CN105742377B - 一种具有带通滤波功能的可见光通信用光电探测器 - Google Patents

一种具有带通滤波功能的可见光通信用光电探测器 Download PDF

Info

Publication number
CN105742377B
CN105742377B CN201610095413.1A CN201610095413A CN105742377B CN 105742377 B CN105742377 B CN 105742377B CN 201610095413 A CN201610095413 A CN 201610095413A CN 105742377 B CN105742377 B CN 105742377B
Authority
CN
China
Prior art keywords
specular
band
type gan
visible light
pass filtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610095413.1A
Other languages
English (en)
Other versions
CN105742377A (zh
Inventor
江灏
张闯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Sun Yat Sen University
Original Assignee
National Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Sun Yat Sen University filed Critical National Sun Yat Sen University
Priority to CN201610095413.1A priority Critical patent/CN105742377B/zh
Publication of CN105742377A publication Critical patent/CN105742377A/zh
Application granted granted Critical
Publication of CN105742377B publication Critical patent/CN105742377B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • H01L31/02165Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors using interference filters, e.g. multilayer dielectric filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及可见光光电探测器的技术领域,更具体地,涉及一种具有带通滤波功能的可见光通信用光电探测器。一种具有带通滤波功能的可见光通信用光电探测器,包括衬底,利用外延生长法,依次生长在衬底上的缓冲层,n型GaN层,InGaN/GaN多重量子阱有源层,p型GaN层,利用电子束蒸发设备沉积在p型GaN层上的P型金属电极和一维缺陷镜像对称光子晶体滤波器,或者沉积在对可见光透明的衬底背面上的一维缺陷镜像对称光子晶体滤波器,以及沉积在n型GaN层上的N型金属电极。该滤波器能够对入射的信号光进行选择性滤波,滤去不在VLC系统信号源发射光谱范围内的干扰信号,同时不需要外加滤波器,可集成度高。

