In; the composition of In in the materials of the red light photosensitive layer 111c, the green light photosensitive layer 112c and the blue light photosensitive layer 113c is different, according to the received light intensity. Different wavelengths cause the corresponding red light photosensitive subunit 111 , green light photosensitive subunit 112 and blue light photosensitive subunit 113 to generate or not to generate photosensitive signals.
  • the In composition of the red light photosensitive layer 111c may be larger than that of the green light photosensitive layer 112c, and the In composition of the green light photosensitive layer 112c may be larger than that of the blue light photosensitive layer 113c.
  • the photosensitive unit 11 is formed on the substrate 10 .
  • a mask layer may be formed on the substrate 10 before the red light photosensitive subunit 111 , the green light photosensitive subunit 112 and the blue light photosensitive subunit 113 are epitaxially grown.
  • the mask layer has three openings corresponding to one photosensitive unit 11 , and the red photosensitive subunit 111 , the green photosensitive subunit 112 and the blue photosensitive subunit 113 respectively correspond to one opening.
  • the opening corresponding to the red light photosensitive subunit 111 is smaller than the opening corresponding to the green light photosensitive subunit 112
  • the opening corresponding to the green light photosensitive subunit 112 is smaller than the opening corresponding to the blue light photosensitive subunit 113 .
  • the size of the opening is different, and the flow rate of the reactive gas in each opening is different when the photosensitive layer is grown, so the doping rate of In element and Ga element is different, that is, the doping efficiency of In element is different, which makes the In element in the grown photosensitive layer.
  • the proportions of components are different. Specifically, the smaller the opening, the faster the growth rate of GaN, the basic material of the photosensitive layer in the opening, and the better selectivity for the doping of In element. , the smaller the opening, the higher the composition of In element in the photosensitive layer InGaN.
  • the material of the substrate 10 may be sapphire, silicon carbide, silicon, GaN, AlN or diamond and other materials.
  • the composition range of In in the red light photosensitive layer 111c may be 0.4 ⁇ 0.6, and the wavelength range of the light required to generate the photocurrent may be 400 nm ⁇ 720 nm.
  • the composition range of In in the green light photosensitive layer 112c may be 0.2 ⁇ 0.3, and the wavelength range of the light required to generate the photocurrent may be 400 nm ⁇ 600 nm.
  • the composition range of In in the blue light photosensitive layer 113c may be 0.01 ⁇ 0.1, and the wavelength range of the light required to generate the photocurrent may be 400 nm ⁇ 500 nm.
  • the composition of In in the red light photosensitive layer 111c refers to the percentage of the amount of In in the sum of the amounts of all positively charged elements in the red light photosensitive layer 111c.
  • the material of the red light photosensitive layer 111c is InGaN
  • the composition of In refers to the percentage of the amount of In in the sum of the amount of In and the amount of Ga
  • the material of the red light photosensitive layer 111c is InAlGaN
  • the composition of In refers to the percentage of the amount of In material to the sum of the amount of In material, the amount of Al material, and the amount of Ga material.
  • composition of In in the green light photosensitive layer 112c refers to the percentage of the amount of In in the sum of the amounts of all positively charged elements in the green light photosensitive layer 112c.
  • composition of In in the blue light photosensitive layer 113c refers to the percentage of the amount of In in the sum of the amounts of all positively charged elements in the blue light photosensitive layer 113c.
  • each numerical range includes an endpoint value.
  • the red light photosensitive subunit 111 , the green light photosensitive subunit 112 and the blue light photosensitive subunit 113 can all generate photosensitive signals. If green light is irradiated, the red light photosensitive subunit 111 and the green light photosensitive subunit 112 can generate photosensitive signals. If the red light is irradiated, only the red light photosensitive subunit 111 can generate a photosensitive signal.
  • the red light photosensitive layer 111c, and/or the green light photosensitive layer 112c, and/or the blue light photosensitive layer 113c have a single-layer structure.
  • the red light-sensitive layer 111c, and/or the green light-sensitive layer 112c, and/or the blue light-sensitive layer 113c may also be a stacked structure, such as a multiple quantum well layer, including two barrier layers and an interlayer structure. well layer in two barrier layers.
  • the red light photosensitive subunit 111 includes: an N-type first semiconductor layer 111a and a P-type first semiconductor layer 111b, and an N-type first semiconductor layer 111a and a P-type first semiconductor layer 111b They are respectively located on both sides of the red light photosensitive layer 111c;
  • the green light photosensitive subunit 112 includes: an N-type second semiconductor layer 112a and a P-type second semiconductor layer 112b, and an N-type second semiconductor layer 112a and a P-type second semiconductor layer 112b They are respectively located on both sides of the green light photosensitive layer 112c;
  • the blue light photosensitive subunit 113 includes: an N-type third semiconductor layer 113a and a P-type third semiconductor layer 113b, and the N-type third semiconductor layer 113a and the P-type third semiconductor layer 113b respectively on both sides of the blue light photosensitive layer 113c.