Description

一种具有带通滤波功能的可见光通信用光电探测器
技术领域
本发明涉及可见光光电探测器的技术领域,更具体地,涉及一种具有带通滤波功能的可见光通信用光电探测器。
背景技术
近年来,随着白光发光二极管(Light Emitting Diode,LED)被应用于通信系统的信号发射端,可见光通信技术(Visible Light Communication, VLC)逐渐为人们所关注。由于白光发光二极管(LED)具有高的响应灵敏度和优良的调制特性,在其作为照明用具的同时,也能够将信号调制到其发射波段上进行传输,这样就能够实现白光LED照明与通信的双重功能。相比于目前的WiFi等无线通信技术,VLC具有(1)传输速率快;(2)保密性好;(3)不受电磁干扰;(4)无需申请无线频谱许可证等一系列优势。
然而,在现行的VLC技术中,暴露出一些突出的问题:在VLC通信系统中,存在着强烈的背景噪声和固有的电路噪声;同时随着传输距离的增大,光接收器接受到的信号渐趋微弱,常导致接收端接收到的信号与噪声的功率之比(Signal Noise Ratio, SNR)小于1。因此为了在高速传输下精确的接受信号,采用灵敏度高,响应速度快,噪声小的光电探测器是构建可见光通信系统的必要条件之一。但目前被用作可见光通信系统接收端的Si基、GaAs、GaP基探测器存在响应峰值波长与光源发射波长不匹配的问题,同时还存在需要外加滤波器导致的探测器体积大、滤波损耗和成本增加等缺点。针对上述问题,为保证通信的准确度、灵敏度,亟待开发出具有滤波特性的、灵敏度高的新型可将光光电探测器。
目前在VLC系统中用作光源的白光LED主要有两种形式:(1)InGaN/GaN多重量子阱蓝光LED激发黄色荧光粉发出白光;(2)InGaN蓝光LED与红、绿LED组合,发出白光。因此以InGaN为感光材料能够使探测器的吸收光谱与光源的发射光谱保持一致,同时InGaN材料还具有量子效率高、响应速度快和良好的波长选择特性等优点。然而,由于InGaN外延材料的结晶质量一直有待改善,这使得目前制备的InGaN光电探测器通过材料特性实现滤波功能变得十分困难,难以达到VLC系统实际应用的要求。
众所周知,InGaN/GaN多重量子阱LED的工作原理是在正向导通的情况下,空穴和电子在有源区量子阱层中复合发光。与LED的发光工作机制相反,在向LED芯片施加小正向偏置电压(小于导通偏压)或反向偏压时,在其量子阱有源区处会存在一个耗尽区,当具有光子能量大于InGaN量子阱带隙能量的入射光通过正向电极入射(或通过衬底一侧)进入该耗尽区,会激发出光生电子-空穴对,这些光生载流子在耗尽区内电场的作用下流向器件的正负电极,形成光电流。因此,如果施加适当的偏置电压, GaN基LED芯片可用来探测入射的可见光信号。但是,由于可见光通信系统的工作环境中通常存在着背景噪声干扰,使得利用GaN基LED作为VLC系统接收端探测器的信噪比过低;同时,由于量子阱有源区中的极化电场作用,以及耗尽层扩展至p型GaN区域,导致了LED芯片的响应光谱峰值波长发生偏移,在短波长区有较强光响应,不利于提高SNR。
发明内容
本发明为克服上述现有技术所述的至少一种缺陷,提供一种具有带通滤波功能的可见光通信用光电探测器,利用GaN基InGaN/GaN多重量子阱LED结构作为光电探测器,并在器件芯片的光信号入射端面沉积一个多层结构的可调节滤波特性的一维缺陷镜像对称光子晶体滤波器,该滤波器能够对入射的信号光进行选择性滤波,滤去不在VLC系统信号源发射光谱范围内的干扰信号,同时不需要外加滤波器,可集成度高,且该滤波器使用的材料结构为常见的GaN基LED结构,外延工艺成熟,从而回避了InGaN材料生长中的一系列难题。
为解决上述技术问题,本发明采用的技术方案是:一种具有带通滤波功能的可见光通信用光电探测器,其中,包括衬底,利用外延生长法,如分子束外延或金属有机化学气相沉淀外延法,依次生长在衬底上的缓冲层,n型GaN层,InGaN/GaN多重量子阱有源层,p型GaN层,利用电子束蒸发设备沉积在p型GaN层上的P型金属电极和一维缺陷镜像对称光子晶体滤波器,或者沉积在对可见光透明的衬底背面上的一维缺陷镜像对称光子晶体滤波器,以及沉积在n型GaN层上的N型金属电极;
探测器的制备工艺步骤是:
步骤1:在P型GaN层上旋涂一层光刻胶,光刻显影后暴露出需要刻蚀的部分P型GaN层;
步骤2:使用干法刻蚀,刻蚀暴露出的P型GaN层,刻蚀深度到N型GaN层,形成台阶结构;
步骤3:利用光刻和电子束蒸发技术分别在N型GaN层台阶处和P型GaN边缘处制备环形电极;
步骤4:对N型电极和P型电极进行合金化处理;