  • the N-type first semiconductor layer 111a, the N-type second semiconductor layer 112a, and the N-type third semiconductor layer 113a are disconnected two by two, and the P-type first semiconductor layer 111b, the P-type second semiconductor layer 112b, and the P-type third semiconductor layer 113b is disconnected two by two.
  • the N-type first semiconductor layer 111a, the N-type second semiconductor layer 112a, and the N-type third semiconductor layer 113a may be connected together, or the P-type first semiconductor layer 111b and the P-type second semiconductor layer 112b may be connected together. And the P-type third semiconductor layer 113b is connected together.
  • the P-type first semiconductor layer 111b, the P-type second semiconductor layer 112b, and the P-type third semiconductor layer 113b may be close to the substrate 10, and the N-type first semiconductor layer 111a and the N-type second semiconductor layer 112a may be close to the substrate 10. And the N-type third semiconductor layer 113 a is far away from the substrate 10 .
  • the material of the N-type first semiconductor layer 111a, and/or the N-type second semiconductor layer 112a, and/or the N-type third semiconductor layer 113a may be N-type GaN; the P-type first semiconductor layer 111b, and/or the P-type The material of the second semiconductor layer 112b and/or the P-type third semiconductor layer 113b may be P-type GaN or P-type InGaN.
  • FIG. 2 is a schematic cross-sectional structure diagram of a GaN-based image sensor.
  • the GaN-based image sensor 1 includes:
  • the substrate 21 includes a photosensitive processing circuit 210;
  • a plurality of the above-mentioned photosensitive units 11 are located on the metal interconnection layer 22, and the red light photosensitive subunit 111, the green light photosensitive subunit 112 and the blue light photosensitive subunit 113 are electrically connected to the photosensitive processing circuit 210 through the metal interconnection structure 220, so as to obtain Blue light incident signal, green light incident signal and red light incident signal.
  • the photosensitive processing circuit 210 may include a plurality of transistors on the substrate 10 .
  • the N-type first semiconductor layer 111a, the N-type second semiconductor layer 112a, and the N-type third semiconductor layer 113a are disconnected in pairs, that is, the red light photosensitive sub-unit 111, the green light photosensitive sub-unit 112 and the blue light photosensitive sub-unit 112 After the photosensitive subunit 113 is irradiated with light to generate a photosensitive current, the potentials of the N-type first semiconductor layer 111a, the N-type second semiconductor layer 112a and the N-type third semiconductor layer 113a may be unequal. Therefore, the N-type first semiconductor layer 111a, The N-type second semiconductor layer 112 a and the N-type third semiconductor layer 113 a may be connected to the metal interconnection structure 220 .
  • the N-type first semiconductor layer 111a, the N-type second semiconductor layer 112a and the N-type third semiconductor layer 113a are connected together, and the P-type first semiconductor layer 111b, the P-type second semiconductor layer 112b and the P-type When the third semiconductor layers 113b are disconnected two by two, the P-type first semiconductor layer 111b , the P-type second semiconductor layer 112b and the P-type third semiconductor layer 113b may be connected to the metal interconnection structure 220 .
  • the photosensitive processing circuit 210 detects photosensitive signals generated by the red light photosensitive subunit 111 , the green light photosensitive subunit 112 and the blue photosensitive subunit 113 .
  • the photosensitive processing circuit 210 detects a photosensitive signal from the red photosensitive subunit 111, the green photosensitive subunit 112, and the blue photosensitive subunit 113 in one photosensitive unit 11, it is stored as a blue light incident signal;
  • the photosensitive processing circuit 210 only detects the photosensitive signal from both the red light photosensitive subunit 111 and the green photosensitive subunit 112 in one photosensitive unit 11, it is stored as the green light incident signal;
  • the photosensitive processing circuit 210 only detects the photosensitive signal from the red light photosensitive sub-units 111 in one photosensitive unit 11, it is stored as the red light incident signal.
  • FIG. 3 is a block diagram of a display device according to a second embodiment of the present invention.
  • the second embodiment of the present invention further provides a display device.
  • the display device 2 includes:
  • GaN-based image sensor 1
  • the display driving circuit 30, the input terminal of the display driving circuit 30 receives the red light incident signal, the green light incident signal and the blue light incident signal of the light-sensitive unit 11 in the first area from the light-sensing processing circuit 210, and generates the corresponding red display driving signal, green light incident signal and blue light incident signal.
  • the output end of the display driving circuit 30 is connected to the metal interconnection structure 220 , and the red display driving signal, the green display driving signal and the blue display driving signal are transmitted to the red light-emitting subunit and the green light-emitting subunit of the second region through the metal interconnection structure 220 Unit and blue light-emitting sub-unit; wherein, the red light-emitting sub-unit is the red light-sensing sub-unit 111 , the green light-emitting sub-unit is the green-light photo-sensing sub-unit 112 , and the blue light-emitting sub-unit is the blue light-sensing sub-unit 113 .
  • the GaN-based image sensor 1 can not only realize the photosensitive function, but also realize the display function.
  • the display device 2 can realize a true full screen, omit the existing camera and its setting area, and use a light-emitting unit to realize the light-sensing function.