步骤5:利用光刻和电子束蒸发技术在P型GaN层裸露处制备一维缺陷镜像对称光子晶体滤波器,或者不需要光刻,直接在对可见光透明的衬底背面制备一维缺陷镜像对称光子晶体滤波器。
其中所述的一维缺陷镜像对称光子晶体滤波器,沉积的介质薄膜材料分别为TiO2和SiO2,其折射率范围分别为2.35~2.82和1.4~1.5;TiO2层实际厚度取值范围为33.7nm至83.0nm,SiO2层实际厚度取值范围为63.3nm至139.3nm,单个周期的实际总厚度不超过222.3nm;一维缺陷镜像对称光子晶体滤波器结构中的周期参数m取值为m≥4,且m取值为正整数;缺陷层使用材料为TiO2,折射率范围为2.35~2.82,实际厚度单位数n取值为正实数。
另外,由这种结构的探测器组成的滤波带通可见光通信用光电探测器阵列也包含在本发明的保护范围内。
与现有技术相比,有益效果是:本发明利用GaN基InGaN/GaN多重量子阱LED结构作为光电探测器,并在器件芯片的光信号入射端面沉积一个多层结构的可调节滤波特性的一维缺陷镜像对称光子晶体滤波器,该滤波器能够对入射的信号光进行选择性滤波,滤去不在VLC系统信号源发射光谱范围内的干扰信号,同时不需要外加滤波器,可集成度高,且该滤波器使用的材料结构为常见的GaN基LED结构,外延工艺成熟,从而回避了InGaN材料生长中的一系列难题。
附图说明
图1是本发明的具有带通滤波功能的可见光通信用光电探测器结构正入射结构图。
图2是本发明的具有带通滤波功能的可见光通信用光电探测器结构背入射结构图。
图3是本发明应用在探测器中的一维缺陷镜像对称光子晶体滤波器结构图。
图4是本发明一种确定结构的一维缺陷镜像对称光子晶体滤波器透射光谱图。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。附图中描述位置关系仅用于示例性说明,不能理解为对本专利的限制。
现结合附图对本发明进行详尽的描述。该方法适用于制备具有带通滤波功能的可见光通信用光电探测器,光信号从正面或者背面入射,一维缺陷镜像对称光子晶体滤波器具备滤波带通功能,滤波范围包含整个可见光范围,即380nm-780nm,具体滤波带通波段,可根据有源层的设计响应波长而定。
本实施例如图1给出了一种具备带通滤波功能的可见光通信用光电探测器结构,器件制备过程:衬底(1),衬底材料可选择蓝宝石、SiC或者Si等材料;利用外延生长法,如分子束外延或者金属有机化学气相沉积外延法,依次在衬底(1)上生长2 μm的非掺杂GaN缓冲层(2),1μm-3 μm厚的N型GaN层(3),电子浓度为1×1018/cm3~3×1019/cm3;InGaN/GaN多重量子阱层(4),其中InGaN层厚度为1 nm~5 nm,In组分为0.16~0.22,GaN层的厚度为3 nm~15nm,量子阱对数为3~8对;100~300 nm厚的P型GaN层,空穴浓度为1×1017/cm3~5×1018/cm3。工艺过程如下:
步骤1:在P型GaN层上旋涂一层光刻胶,厚度为6 μm,光刻显影后暴露出需要刻蚀的部分P型GaN层;
步骤2:使用干法刻蚀,刻蚀暴露出的P型GaN层,刻蚀深度到N型GaN层,形成台阶结构;
步骤3:利用光刻和电子束蒸发技术分别在N型GaN层台阶处和P型GaN边缘处制备环形电极;
步骤4:对N型电极和P型电极进行合金化处理;
步骤5:利用光刻和电子束蒸发技术在P型GaN层裸露处制备一维缺陷镜像对称光子晶体滤波器,或者不需要光刻,直接在对可见光透明的衬底背面制备一维缺陷镜像对称光子晶体滤波器。
本实施例中,一维缺陷镜像对称光子晶体滤波器(8)或者(9)由TiO2和SiO2两种高低折射率材料周期性排列构成,膜系结构为(HL)m(nH)(LH)m,其中H代表TiO2,L代表SiO2,m为周期数,取正整数;n为缺陷层厚度单位数,取正实数。该一维缺陷镜像对称光子晶体滤波器可通过调整TiO2层和SiO2层的厚度、缺陷层的厚度单位数n,以及结构中周期数m对入射光进行选择性滤波器,从而能够降低信号光的背景噪声,提升探测器的灵敏度。该探测器使用GaN基LED结构作为探测器的材料结构,入射光选择性透过一维缺陷镜像对称光子晶体滤波器(8)或者(9),到达有源层(4),产生光电流,从而形成光电响应。
其中TiO2层折射率为2.52,厚度为44.6 nm,SiO2层折射率为1.46,厚度为77.0nm,显然TiO2折射率高于SiO2折射率,TiO2为高折射率介质材料,SiO2为低折射率介质材料,周期数m取值为5,缺陷层材料为TiO2,折射率为2.52,厚度单位数n取值为2。图4为一维缺陷镜像对称光子晶体滤波器透射光谱图。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

1.一种具有带通滤波功能的可见光通信用光电探测器,其特征在于,包括衬底(1),利用外延生长法,依次生长在衬底(1)上的缓冲层(2),n型GaN层(3),InGaN/GaN多重量子阱有源层(4),p型GaN层(5),利用电子束蒸发设备沉积在p型GaN层(5)上的P型金属电极(6)和一维缺陷镜像对称光子晶体滤波器(8),或者沉积在对可见光透明的衬底背面上的一维缺陷镜像对称光子晶体滤波器(9),以及沉积在n型GaN层(3)上的N型金属电极(7);所述一维缺陷镜像对称光子晶体滤波器由具有高、低折射率的两种介质材料周期性排列构成,膜系结构为(HL)m(nH)(LH)m,其中H代表高折射率介质材料,L代表低折射率介质材料,m为周期数,n为缺陷层厚度单位数;
探测器的制备工艺步骤是:
步骤1:在P型GaN层上旋涂一层光刻胶,光刻显影后暴露出需要刻蚀的部分P型GaN层;
步骤2:使用干法刻蚀,刻蚀暴露出的P型GaN层,刻蚀深度到N型GaN层,形成台阶结构;
步骤3:利用光刻和电子束蒸发技术分别在N型GaN层台阶处和P型GaN边缘处制备环形电极;
步骤4:对N型电极和P型电极进行合金化处理;
步骤5:利用光刻和电子束蒸发技术在P型GaN层裸露处制备一维缺陷镜像对称光子晶体滤波器,或者不需要光刻,直接在对可见光透明的衬底背面制备一维缺陷镜像对称光子晶体滤波器。
2.根据权利要求1所述的一种具有带通滤波功能的可见光通信用光电探测器,其特征在于:所述的衬底材料使用双面抛光的蓝宝石。
3.根据权利要求1所述的一种具有带通滤波功能的可见光通信用光电探测器,其特征在于:所述的一维缺陷镜像对称光子晶体滤波器,沉积的介质薄膜材料分别为TiO2和SiO2
4.根据权利要求3所述的一种具有带通滤波功能的可见光通信用光电探测器,其特征在于:所述的一维缺陷镜像对称光子晶体滤波器使用的材料TiO2和SiO2的折射率范围分别为2.35~2.82和1.4~1.5。
5.根据权利要求1所述的一种具有带通滤波功能的可见光通信用光电探测器,其特征在于:所述的一维缺陷镜像对称光子晶体滤波器结构中的周期参数m取值为m≥4,且m取值为正整数。
6.根据权利要求3所述的一种具有带通滤波功能的可见光通信用光电探测器,其特征在于:所述的一维缺陷镜像对称光子晶体滤波器结构中的TiO2层实际厚度取值范围为33.7nm至83.0 nm。
7.根据权利要求3所述的一种具有带通滤波功能的可见光通信用光电探测器,其特征在于:所述的一维缺陷镜像对称光子晶体滤波器结构中的SiO2层实际厚度取值范围为63.3nm至139.3nm。
8.根据权利要求1所述的一种具有带通滤波功能的可见光通信用光电探测器,其特征在于:所述的一维缺陷镜像对称光子晶体滤波器结构中的单个周期的实际总厚度不超过222.3nm。
9.根据权利要求3所述的一种具有带通滤波功能的可见光通信用光电探测器,其特征在于:所述的一维缺陷镜像对称光子晶体滤波器结构中的缺陷层使用材料为TiO2,实际厚度单位数n取值为正实数。
10.根据权利要求1所述的一种具有带通滤波功能的可见光通信用光电探测器,其特征在于:所述的器件结构中InGaN/GaN多重量子阱有源层的中InGaN的带隙宽度所对应的波长为380至780 nm。
CN201610095413.1A 2016-02-22 2016-02-22 一种具有带通滤波功能的可见光通信用光电探测器 Expired - Fee Related CN105742377B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610095413.1A CN105742377B (zh) 2016-02-22 2016-02-22 一种具有带通滤波功能的可见光通信用光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610095413.1A CN105742377B (zh) 2016-02-22 2016-02-22 一种具有带通滤波功能的可见光通信用光电探测器