  • the metal interconnect structure 220 When the photosensitive unit 11 in the first region receives light, the metal interconnect structure 220 is connected to the photosensitive processing circuit 210, the display driving circuit 30 is disconnected, and the GaN-based image sensor 1 realizes the photosensitive function.
  • the metal interconnection structure 220 When the light-emitting unit in the second area is displayed, the metal interconnection structure 220 is disconnected from the photosensitive processing circuit 210, and connected to the display driving circuit 30, so that the GaN-based image sensor 1 realizes the display function.
  • the photosensitive function and the display function can be performed in time division. For example, in a frame refresh period, the first part of the time period realizes the photosensitive function, that is, image acquisition; the latter part of the time period realizes the display function, and the collected image is displayed.
  • the first area and the second area are the same area.
  • the red light photosensitive subunit 111 in the photosensitive unit 11 generates a red light incident signal
  • the display driving circuit 30 generates a corresponding red display driving signal, which is displayed in the same red light photosensitive subunit 111.
  • the green light photosensitive subunit 112 is similar to the blue light photosensitive subunit 113 .
  • the first area and the second area may be all or part of the display area of the display device. For example, a photo that the user chooses to take is displayed in full screen or partially in a window.
  • FIG. 4 is a block diagram of a display device according to a third embodiment of the present invention.
  • the display device 2 ′ of this embodiment is substantially the same as the display device 2 of the second embodiment, and the only difference is that the first area is different from the second area.
  • the photosensitive unit 11 is different from the light emitting unit.
  • the image data may be processed such that the area of the first area is larger than the area of the second area, or the area of the first area is smaller than the area of the second area.
  • the first region and the second region may also partially overlap.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Led Devices (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本申请提供了一种感光单元及其GaN基图像传感器、显示装置,感光单元包括:红光感光子单元、绿光感光子单元以及蓝光感光子单元;红光感光子单元的红光感光层、绿光感光子单元的绿光感光层以及蓝光感光子单元的蓝光感光层的材料都为含In的GaN基材料;红光感光层、绿光感光层以及蓝光感光层的材料中In的组分大小不同,以根据接收到的光的波长不同使对应的红光感光子单元、绿光感光子单元以及蓝光感光子单元产生或不产生感光电信号。在GaN基材料生长过程中,通过控制不同区域的In组分大小不同,即可同时制作红光、绿光以及蓝光感光子单元,提高了感光单元的集成度,也提高了包含该感光单元的GaN基图像传感器以及显示装置的集成度、有利于实现小型化。

Description

感光单元及其GaN基图像传感器、显示装置 技术领域
本申请涉及半导体技术领域,尤其涉及一种感光单元及其GaN基图像传感器、显示装置。
背景技术
图像传感器是利用光电器件的光电转换功能将感光面上的光像转换为与光像成相应比例关系的电信号。与光敏二极管、光敏三极管等“点”光源的光敏元件相比,图像传感器是将其受光面上的光像,分成许多小单元,将其转换成可用的电信号的一种功能器件。图像传感器分为光导摄像管和固态图像传感器。与光导摄像管相比,固态图像传感器具有体积小、重量轻、集成度高、分辨率高、功耗低、寿命长、价格低等特点,因此在各个行业得到了广泛应用。
目前的固态图像传感器多是采用CMOS结构。然而,CMOS图像传感器需要配合滤镜才能实现全彩,这不利于图像传感器的集成。
发明内容
本发明的发明目的是提供一种感光单元及其GaN基图像传感器、显示装置,提高集成度及减小体积。
为实现上述目的,本发明的第一方面提供一种感光单元,包括:
红光感光子单元、绿光感光子单元以及蓝光感光子单元;所述红光感光子单元的红光感光层、所述绿光感光子单元的绿光感光层以及所述蓝光感 光子单元的蓝光感光层的材料都为含In的GaN基材料;所述红光感光层、所述绿光感光层以及所述蓝光感光层的材料中In的组分大小不同,以根据接收到的光的波长不同使对应的所述红光感光子单元、所述绿光感光子单元以及所述蓝光感光子单元产生或不产生感光电信号。
可选地,若蓝光照射,所述红光感光子单元、所述绿光感光子单元以及所述蓝光感光子单元均产生感光电信号;
若绿光照射,所述红光感光子单元及所述绿光感光子单元产生感光电信号;
若红光照射,仅所述红光感光子单元产生感光电信号。
可选地,所述红光感光子单元包括:N型第一半导体层与P型第一半导体层,所述N型第一半导体层与所述P型第一半导体层分别位于所述红光感光层的两侧;所述绿光感光子单元包括:N型第二半导体层与P型第二半导体层,所述N型第二半导体层与所述P型第二半导体层分别位于所述绿光感光层的两侧;所述蓝光感光子单元包括:N型第三半导体层与P型第三半导体层,所述N型第三半导体层与所述P型第三半导体层分别位于所述蓝光感光层的两侧。
可选地,所述红光感光层中In的组分范围为0.4~0.6;
所述绿光感光层中In的组分范围为0.2~0.3;
所述蓝光感光层中In的组分范围为0.01~0.1。
本发明的第二方面提供一种GaN基图像传感器,包括:
基底,所述基底包括形成于衬底上的感光处理电路;
金属互连层,位于所述基底的表面,所述金属互连层内具有金属互连结构;以及
多个上述任一项所述的感光单元,位于所述金属互连层上,所述红光 感光子单元、所述绿光感光子单元以及所述蓝光感光子单元经由所述金属互连结构电连接至所述感光处理电路,以得到蓝光入射信号、绿光入射信号以及红光入射信号。
可选地,所述红光感光子单元包括:N型第一半导体层与P型第一半导体层,所述N型第一半导体层与所述P型第一半导体层分别位于所述红光感光层的两侧;所述绿光感光子单元包括:N型第二半导体层与P型第二半导体层,所述N型第二半导体层与所述P型第二半导体层分别位于所述绿光感光层的两侧;所述蓝光感光子单元包括:N型第三半导体层与P型第三半导体层,所述N型第三半导体层与所述P型第三半导体层分别位于所述蓝光感光层的两侧;其中,所述N型第一半导体层、所述N型第二半导体层与所述N型第三半导体层,或所述P型第一半导体层、所述P型第二半导体层以及所述P型第三半导体层连接于所述金属互连结构,将对应的所述红光感光子单元,所述绿光感光子单元以及所述蓝光感光子单元产生的感光电信号输入至所述感光处理电路。
可选地,所述感光处理电路检测由所述感光单元的产生的感光电信号;
若所述感光处理电路从所述感光单元中的所述红光感光子单元、所述绿光感光子单元以及所述蓝光感光子单元处均检测到感光电信号,则存储为所述蓝光入射信号;
若所述感光处理电路仅从所述感光单元中的所述红光感光子单元及所述绿光感光子单元处均检测到感光电信号,则存储为所述绿光入射信号;
若所述感光处理电路仅从所述感光单元中的所述红光感光子单元处均检测到感光电信号,则存储为所述红光入射信号。
本发明的第三方面提供一种包含上述任一项所述的GaN基图像传感器的显示装置,所述显示装置还包括:显示驱动电路,所述显示驱动电路的输入端从所述感光处理电路接受第一区域内的所述感光单元的红光入射信号、 所述绿光入射信号以及所述蓝光入射信号并产生对应的红色显示驱动信号、绿色显示驱动信号以及蓝色显示驱动信号;
所述显示驱动电路的输出端和所述金属互连结构相连,所述红色显示驱动信号、所述绿色显示驱动信号以及所述蓝色显示驱动信号经由所述金属互连结构传递至第二区域的红色发光子单元、绿色发光子单元以及蓝色发光子单元;其中,所述红色发光子单元为所述红光感光子单元、所述绿色发光子单元为所述绿光感光子单元,所述蓝色发光子单元为所述蓝光感光子单元。
可选地,所述第一区域与所述第二区域为同一区域,或所述第一区域的面积大于所述第二区域的面积,或所述第一区域的面积小于所述第二区域的面积。
可选地,所述第一区域内的所述感光单元感光时,所述金属互连结构与所述感光处理电路连接,与所述显示驱动电路断开;所述第二区域内的所述发光单元显示时,所述金属互连结构与所述感光处理电路断开,与所述显示驱动电路连接;感光功能和显示功能分时进行。
与现有技术相比,本发明的有益效果在于:
利用In组分大小不同的GaN基感光材料作为红光感光层、绿光感光层以及蓝光感光层,以根据接收到的光的波长不同使对应的红光感光子单元、绿光感光子单元以及蓝光感光子单元产生或不产生感光电信号。使得在GaN基材料生长过程中,通过控制不同区域的In组分大小不同,即可同时制作红光感光子单元、绿光感光子单元以及蓝光感光子单元,提高了感光单元的集成度,也提高了包含该感光单元的GaN基图像传感器以及显示装置的集成度,有利于实现GaN基图像传感器以及显示装置的小型化。
附图说明
图1是本发明第一实施例的感光单元的截面结构示意图;
图2是本发明第一实施例的GaN基图像传感器的截面结构示意图;
图3是本发明第二实施例的显示装置的模块结构图;
图4是本发明第三实施例的显示装置的模块结构图。
为方便理解本发明,以下列出本发明中出现的所有附图标记:
感光单元11                   衬底10
红光感光子单元111            N型第一半导体层111a
P型第一半导体层111b          红光感光层111c
绿光感光子单元112            N型第二半导体层112a
P型第二半导体层112b          绿光感光层112c
蓝光感光子单元113            N型第三半导体层113a
P型第三半导体层113b          蓝光感光层113c
GaN基图像传感器1             基底21
感光处理电路210              金属互连层22
金属互连结构220              显示装置2、2'
显示驱动电路30
具体实施方式
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
图1是本发明第一实施例的感光单元的截面结构示意图。
参照图1所示,感光单元11包括:
红光感光子单元111、绿光感光子单元112以及蓝光感光子单元113;红光感光子单元111的红光感光层111c、绿光感光子单元112的绿光感光层112c以及蓝光感光子单元113的蓝光感光层113c的材料都为含In的GaN基材料;红光感光层111c、绿光感光层112c以及蓝光感光层113c的材料中In的组分大小不同,以根据接收到的光的波长不同使对应的红光感光子单元111、绿光感光子单元112以及蓝光感光子单元113产生或不产生感光电信号。
红光感光层111c的In的组分可以大于绿光感光层112c的In的组分,绿光感光层112c的In的组分可以大于蓝光感光层113c的In的组分。
本实施例中,参照图1所示,感光单元11形成在衬底10上。红光感光子单元111、绿光感光子单元112以及蓝光感光子单元113在外延生长前,可以在衬底10上形成掩膜层。掩膜层具有对应一个感光单元11的三个开口,红光感光子单元111、绿光感光子单元112以及蓝光感光子单元113分别对应一个开口。其中,对应红光感光子单元111的开口小于对应绿光感光子单元112的开口,对应绿光感光子单元112的开口小于对应蓝光感光子单元113的开口。开口的大小不同,生长感光层时各开口内的反应气体的流速不同,从而In元素与Ga元素的掺入速率不同,即In元素的掺入效率不同,这使得生长的感光层中In元素的组分占比不同。具体地,开口越小,开口内感光层的基础材料GaN的生长速度会变快,In元素的掺杂具有更好的选择性,In元素的掺入速率越大于Ga元素的掺入速率,因此,开口越小,感光层InGaN中In元素的组分越高。
衬底10的材料可以为蓝宝石、碳化硅、硅、GaN、AlN或金刚石等材料。
红光感光层111c中In的组分范围可以为0.4~0.6,产生感光电流所需的光的波长范围可以为400nm~720nm。
绿光感光层112c中In的组分范围可以为0.2~0.3,产生感光电流所需的光的波长范围可以为400nm~600nm。
蓝光感光层113c中In的组分范围可以为0.01~0.1,产生感光电流所需的光的波长范围可以为400nm~500nm。
需要说明的是,红光感光层111c中In的组分是指:In的物质的量占红光感光层111c中所有带正电荷的元素的物质的量之和的百分比。例如:红光感光层111c的材料为InGaN,In的组分是指:In的物质的量占In的物质的量与Ga的物质的量之和的百分比;红光感光层111c的材料为InAlGaN,In的组分是指:In的物质的量占In的物质的量、Al的物质的量与Ga的物质的量之和的百分比。
绿光感光层112c中In的组分是指:In的物质的量占绿光感光层112c中所有带正电荷的元素的物质的量之和的百分比。
蓝光感光层113c中In的组分是指:In的物质的量占蓝光感光层113c中所有带正电荷的元素的物质的量之和的百分比。
此外,本实施例中,各数值范围均包括端点值。
如此,若蓝光照射,红光感光子单元111、绿光感光子单元112以及蓝光感光子单元113均能产生感光电信号。若绿光照射,红光感光子单元111及绿光感光子单元112能产生感光电信号。若红光照射,仅红光感光子单元111能产生感光电信号。
本实施例中,红光感光层111c、和/或绿光感光层112c、和/或蓝光感光层113c为单层结构。其它实施例中,红光感光层111c、和/或绿光感光层112c、和/或蓝光感光层113c也可以为叠层结构,例如为多量子阱层,包括两层势垒层以及夹设于两层势垒层中的势阱层。
本实施例中,参照图1所示,红光感光子单元111包括:N型第一半导体层111a与P型第一半导体层111b,N型第一半导体层111a与P型第一半 导体层111b分别位于红光感光层111c的两侧;绿光感光子单元112包括:N型第二半导体层112a与P型第二半导体层112b,N型第二半导体层112a与P型第二半导体层112b分别位于绿光感光层112c的两侧;蓝光感光子单元113包括:N型第三半导体层113a与P型第三半导体层113b,N型第三半导体层113a与P型第三半导体层113b分别位于蓝光感光层113c的两侧。N型第一半导体层111a、N型第二半导体层112a以及N型第三半导体层113a两两断开,P型第一半导体层111b、P型第二半导体层112b以及P型第三半导体层113b两两断开。
其它实施例中,也可以N型第一半导体层111a、N型第二半导体层112a以及N型第三半导体层113a连接在一起,或P型第一半导体层111b、P型第二半导体层112b以及P型第三半导体层113b连接在一起。
其它实施例中,也可以P型第一半导体层111b、P型第二半导体层112b以及P型第三半导体层113b靠近衬底10,N型第一半导体层111a、N型第二半导体层112a以及N型第三半导体层113a远离衬底10。
N型第一半导体层111a、和/或N型第二半导体层112a、和/或N型第三半导体层113a的材料可以为N型GaN;P型第一半导体层111b、和/或P型第二半导体层112b、和/或P型第三半导体层113b的材料可以为P型GaN或P型InGaN。
基于上述感光单元11,本发明第一实施例还提供一种GaN基图像传感器。图2是GaN基图像传感器的截面结构示意图。
参照图2所示,GaN基图像传感器1,包括:
基底21,基底21包括感光处理电路210;