Publications (2)

Publication Number Publication Date
CN105742377A CN105742377A (zh) 2016-07-06
CN105742377B true CN105742377B (zh) 2018-01-05

Family

ID=56245492

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610095413.1A Expired - Fee Related CN105742377B (zh) 2016-02-22 2016-02-22 一种具有带通滤波功能的可见光通信用光电探测器

Country Status (1)

Country Link
CN (1) CN105742377B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106653896B (zh) * 2017-01-04 2018-05-18 广东省半导体产业技术研究院 一种用于可见光通信的InGaN量子点光电探测器及其制备方法
CN107342346A (zh) * 2017-07-03 2017-11-10 京东方科技集团股份有限公司 一种光电二极管、x射线探测器及其制备方法
CN110391314A (zh) * 2019-06-28 2019-10-29 华南农业大学 一种窄带光电探测器及其制备方法
CN110444626A (zh) * 2019-07-30 2019-11-12 华南理工大学 Si衬底InGaN可见光探测器及制备方法与应用
CN111641107B (zh) * 2020-05-29 2021-09-10 南京邮电大学 基于二氧化钛光子晶体的氮化镓基面激光器及制备方法
CN114373814A (zh) * 2021-12-14 2022-04-19 华南理工大学 一种光电探测器芯片及其制备方法与应用
CN114373813A (zh) * 2021-12-14 2022-04-19 华南理工大学 一种用于可见光通信的芯片及其制备方法与应用
CN115036378B (zh) * 2022-04-28 2023-11-28 南昌大学 AlInGaN基单pn结多色探测器及信号检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5813752A (en) * 1997-05-27 1998-09-29 Philips Electronics North America Corporation UV/blue LED-phosphor device with short wave pass, long wave pass band pass and peroit filters
CN1770483A (zh) * 2005-09-02 2006-05-10 中国科学院上海技术物理研究所 氮化镓基高单色性光源阵列
CN101937959A (zh) * 2010-08-12 2011-01-05 武汉华灿光电有限公司 带滤光膜的发光二极管及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100334739C (zh) * 2005-04-27 2007-08-29 中国科学院上海技术物理研究所 紫外双波段氮化镓探测器
CN100385266C (zh) * 2005-09-14 2008-04-30 同济大学 相对位置可调谐的二维通带通道滤光片
CN102637787B (zh) * 2012-04-25 2014-10-15 中国科学院半导体研究所 一种无间断生长高质量InGaN/GaN多量子阱的方法
CN103972334B (zh) * 2014-05-14 2017-01-18 湘能华磊光电股份有限公司 Led外延层结构、生长方法及具有该结构的led芯片
CN104078520B (zh) * 2014-06-27 2016-09-14 中山大学 一种具有窄带光谱响应的电子输运可见光光电探测器
CN204130567U (zh) * 2014-09-24 2015-01-28 滁州学院 一种用于日盲紫外探测的雪崩光电二极管

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5813752A (en) * 1997-05-27 1998-09-29 Philips Electronics North America Corporation UV/blue LED-phosphor device with short wave pass, long wave pass band pass and peroit filters
CN1770483A (zh) * 2005-09-02 2006-05-10 中国科学院上海技术物理研究所 氮化镓基高单色性光源阵列
CN101937959A (zh) * 2010-08-12 2011-01-05 武汉华灿光电有限公司 带滤光膜的发光二极管及其制造方法

Also Published As

Publication number Publication date
CN105742377A (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
CN105742377B (zh) 一种具有带通滤波功能的可见光通信用光电探测器
US10386574B2 (en) Integrated photonic device comprising hollowed silicon substrate-based LED and optical waveguide and manufacturing method thereof
US9685577B2 (en) Light emitting diodes and photodetectors
CN102881761B (zh) Apd红外探测器及其制作方法
US20110291113A1 (en) Filter for a light emitting device
Li et al. High responsivity and wavelength selectivity of GaN‐based resonant cavity photodiodes
CN105590971B (zh) AlGaN日盲紫外增强型雪崩光电探测器及其制备方法
Zhou et al. GaN-based micro-LEDs and detectors defined by current spreading layer: size-dependent characteristics and their multifunctional applications
CN107403848A (zh) 一种背照式级联倍增雪崩光电二极管
Li et al. Suspended p–n junction InGaN/GaN multiple-quantum-well device with selectable functionality
CN105742387B (zh) AlGaN渐变组分超晶格雪崩光电二极管
Kong et al. Recent progress in InGaN-based photodetectors for visible light communication
CN104078520A (zh) 一种具有窄带光谱响应的电子输运可见光光电探测器
WO2021035676A1 (zh) 一种超薄结构深紫外led及其制备方法
CN106684198A (zh) 基于亚波长光栅的谐振增强型紫外光探测器及制备方法
CN106653896B (zh) 一种用于可见光通信的InGaN量子点光电探测器及其制备方法
KR20180082222A (ko) 자외선 센서 및 검출 장치
CN206370429U (zh) 一种用于可见光通信的InGaN量子点光电探测器
CN107706261B (zh) 一种叠层双色红外焦平面探测器及其制备方法
CN113728563B (zh) 具有高速波长转换层的紫外检测
CN109713091B (zh) 一种采用高反膜提高GaN基集成波导的光耦合效率的方法
CN209328907U (zh) 一种具有可见光带通滤波功能的硅基光电探测器
CN207165584U (zh) 一种背照式级联倍增雪崩光电二极管
CN109904276A (zh) 一种GaN基垂直集成光电子芯片及其制备方法
CN103996737B (zh) 一种吸收、倍增层分离且具有滤波功能的可见光雪崩光电探测器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180105