金属互连层22,位于基底21的表面,金属互连层22内具有金属互连结构220;以及
多个上述感光单元11,位于金属互连层22上,红光感光子单元111、 绿光感光子单元112以及蓝光感光子单元113经由金属互连结构220电连接至感光处理电路210,以得到蓝光入射信号、绿光入射信号以及红光入射信号。
感光处理电路210可以包括位于衬底10上的多个晶体管。
本实施例中,由于N型第一半导体层111a、N型第二半导体层112a以及N型第三半导体层113a两两断开,即红光感光子单元111、绿光感光子单元112以及蓝光感光子单元113受光照射产生感光电流后,N型第一半导体层111a、N型第二半导体层112a以及N型第三半导体层113a的电位可以不等,因而,N型第一半导体层111a、N型第二半导体层112a以及N型第三半导体层113a可以连接于金属互连结构220。
其它实施例中,N型第一半导体层111a、N型第二半导体层112a以及N型第三半导体层113a连接在一起,P型第一半导体层111b、P型第二半导体层112b以及P型第三半导体层113b两两断开时,P型第一半导体层111b、P型第二半导体层112b以及P型第三半导体层113b可以连接于金属互连结构220。
感光处理电路210检测由红光感光子单元111、绿光感光子单元112以及蓝光感光子单元113产生的感光电信号。
具体地,若感光处理电路210从一个感光单元11中的红光感光子单元111、绿光感光子单元112以及蓝光感光子单元113处均检测到感光电信号,则存储为蓝光入射信号;
若感光处理电路210仅从一个感光单元11中的红光感光子单元111及绿光感光子单元112处均检测到感光电信号,则存储为绿光入射信号;
若感光处理电路210仅从一个感光单元11中的红光感光子单元111处均检测到感光电信号,则存储为红光入射信号。
图3是本发明第二实施例的显示装置的模块结构图。
基于实施例一的GaN基图像传感器,本发明第二实施例还提供一种显 示装置。
参照图3所示,显示装置2包括:
GaN基图像传感器1;
显示驱动电路30,显示驱动电路30的输入端从感光处理电路210接受第一区域内的感光单元11的红光入射信号、绿光入射信号以及蓝光入射信号并产生对应的红色显示驱动信号、绿色显示驱动信号以及蓝色显示驱动信号;
显示驱动电路30的输出端和金属互连结构220相连,红色显示驱动信号、绿色显示驱动信号以及蓝色显示驱动信号经由金属互连结构220传递至第二区域的红色发光子单元、绿色发光子单元以及蓝色发光子单元;其中,红色发光子单元为红光感光子单元111、绿色发光子单元为绿光感光子单元112,蓝色发光子单元为蓝光感光子单元113。
本实施例中的显示装置2中,GaN基图像传感器1不但能实现感光功能,而且还能实现显示功能。
显示装置2例如可以实现真正全面屏,省略现有的摄像头及其设置区域,而是采用发光单元实现感光功能。
第一区域内的感光单元11感光时,金属互连结构220与感光处理电路210连接,断开显示驱动电路30,GaN基图像传感器1实现感光功能。第二区域内的发光单元显示时,金属互连结构220与感光处理电路210断开,连接显示驱动电路30,GaN基图像传感器1实现显示功能。
由于金属互连结构220具有两种状态,因而感光功能和显示功能可以分时进行。例如一帧刷新周期内,前部分时段实现感光功能,即进行图像采集;后部分时段实现显示功能,将采集的图像进行显示。
参照图3所示,本实施例中,第一区域与第二区域为同一区域。换言之,光照射感光单元11后,感光单元11内红光感光子单元111产生红光入射信号,经显示驱动电路30产生对应的红色显示驱动信号,显示在同一红光感 光子单元111。绿光感光子单元112与蓝光感光子单元113类似。
第一区域与第二区域可以为显示装置的显示区的所有区域或部分区域。例如,用户选择拍摄的照片全屏显示或部分窗口显示。
图4是本发明第三实施例的显示装置的模块结构图。参照图4所示,本实施例的显示装置2'与实施例二的显示装置2大致相同,区别仅在于:第一区域与第二区域不同。换言之,感光单元11与发光单元不同。
可对图像数据进行处理,使得第一区域的面积大于第二区域的面积,或第一区域的面积小于第二区域的面积。
一些实施例中,第一区域与第二区域也可以部分重叠。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (10)

  1. 一种感光单元,其特征在于,包括:
    红光感光子单元(111)、绿光感光子单元(112)以及蓝光感光子单元(113);所述红光感光子单元(111)的红光感光层(111c)、所述绿光感光子单元(112)的绿光感光层(112c)以及所述蓝光感光子单元(113)的蓝光感光层(113c)的材料都为含In的GaN基材料;所述红光感光层(111c)、所述绿光感光层(112c)以及所述蓝光感光层(113c)的材料中In的组分大小不同,以根据接收到的光的波长不同使对应的所述红光感光子单元(111)、所述绿光感光子单元(112)以及所述蓝光感光子单元(113)产生或不产生感光电信号。
  2. 根据权利要求1所述的感光单元,其特征在于,
    若蓝光照射,所述红光感光子单元(111)、所述绿光感光子单元(112)以及所述蓝光感光子单元(113)均产生感光电信号;
    若绿光照射,所述红光感光子单元(111)及所述绿光感光子单元(112)产生感光电信号;
    若红光照射,仅所述红光感光子单元(111)产生感光电信号。
  3. 根据权利要求1所述的感光单元,其特征在于,
    所述红光感光子单元(111)包括:N型第一半导体层(111a)与P型第一半导体层(111b),所述N型第一半导体层(111a)与所述P型第一半导体层(111b)分别位于所述红光感光层(111c)的两侧;所述绿光感光子单元(112)包括:N型第二半导体层(112a)与P型第二半导体层(112b),所述N型第二半导体层(112a)与所述P型第二半导体层(112b)分别位于所述绿光感光层(112c)的两侧;所述蓝光感光子单元(113)包括:N型第三半导体层(113a)与P型第三半导体层(113b),所述N型第三半导体层(113a)与所述P型第三半导体层(113b)分别位于所述蓝光感光层(113c)的两侧。
  4. 根据权利要求1所述的感光单元,其特征在于,所述红光感光层(111c)中In的组分范围为0.4~0.6;
    所述绿光感光层(112c)中In的组分范围为0.2~0.3;
    所述蓝光感光层(113c)中In的组分范围为0.01~0.1。
  5. 一种GaN基图像传感器,其特征在于,包括:
    基底(21),所述基底(21)包括感光处理电路(210);
    金属互连层(22),位于所述基底(21)的表面,所述金属互连层(22)内具有金属互连结构(220);以及
    多个权利要求1至4任一项所述的感光单元(11),位于所述金属互连层(22)上,所述红光感光子单元(111)、所述绿光感光子单元(112)以及所述蓝光感光子单元(113)经由所述金属互连结构(220)电连接至所述感光处理电路(210),以得到蓝光入射信号、绿光入射信号以及红光入射信号。
  6. 根据权利要求5所述的GaN基图像传感器,其特征在于,
    所述红光感光子单元(111)包括:N型第一半导体层(111a)与P型第一半导体层(111b),所述N型第一半导体层(111a)与所述P型第一半导体层(111b)分别位于所述红光感光层(111c)的两侧;所述绿光感光子单元(112)包括:N型第二半导体层(112a)与P型第二半导体层(112b),所述N型第二半导体层(112a)与所述P型第二半导体层(112b)分别位于所述绿光感光层(112c)的两侧;所述蓝光感光子单元(113)包括:N型第三半导体层(113a)与P型第三半导体层(113b),所述N型第三半导体层(113a)与所述P型第三半导体层(113b)分别位于所述蓝光感光层(113c)的两侧;其中,所述N型第一半导体层(111a)、所述N型第二半导体层(112a)与所述N型第三半导体层(113a),或所述P型第一半导体层(111b)、所述P型第二半导体层(112b)以及所述P型第三半导体层(113b)连接于所述金属互连结构(220),将对应的所述红光感光子单元(111),所述绿光感光子单元(112)以及所述蓝光感光子单元(113)产生的感光电信号输入至所述感光处理电路(210)。
  7. 根据权利要求5所述的GaN基图像传感器,其特征在于,所述感光处理电路(210)检测由所述感光单元(11)的产生的感光电信号;
    若所述感光处理电路(210)从所述感光单元(11)中的所述红光感光子单元(111)、所述绿光感光子单元(112)以及所述蓝光感光子单元(113)处均检测到感光电信号,则存储为所述蓝光入射信号;
    若所述感光处理电路(210)仅从所述感光单元(11)中的所述红光感光子单元(111)及所述绿光感光子单元(112)处均检测到感光电信号,则存储为所述绿光入射信号;
    若所述感光处理电路(210)仅从所述感光单元(11)中的所述红光感光子单元(111)处均检测到感光电信号,则存储为所述红光入射信号。
  8. 一种包含权利要求5至7中任一项所述的GaN基图像传感器的显示装置,其特征在于,还包括:显示驱动电路(30),所述显示驱动电路(30)的输入端从所述感光处理电路(210)接受第一区域内的所述感光单元(11)的红光入射信号、所述绿光入射信号以及所述蓝光入射信号并产生对应的红色显示驱动信号、绿色显示驱动信号以及蓝色显示驱动信号;
    所述显示驱动电路(30)的输出端和所述金属互连结构(220)相连,所述红色显示驱动信号、所述绿色显示驱动信号以及所述蓝色显示驱动信号经由所述金属互连结构(220)传递至第二区域的红色发光子单元、绿色发光子单元以及蓝色发光子单元;其中,所述红色发光子单元为所述红光感光子单元(111)、所述绿色发光子单元为所述绿光感光子单元(112),所述蓝色发光子单元为所述蓝光感光子单元(113)。
  9. 根据权利要求8所述的显示装置,其特征在于,所述第一区域与所述第二区域为同一区域,或所述第一区域的面积大于所述第二区域的面积,或所述第一区域的面积小于所述第二区域的面积。
  10. 根据权利要求8或9所述的显示装置,其特征在于,所述第一区域内的所述感光单元(11)感光时,所述金属互连结构(220)与所述感光处理电路(210)连接,与所述显示驱动电路(30)断开;所述第二区域内的所述发光单元显示时,所述金属互连结构(220)与所述感光处理电路(210)断开,与所述显示驱动电路(30)连接;感光功能和显示功能分时进行。
PCT/CN2021/081548 2021-03-18 2021-03-18 感光单元及其GaN基图像传感器、显示装置 WO2022193234A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180091815.3A CN116897431A (zh) 2021-03-18 2021-03-18 感光单元及其GaN基图像传感器、显示装置
US17/778,963 US11942491B2 (en) 2021-03-18 2021-03-18 Light sensing unit and GaN-based image sensor and display apparatus thereof
PCT/CN2021/081548 WO2022193234A1 (zh) 2021-03-18 2021-03-18 感光单元及其GaN基图像传感器、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/081548 WO2022193234A1 (zh) 2021-03-18 2021-03-18 感光单元及其GaN基图像传感器、显示装置

Publications (1)

Publication Number Publication Date
WO2022193234A1 true WO2022193234A1 (zh) 2022-09-22

Family

ID=83321345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081548 WO2022193234A1 (zh) 2021-03-18 2021-03-18 感光单元及其GaN基图像传感器、显示装置

Country Status (3)

Country Link
US (1) US11942491B2 (zh)
CN (1) CN116897431A (zh)
WO (1) WO2022193234A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040178465A1 (en) * 2002-03-20 2004-09-16 Foveon, Inc. Vertical color filter sensor group with non-sensor filter and method for fabricating such a sensor group
JP2011203659A (ja) * 2010-03-26 2011-10-13 Sony Corp 表示装置および電子機器
CN104078520A (zh) * 2014-06-27 2014-10-01 中山大学 一种具有窄带光谱响应的电子输运可见光光电探测器
CN106999028A (zh) * 2014-12-09 2017-08-01 索尼公司 照明装置、控制照明装置的方法以及图像获取系统
CN107078138A (zh) * 2014-10-06 2017-08-18 索尼公司 固态摄像装置和电子设备
CN109786418A (zh) * 2018-12-26 2019-05-21 惠科股份有限公司 微发光二极管显示面板和显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106653896B (zh) 2017-01-04 2018-05-18 广东省半导体产业技术研究院 一种用于可见光通信的InGaN量子点光电探测器及其制备方法
CN109950259A (zh) 2017-12-21 2019-06-28 比亚迪股份有限公司 图像传感器及其制作方法
CN108428763B (zh) 2018-04-18 2024-06-04 厦门大学 一种应力调控紫外多波长msm光电探测器及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040178465A1 (en) * 2002-03-20 2004-09-16 Foveon, Inc. Vertical color filter sensor group with non-sensor filter and method for fabricating such a sensor group
JP2011203659A (ja) * 2010-03-26 2011-10-13 Sony Corp 表示装置および電子機器
CN104078520A (zh) * 2014-06-27 2014-10-01 中山大学 一种具有窄带光谱响应的电子输运可见光光电探测器
CN107078138A (zh) * 2014-10-06 2017-08-18 索尼公司 固态摄像装置和电子设备
CN106999028A (zh) * 2014-12-09 2017-08-01 索尼公司 照明装置、控制照明装置的方法以及图像获取系统
CN109786418A (zh) * 2018-12-26 2019-05-21 惠科股份有限公司 微发光二极管显示面板和显示装置

Also Published As

Publication number Publication date
US20230299100A1 (en) 2023-09-21
US11942491B2 (en) 2024-03-26
CN116897431A (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
US11411034B2 (en) Solid-state imaging device and electronic apparatus
KR102554664B1 (ko) 촬상 장치 및 전자 기기
US8026540B2 (en) System and method for CMOS image sensing
Long et al. UV detectors and focal plane array imagers based on AlGaN pin photodiodes
JP7072016B2 (ja) 撮像装置
JP6982132B2 (ja) 電子機器および撮像装置
JP2008187169A (ja) シアン−タイプとイエロータイプのカラー特性を有するピクセルを含むカラーイメージセンサ
JP6772171B2 (ja) 光電変換素子および固体撮像装置
CN108288624A (zh) 固态摄像器件以及电子装置
TW201721232A (zh) 使用整合在3d封裝中的單色cmos影像感測器的高解析度彩色視頻
WO2022193234A1 (zh) 感光单元及其GaN基图像传感器、显示装置
US20060042677A1 (en) Solid-state image pickup device
KR20120107755A (ko) 이미지 센서의 픽셀 어레이 및 이미지 센서의 픽셀 어레이 제조 방법
WO2022261977A1 (zh) 前照式图像传感器
WO2022261978A1 (zh) 前照式图像传感器
WO2022261979A1 (zh) 前照式图像传感器
JP5253856B2 (ja) 固体撮像装置
WO2022261980A1 (zh) 显示面板
JPH04326763A (ja) 固体撮像装置
CN109411498A (zh) 图像传感器及其形成方法
JP2003309858A (ja) 3板式カメラ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930826

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180091815.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930826

Country of ref document: EP

Kind code of ref document: A1